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Foreword 

Some twenty years have elapsed since the first attempts at planning were made 
by researchers in artificial intelligence. These early programs concentrated 
on the development of plans for the solution of puzzles or toy problems, like 
the rearrangement of stacks of blocks. These early programs provided the 
foundation for the work described in this book, the automatic generation of 
plans for industrial assembly. 

As one reads about the complex and sophisticated planners in the current gen­
eration, it is important to keep in mind that they are addressing real-world 
problems. Although these systems may become the "toy" systems of tomor­
row, they are providing a solid foundation for future, more general and more 
advanced planning tools. As demonstrated by the papers in this book, the 
field of computer-aided mechanical assembly planning is maturing. It now may 
include: 

• geometric descriptions of parts extracted from or compatible with CAD 
programs; 

• constraints related to part interference and the use of tools; 

• fixtures and jigs required for the assembly; 
• the nature of connectors, matings and other relations between parts; 

• number of turnovers required during the assembly; 

• handling and gripping requirements for various parts; 
• automatic identification of subassemblies. 

This is not an exhaustive list, but it serves to illustrate the complexity of 
some of the issues which are discussed in this book. Such issues must be 
considered in the design of the modern planners, as they produce desirable 
assembly sequences and precedence relations for assembly. 

As with other AI-based planning programs, the fundamental issues include 
knowledge representation and acquisition, search algorithms and inference tech­
niques. Hence, several of the chapters of the book include discussions of model-
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ing and representation of parts, liaisons between them and the processes which 
produce them. The basic approach to problem solving is systematic search in 
the problem space, which immediately raises the possibility of an explosion in 
the number of possible solutions. Hence, many current programs include edit­
ing provisions to eliminate undesirable branches of the search tree, or prune the 
tree in the process of developing the plans. Yet, there are situations in which 
the enumeration and examination of all feasible assembly orders has advan­
tages, as demonstrated in some of the approaches discussed here. The amount 
of knowledge required for the intelligent determination of feasible assembly se­
quences and the subsequent editing and sorting is clearly enormous. Hence, 
some of the methods discussed in this book include interactive features, which 
enable users to assist in the process by means of question answering and other 
computer aids. 

While it is evident that the automation of assembly planning is a maturing 
area of research, it is also evident that it is still in the research phase. Most 
of the authors of the papers in this book are associated with academia or with 
research centers. Computer-aided mechanical assembly planning is still largely 
an academic discipline. Its application in industry is still in the early stages. 
Among the reasons why its use in industry is not yet extensive are the following: 

1. The computational efficiency of the today's planners limits them to assem­
blies with a relatively small number of parts. To handle products consisting 
of 60 or 80 parts, which occur in industry, current systems still need the 
help of a human operator. 

2. The measures for the selection of desirable assembly sequences in exist­
ing planners are not yet wide enough. Cost, ease of assembly and robot 
gripping requirements are among the commonly used evaluation criteria. 
Fixturing and tooling requirements and the related issue of partial assem­
bly turnovers are seldom discussed. Even less frequent are such practical 
production criteria as assembly line layout. Furthermore, many assembly 
processes incorporate various testing steps, which should be considered in 
the evaluation. Evaluation and rejection of candidate assembly sequences 
on the basis of such multiple criteria is clearly more difficult, but it would 
contribute to the perception of real world relevance of the assembly plan­
ners. Since the time associated with alternative plans and the related issues 
of tool change and fixture adjustment are of great industrial significance, 
it will also be important to integrate scheduling with planning in future 
systems. 

3. There is a natural delay in the transfer of research knowledge from academia 
to industry. Industry is somewhat conservative in the introduction of new 
technology, which must be justified on the basis of both scientific and eco­
nomic criteria. 

The authors of the chapters in this book report on work that addresses these 
problems. 
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xi 

I indicated earlier that assembly planning is a maturing discipline. Perhaps it 
is more fair to say that it has reached adolescence. It has given up the toys 
of childhood, but it is not quite ready to assume all the responsibilities of the 
rough and tumble adult world of industry. This is perhaps the most exciting 
time to be associated with a new technology. Readers of this book will be ready 
for the developments to come. 

George A. Bekey 
Computer Science Department and 
Center for Manufacturing and Automation Research 
University of Southern California 
Los Angeles, California 
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Chapter 1 

Introduction 

Luiz S. Homem de Mello and Sukhan Lee 

Intensifying competition in manufacturing has brought about redoubled pres­
sure for cutting down costs, for improving product quality, and for minimizing 
the time from concept to production. These requirements, coupled with the 
ever growing complexity of products and of production systems, have con­
tributed to a rising interest in concurrent engineering, or simultaneous engi­
neering. These terms have been used to refer to the idea of integrating the 
design of a product and the design of its production system. Being able to 
take manufacturing considerations into account early in the development of 
a new artifact can greatly simplify its fabrication. Even a small change in 
the design of a product can have a large impact on the assembly alternatives. 
Where adopted, the concurrent engineering approach has led to more efficient 
production systems and therefore to lower costs compared to where design and 
production planning are separated. In addition, development times are shorter, 
and redesign due to manufacturing constraints is greatly reduced. 

The introduction of the concurrent engineering approach has been facilitated 
by the recent progress in digital electronic technology. As computers become 
faster, more powerful, and less expensive, and as software engineering matures, 
industrial designers and engineers have had increased access to software tools 
that help them improve their productivity. Computer-aided design (CAD) pro­
grams, for example, are already well established and substantially improve the 
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efficiency of the design process. Another field in which the use of computers is 
becoming widespread is process planning, that is, the generation of a sequence 
of machining cuts for the production of a part. Still another manufacturing do­
main in which computer aids are being introduced is the scheduling of factory 
resources. 

This book focus on yet another area for software tools that has emerged more 
recently namely mechanical assembly planning. The use of computers for plan­
ning the assembly of mechanical products originated in the research on planning 
within artificial intelligence. 

There are many reasons for the systematization and the computerization of 
assembly planning, some of which are listed below. 

• Industrial designers will benefit from having a tool with which they can 
quickly assess their designs for ease of assembly. 

• The planning and programming chores in manufacturing are time consum­
ing and error prone. Moreover, the time spent in planning and program­
ming may excessively delay the actual production. The automation of these 
chores expedites their execution, reduces their cost, and improves their qual­
ity. 

• The tailoring of products for market niches is becoming more common. For 
small batches, the cost of manual planning and programming can weigh 
heavily in the total production cost. 

• Although many experienced industrial engineers have a knack for devising 
efficient ways to assemble a given product, systematic procedures are nec­
essary to guarantee that no good assembly plan has been overlooked. For 
complex products, the number of different assembly alternatives may be so 
large that even skillful engineers fail to notice many possibilities. 

• In some cases, it is necessary to adapt the assembly process to different sets 
of machines. The need to produce different products in the same shop may 
lead to the choice of an assembly plan for a product that may not be the 
most efficient on ideal conditions, but uses the idle equipment. Likewise, 
when the same product is assembled in different sites, the plan that is more 
suitable to the available equipment may be different from one shop to the 
next. Automation allows the actual planning to be delayed until it is clear 
what machines will execute the assembly. 

• In many applications of autonomous systems, it is impracticable to pre­
program all tasks they might face. Such systems must have the ability to 
generate assembly or disassembly plans that fit the particular situation they 
encounter. Similarly, an opportunistic scheduler can be more effective if it 
is able to generate, in real time, the assembly plan that is more suitable for 
the order in which parts arrive or are picked from a bin. 

A number of technical issues must be addressed for the automation of assembly 
planning. They include the following: 
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• The representation of assemblies 

A computer representation of mechanical assemblies is necessary in order to 
automate the generation of assembly plans. The main issues here are deciding 
what information about assemblies is required, and how the information can 
be represented inside the computer. 

Of course the shape of the parts and the geometric relationship between parts 
are crucial for assembly planning. Therefore, they must be represented, along 
with their tolerances, in any assembly model. But although the geometric 
aspects are very important, assembly models must also represent a number 
of other aspects such as the attachments that secure two parts together, or 
the chemical treatments (e.g., painting, lubrication) that must be applied after 
parts are joined. 

A relational scheme seems ideal for representing assemblies since it can capture 
the geometric and mechanical relations between parts. However, for assem­
blies with large number of parts, a hierarchical scheme may be more efficient 
since many products are designed with natural hierarchies of subassemblies. In 
practice, a combination of the two schemes may attain the advantages of both . 

• The representation of assembly plans 

A computer system for assembly planning must have a way to represent the 
assembly plans it generates. 

Several methodologies for representing assembly plans have been utilized. 
These include representations based on directed graphs, on AND/OR graphs, on 
establishment conditions, and on precedence relationships. A clear understand­
ing of these alternative representations and of how one maps into the others is 
very important in developing an assembly planner. As later chapters will show, 
the ability to go back and forth from one representation scheme to another can 
lead to efficiency gains in the planning process. 

In addition to representing the joining of parts or subassemblies, the represen­
tation schemes must also be able to represent the other operations such as the 
chemical treatments that must be applied after parts are put together . 

• The correctness and completeness of the planning process 

Clearly, to be an useful tool, an assembly planning system must only generate 
correct assembly plans. Furthermore, to solve problems that require optimiza­
tion, such as the selection of the best assembly alternative, one must be able 
to traverse the space of all candidate solutions, regardless of the method used 
to solve the problem. It should be noted that the solution procedure does not 
need to go over all possibilities. What is important is that the method has the 
potential to generate all assembly plans. 
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• The efficiency of the planning process 

Assembly planning is a computationally intensive task. Therefore, it is impera­
tive that we seek new approaches that can reduce the computation required to 
generate assembly plans. Some approaches to improve the planning efficiency 
may sacrifice completeness. This happens, for example, when subassemblies 
are treated as units, in order to artificially reduce the number of parts. In 
these cases, it is important to ascertain that no good plan is being missed, that 
is, that the alternatives being pruned would not be among the preferred ones. 

• The selection of assembly plans 

The number of distinct feasible assembly plans can be very large even for assem­
blies made up of a small number of parts. Therefore, a complete enumeration 
of assembly plans is prohibitive in most real applications. Finding systematic 
ways to narrow down the alternatives is crucial for the automatic planning 
of assembly. Two kinds of approaches are currently being tried. One, more 
qualitative, is the development of rules that can be used to eliminate assem­
bly plans that include difficult tasks or awkward intermediate subassemblies. 
Another approach, more quantitative, is to devise an evaluation function that 
computes the merit of assembly plans based, for example, on the cost of the 
resources needed to perform the assembly, on the total time required, and on 
the difficulty of execution. It seems likely that a combination of the qualitative 
and the quantitative approaches will attain the advantages of both. 

• The integration with CAD programs 

A mechanical assembly is a composition of interconnected parts. As mentioned 
above, more and more frequently the parts are being designed using CAD pro­
grams. Therefore, the shape of each part as well as other relevant information 
are already stored in computer databases. The assembly planning will be more 
efficient if those CAD databases can be directly input to the program that 
generates the assembly models. 

• The integration with task and motion planners 

Another result of the recent progress in digital electronics is the introduction 
of programmable robots in manufacturing. These machines can be adapted 
to execute different operations by changing their internal programs. Task and 
motion planners that will facilitate robot programming are currently being 
developed. With a view towards future integration, the output of assembly 
planners should be compatible with what is required by task and motion plan­
ners. Moreover, it is also desirable that assembly planners take into account 
the capabilities and limitations of task and motion planners. 
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All the above issues are active areas of research. The main goal of this book is 
to consolidate in one volume the main approaches to solving these problems. 
It has been divided into two parts: assembly modeling, and assembly planning. 
The next two sections present an overview of the book. 

1.1 Assembly modeling 

Part I contains four chapters which cover important issues in modeling assem­
blies. 

Chapter 2 discusses the mathematical modeling of the geometric aspects of 
assemblies. Assembly models are defined in terms of configuration spaces whose 
elements correspond to collection of solid mechanical parts and their poses 
(Le., positions and orientations.) A range of increasingly complex notions of 
assemblies is introduced. It includes the following: 

1. rigid assemblies in which the relative positions of parts remains the same; 

2. articulated mechanisms in which the relative positions of parts can change; 

3. variational assemblies in which the shape of the parts can vary; 

4. stochastic assemblies in which the relative positions of parts can vary. 

Representation schemes previously developed for modeling individual parts can 
be readly extended for modeling the geometric aspects of these four notions of 
assemblies. Chapter 2 discusses these extensions. It also points to issues that 
are still open to research, such as the establishment of a sharp characterization 
for the subsets of configurations that correspond to physical assemblies. 

Chapter 3 introduces a modular boundary class of models for solid objects. 
These models describe objects as the pairwise combination of face-adjacent 
parts. Compared with conventional boundary representation and constructive 
solid geometry, such models offer the putative advantages of locality of ma­
nipulation, capability of describing form features, and possibility of attaching 
tolerance information. 

A specific model of that class, the Face-to-Face Composition (FFC) model, 
which was developed for an experimental geometric modeler, is presented. This 
model contains explicit information about interference among the components 
of an object. Juxtaposition and interference are represented in a hypergraph 
in which the nodes are component objects and the hyperarcs are connection 
and interference facets. 

The data structure for the FFC mirrors a cellular decomposition of the modular 
object into non-overlapping, arbitrarily shaped cells. The FFC model can be 
constructed either by adding a single component at a time or by combining 
two composite objects represented by FFCs. An FFC can be readily evaluated 
to yield the boundary of the complete object. 
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An application of the FFC is the Production Graph, which represents alter­
native sequences of combining components. Valid sequences can be obtained 
using the validity checks developed for complete FFCs. 

Chapter 4 presents a characterization of the spatial relationships between bod­
ies in assemblies as trivial kinematic constraints. A kinematic constraint is 
defined as a set of displacements that can be expressed as a composition of 
cosets of Euclidean subgroups. A constraint is said to be trivial when it can 
be reduced to a single coset. 

A graph of kinematic constraints is defined as a graph whose nodes correspond 
to workpieces and whose directed arcs are labeled with trivial kinematic con­
straints. The problem of how to find equivalent constraints between two bodies 
is addressed. By relying on the composition and intersection of subgroups, it is 
possible to carry out a topological analysis of the motion possibilities for a set 
of bodies linked by a set of trivial kinematic constraints. A basic algorithm for 
constraint propagation is presented. This algorithm computes the equivalent 
constraint between two bodies in a graph of kinematic constraints with arbi­
trary topology. An assembly example illustrates the algorithm's computation. 

Chapter 5 formulates a mathematical programming approach to the solution 
of the problem of specifying the position of each part relative to the position 
of the other parts in an assembly. 

The position of each part is specified based on geometric relationships between 
various features of the part and mating features of its neighboring parts. These 
feature relationships are treated as inequalities, and mathematical program­
ming is used to find the optimal configuration of the parts. 

The approach is amenable to both sequential and simultaneous strategies for 
computing the part positions. The computations are tractable and robust. 
Thus a variational assembly model can be constructed and evaluated at rea­
sonable cost, and the assembly model will be compliant with part variations. 
This approach is particularly useful for solving problems in tolerancing. 

1.2 Assembly planning 

Part II contains ten chapters which address important issues in the systemati­
zation and computerization of mechanical assembly planning. 

Chapter 6 discusses four of the most commonly used representations for as­
sembly sequences. 'These are based on directed graphs, on AND/OR graphs, on 
establishment conditions and on precedence relationships. The correspondence 
between these representations as well as their correctness and completeness are 
established and are illustrated with two assembly examples. 
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Chapter 7 presents a basic algorithm for the generation of all mechanical assem­
bly sequences for a given product. The algorithm employs a relational model 
of assemblies. In addition to the geometry of the assembly, this model includes 
a representation of the attachments that bind one part to another. 

The problem of generating the assembly sequences is transformed into the prob­
lem of generating disassembly sequences in which the disassembly tasks are the 
inverse of feasible assembly tasks. This transformation leads to a decomposition 
approach in which the problem of disassembling one assembly is decomposed 
into distinct subproblems, each being to disassemble one subassembly. It is as­
sumed that exactly two parts or subassemblies are joined at each time, and that 
whenever parts are joined forming a subassembly all contacts between the parts 
in that subassembly are established. The algorithm returns the AND/OR graph 
representation of assembly sequences. Bounds for the amount of computation 
involved are presented. 

The correctness of the algorithm is based on the assumption that it is always 
possible to decide correctly whether or not two subassemblies can be joined, 
based on geometrical and physical criteria. An approach to compute this de­
cision is presented. An experimental implementation for the class of products 
made up of polyhedral and cylindrical parts having planar or cylindrical con­
tacts among themselves is described. 

Chapter 8 presents a systematic method for the determination of assembly 
plans, described by assembly trees (or part trees). This method involves a re­
cursive definition of the assembly process, a model of the end product defining 
all the actions which have to take place in the assembly process, and a formal­
ization of assembly constraints. An assembly example illustrates the method. 

The assembly process includes not only the mating and securing of parts but 
also all the other operations, referred to as complementary, such as inspection, 
test, cleaning and labeling. Accordingly, the model for the end product includes 
information about the required complementary operations. 

The assembly constraints are divided into two classes: operative constraints, 
which define whether or not any candidate assembly operation is feasible; and 
strategic constraints which prune the awkward assembly plans. A resulting 
interactive software named LEGA has been implemented. LEGA is written in 
PROLOG and uses a database of constraints. 

The strategic constraints are introduced in the product model. One kind of 
strategic constraint is to impose an intermediate subassembly. Another kind 
is to group parts that have to be assembled in sequence. These include stacks 
and ordered layers, two types of configurations that are common in practice. 

Although there is some degree of subjectivity in the choice of the strategic 
constraints, their use have lead to large gains in planning efficiency. It is also 
possible to run LEGA with two or more distinct sets of strategic constraints 
and analyze the outcomes. 
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The operative constraints are of three types: geometric, stability and material. 
The latter corresponds to the availability of tools or other equipment and their 
capability to execute the assembly operations. The specification of stability 
and material constraints also involves some degree of subjectivity. Operative 
constraints are determined as the assembly plans are generated based on infor­
mation supplied (interactively) by the user. 

LEGA first tries to deduce whether or not a candidate operation is feasible from 
the constraints in its database. This kind of deductive inference is well suited 
to PROLOG. Optionally, a program connected to a CAD database is activated. 
If no deduction can be made automatically, then LEGA queries the user. When 
this occurs, new constraints are created and added to the database. Typically, 
the user is queried frequently at the beginning of the planning process and 
sporadically at the end. 

LEGA has been effectively applied to products or subassemblies having up to 
20 components. 

Chapter 9 describes the GRASP assembly planner. The input to GRASP are 
three-dimensional models of parts and their locations. The output is an AND/OR 

graph representing the set of all geometrically feasible assembly sequences in 
which exactly one part is added at each assembly task, and it follows a straight 
line trajectory. 

GRASP follows an approach similar to the algorithm described in chapter 7. 
It also transforms the problem of generating the assembly sequences into the 
problem of generating disassembly sequences in which the disassembly tasks 
are the inverse of feasible assembly tasks. GRASP, however, minimizes the 
geometric reasoning needed to test candidate assembly tasks. Whenever it does 
a geometric reasoning computation to find whether or not a part is movable, 
GRASP stores an expression encoding the conditions under which the given 
part would be movable. The subsequent analysis of candidate tasks will first 
try to deduce whether or not a part is movable from these expressions in order 
to avoid lengthy geometric reasoning computations. 

Three types of conditions of increasing complexity are used in GRASP. The 
first, called simple, corresponds to the fact that if a part p is movable in an 
assembly A, then it is also movable in any subassembly of A. The second, 
called contact, corresponds to the fact that if a part p is not movable because 
it collides with one or more of the parts in S, then p is not movable in any 
subassembly that includes all those obstructing parts. The third condition, 
called local is more elaborate. The parts of an assembly A in contact with 
a given part p are clustered in a way that all parts in a group constrain the 
freedom of p in the same way. In a subassembly of A, p will not be movable 
unless none of the parts in one such group are present. 

Chapter 9 also discusses the computational complexity of GRASP and presents 
its performance for two assembly examples. 
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Chapter 10 describes an extension to GRASP aimed at eliminating the restric­
tion that only one part be added in any assembly task. It presents a new algo­
rithm for solving an important subproblem of the assembly planning problem, 
namely the generation of all the ways in which an assembly can be partitioned 
into two subassemblies. 

Instead of generating all cut sets of the assembly's graph of connection, the 
algorithm presented in chapter 10 uses the geometry information to prune 
this search and to avoid the generation of many of the cut sets that do not 
correspond to feasible assembly tasks. An assembly example illustrates the 
approach. This new algorithm is shown to be sound and complete. Chapter 10 
also presents an analysis of its complexity. 

Chapter 11 describes the XAP /1 assembly planning system. It begins by com­
paring the version of the assembly planning problem addressed by the XAP /1 
system to other systems along four major dimensions: range of operations al­
lowed in the plans produced; degree of detail in which the plans are described; 
type of input data required; and degree of optimization done on plans. 

The XAP /1 system is oriented toward plan optimization rather than toward 
generating all feasible plans. Due to this orientation, XAP /1 plans to somewhat 
greater detail than other planners. The plans it generates are such that only 
one part is moved at a time and no operation separates parts already joined. 
Those plans include not only the sequence in which parts are put together but 
also, for each part, the mating trajectory. In fact, plans produced by XAP /1 
are a sequence of insertion operations each of which consists of inserting a part 
or subassembly into a fixture by following a specified trajectory. 

XAP /1 generates plans by successively adding sequencing and trajectory as­
sertions to a set until it describes only one plan. The geometric feasibility of 
the resulting plan is enforced by a single form of constraint. The search for 
an optimal plan is guided by advice from a set of plug-in criteria modules and 
an arbitration module. These criteria provide not only estimates of the qual­
ity of partially formed plans, they provide advice on which planning decisions 
should be considered next. Three criteria are discussed: fb;ture complexity, 
directionality and manipulability. 

The chapter ends showing the performance of XAP /1 on some sample problems 
and discussing, briefly, extensions to the system's approach. 

Chapter 12 presents BRAEN, a system that generates a disassembly sequence 
for a product from the boundary representations of its parts and other objects 
involved in the assembly process such as table-top and wall. The reverse of 
this sequence is the assembly plan . BRAEN assumes a single robot. The plans 
it produces are sequences of motions, each motion being a translation or a 
rotation of a component or mUlti-component subassembly. 

In addition to planning at the level of motion specification, BRAEN is oriented 
towards generating a good sequence quickly rather than generating all feasible 
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sequences. The use of a detailed geometric description for the objects enables 
the system to compute whether or not a motion is feasible . 

The planning technique is centered on two modules. A freedom determination 
module uses an iterative surface subdivision technique to identify movable com­
ponents and mUlti-component subassemblies. A disassembly module searches 
for a sequence of motions that will break one assembly into two subassemblies. 

BRAEN uses three common sense techniques to enhance system performance. 
One technique deduces the feasibility or infeasibility of a motion in one con­
figuration from the feasibility or infeasibility of the same motion in another 
configuration. Another technique involves trying first the motions that are 
more likely to be feasible. Yet another technique uses simple physics to model 
the effects of gravity and the stability of subassemblies. 

Chapter 13 presents COPLANNER, an assembly planning system organized un­
der the Cooperative Problem Solver paradigm. In this system, planning is 
carried out by the cooperation of several modules namely: the plan coordina­
tor, the heuristic advisor, the geometric reasoner, the physical reasoner, the 
resource manager, and the blackboard. 

COPLANNER operation is also based on a recursive decomposition of the as­
sembly into subassemblies. In order to increase the planning efficiency, the 
system avoids the analysis of decompositions that do not correspond to feasi­
ble assembly tasks. This is achieved by clustering the parts that have to be 
assembled together. Chapter 13 introduces a systematic formulation to con­
struct an abstract liaison graph representation of the assembly which merges 
sets of mutually inseparable parts, that is, those parts that must be assembled 
independently in any feasible assembly sequence. 

The approach is then extended to cluster parts into preferred subassemblies 
based on a weighed abstract liaison graph. This graph is similar to the abstract 
liaison graph, but has weights assigned to its edges. These weights reflect the 
stability of part interconnection and the directional constraints of the motion 
that brings the two parts together. The degree of part aggregation can be ad­
justed by changing some heuristic coefficients. This kind of clustering sacrifices 
completeness since the sequences that interleave parts of different subassemblies 
cannot be generated. However, there are manufacturing gains in assembling 
these preferred subassemblies independently. The advantages include the better 
stability of the intermediate subassemblies, the less difficulty of the assembly 
tasks, and the greater cohesion of the parts in the preferred subassemblies. 

COPLANNER has been implemented in Common Lisp and C on a Sun 260 work­
station. The plans it generates include assembly instructions which schemati­
cally describe how to execute the joining of subassemblies. 

Chapter 14 shows an assembly planning system that uses Design for Assembly 
(DFA) analysis to guide the generation of the preferred assembly plans. 
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Like the assembly planner described in chapter 13, the operation of this plan­
ning system is also based on a recursive decomposition of the assembly into 
subassemblies and on the use of an abstract liaison graph. In addition, the 
planning in this system incorporates the special processes, such as cleaning, 
testing or labeling, that must occur during the assembly. These special pro­
cesses are taken into account in the assembly planning by the introduction 
of special precedence constraints. Furthermore, this planner can distinguish 
reversible from non reversible assembly tasks. 

Chapter 14 also establishes methods of evaluating alternative assembly plans in 
terms of DFA criteria such as subassembly stability, directionality, subassembly 
poses, special process requirements, and parallelism in assembly. The number of 
fixtures, or holding devices, and the number of reorientations during assembly 
are identified through the analysis of stability and directionality. All these 
factors are used in defining cost and heuristic functions for an AO* search for 
an optimal plan. 

Chapter 15 shows a system developed at the Charles Stark Draper Laboratory 
over the last five years. It is an integrated computer aid useful for assembly-line 
design and concurrent design of mechanical products. 

First, a simple technique for generating assembly sequences on which the initial 
version of the system was based is presented. At the time of its development, 
the technique was a great help, and for many applications it was adequate and 
practical. The liaison diagram representation of assembly that was used as well 
as the technique itself still provide quick insight into product assembly. The 
simple technique can be invoked mentally and need not depend on computer 
aid. The potential role and form of computer aid, however, was immediately 
recognized and efforts toward devising computer aids were started at once. 

The algorithms used in the current version of the system take advantage of the 
methodology presented in chapters 7 and 8, including: an efficient organization 
of interference questions based on cut-sets of all subassemblies; a disassembly 
(instead of assembly) paradigm to avoid the work of creating and discarding 
assembly dead ends; and the coding of part-interference data already at hand 
to screen subsequent part-interference questions and often infer answers, dra­
matically reducing question-count. The plan for this version of the system was 
to have the computer to work from a design solid-model data-base to answer 
the remaining necessary assembly interference questions. But consideration of 
the volume of computation needed combined with the great success in having 
an engineer familiar with the design answer the interference questions aided by 
simple screen characterizations of the subassemblies lead to the implementation 
of an interactive program for finding sequences. 

The current system's algorithms and interactive programs for editing product 
assembly sequences are also described. Editing means and criteria are user­
exercised and may be based on assembly-state and assembly-move issues; on 
assembly-line layout and topology issues; and on consideration of fixturing, 
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orientation, and fixturing-change and reorientation counts. The on-line visual 
aids provided during generation and evaluation of sequences are illustrated with 
examples. 

Various physical and economic criteria exist. These criteria evolved from and 
are related to the work on industrial assembly system design and product de­
sign. They include: pass-through of a particular assembly state; executing a 
particular partial sequence; avoiding a difficult assembly move; avoiding an 
awkward assembly state; choice of assembly line topology; minimizing non­
productive line tasks like refixturing and reorientation; minimizing various eco­
nomic parameters. The criteria vary in editing power, need for an augmented 
information base, and ease of application. Knowledge of the power, informa­
tion needs, ease of application, and the logical rules of sequence representation 
suggest the use of an application sequence strategy for the criteria. 
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Chapter 2 

Representations for 
assemblies 

Aristides A. G. Requicha and Timothy W. Whalen 

Mechanical, electrical and electronic products typically are assemblies of many 
component solid parts. The components of a product may be joined so as to 
form either (1) a rigid assembly, (2) an articulated collection of rigid bodies that 
may move relative to one another (often called a mechanism), or (3) a Hexible, 
non-rigid assembly. No solid is perfectly rigid, and sometimes non-rigidity 
must be acknowledged explicitly, for example when two parts are press-fitted, 
or when one of the components is a spring. 

The term assembly is commonly used in two senses, to denote either the action 
of joining several components, or the resulting artifact. This chapter is con­
cerned primarily with assemblies as physical artifacts. We focus on two related 
issues: what information about assemblies must be captured, and how can such 
information be represented computationally in a form suitable for integrated, 
computer-aided systems that support the entire life-cycle of a product, from 
requirements analysis and design, through manufacturing and assembly, to field 
maintenance and disposition. 

First we discuss mathematical models for assemblies, and introduce a range 
of increasingly complex notions of assembly. Next we consider schemes for 
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representing assemblies computationally, and we show that one must be able 
to represent solid parts and their associated tolerances, plus mating relations 
between parts, and attributes of such relations. Part representations, mat­
ing relations, and tolerances are then discussed in more detail. The chapter 
concludes with a summary and discussion of open issues. 

2.1 Mathematical models for assemblies 

An assembly specification includes geometric as well as non-geometric informa­
tion. Examples of the latter are the torques required to tighten the bolts in 
an engine block, and the characteristics of a welding join between two parts. 
In this section we ignore non-geometric aspects of assemblies, and we focus on 
geometry. 

Individual components of an assembly can be modelled mathematically as 
r-sets, that is, as compact, regular, semi-algebraic subsets of E3 , the 3-D Eu­
clidean space [31, 32]. But which mathematical objects correspond to assem­
blies? This is the major issue addressed in the remainder of this section. 

A mathematical model for an assembly instance is a set of mathematical mod­
els for n solids Si, plus associated geometric transformations (i.e., mappings 
from E3 to E 3) Ti that define the solids' relative poses (i.e., locations and ori­
entations). For non-rigid assemblies, for example those involving press-fit or 
flexible components, the 11 correspond to suitable deformations concatenated 
with the rigid motions that establish the objects' poses. For simplicity, in the 
remainder of this section we consider only assemblies of rigid components, and 
we assume that there is an agreed coordinate frame in which all the poses are 
measured. Also, throughout the chapter we often refer to mathematical models 
for solids or assemblies simply as "solids" or "assemblies", when no confusion is 
likely to arise between abstractions (mathematical entities) and their physical 
counterparts. 

Denote by M, the mathematical modelling space for solids, that is, the space 
of all r-sets in E3. (Sometimes a smaller class of r-sets suffices as a mod­
eling space, as we will see later.) A collection of n solids (Sl, S2,"" Sn) is 
an element u of the solid configuration space C" which is the direct prod­
uct of n copies of M.. Similarly, a set of n transformations is a point T in 
the transformation configuration space Ct, which is the direct product of n 
copies of Mtl the modeling space for transformations. For assemblies of rigid 
components the T. are rigid motions in E 3 , M t is a 6-D space, and Ct is the 
pose configuration space. An assembly instance a is a pair (U,T), that is, an 
element of the assembly configuration space Co. = C, x Ct. Equivalently, a 
is a 2n-tuple (Sb S2, "" Sn, Tb T2, ... , Tn), and we often write a(u, T) with 
u = (S1> S2,"" Sn) and T = (11, T2, ••• , Tn). 

Intuitively, an assembly instance is simply a collection of parts in fixed poses. If 



www.manaraa.com

17 

there is no shape uncertainty associated with the parts, and these are attached 
rigidly to one another, then there is only one assembly instance. But in general 
there may be many instances associated with an assembly. For example, a 
shaft may rotate through an entire (0,211") range with respect to a bushing. 
The poses of the parts in a mechanism vary continuously, and physical motions 
correspond to curves or higher-dimensional subsets of Ct . To cater to moving 
parts we define a mathematical model for a nominal assembly as a pair (0', e), 
where 0' is a point of C" and e is a subset of Ct. Equivalently, 

A(O',e) = {a(O',T)IT E e}, 

where A denotes a nominal assembly and a one of its instances. We use the 
term "nominal" to emphasize that part variability is not taken into account -
there is a given set of parts that may move in space in the manner prescribed by 
the poses in the set e. (However, we do not imply that parts in the assembly 
must have the "noininal dimensions" defined in their tolerance specifications.) 
The pose of a part may depend in complicated ways on the poses of several 
other parts, and therefore it is not sufficient to define independent subsets of 
M t for each part. The set e captures the pose relationships for all the parts. 

Much of the past research on assembly modeling has focused on nominal assem­
blies. But parts cannot be manufactured with perfect forms and dimensions, 
and the associated geometric uncertainties are important because they often 
determine whether an assembly is physically realizable, or whether an assembly 
plan will succeed. To take part variability into account we define a mathemat­
ical model for a variational assembly as a subset of Ca , or, equivalently, as the 
union of a set of nominal assemblies 

A = U A(O', e(O')), 
uE II 

where E is a subset of C,. In a general variational assembly many groups (n­
tuples) 0' of parts are admissible, and for each group there is an associated set 
of poses corresponding to relative motions of the parts. The admissible motions 
may depend on the specific 0' being considered. 

Typically, E = VI X V2 X '" X Vn , where each Vi is a subset of M, called a 
variational class [33 , 34] associated with a part. This means that each admis­
sible part is a solid Si selected from its corresponding class Vi, independently 
of the selection of other parts in the assembly. Independent selection reflects 
the modern principle of part interchangeability. Note, however, that even in 
modern manufacturing practice sometimes parts must be "matched" . This im­
plies that interchangeability no longer applies at the part level, but rather at 
the level of certain subassemblies. 

Not all a( 0', T) correspond to realizable assemblies. The following conditions 
must be satisfied. 
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• Non-interference - Two parts of the assembly in their specified poses 
must not occupy simultaneously a 3-dimensional region of space. This 
can be formulated mathematically by requiring that the regularized in­
tersections [31, 32] (denoted by n*) between all pairs of distinct parts be 
empty: 

Vi,j(i:f:. j) => Si n* Sj = <p. 

(Regularized set operations are the topological closures of the interiors 
of their conventional counterparts [31, 32].) Note that standard, non­
regularized intersection is not appropriate because parts in contact inter­
sect over a region of their boundaries . 

• Path-existence - It must be possible to move the parts continuously 
and without collision from a pose configuration in which they are suffi­
ciently apart to the specified configuration. That is, there must exist a 
continuous trajectory -r(r), r E [0,1] in Ct such that (1) a(O", -r(r)) is a 
non-interfering assembly for all r E [0,1], (2) a(O",-r(O)) corresponds to a 
situation where the distances between the solids are large compared to the 
solids' dimensions, and (3) a(O",-r(I» is the specified assembly instance. 

These conditions must be modified slightly when an assembly involves a press 
fit or another joining technique that causes a limited amount of interference. 
We will assume in the sequel that such modifications have been incorporated 
in the definitions of non-interference and path-existence when necessary. 

Nominal and variational assemblies must not include instances that fail the 
non-interference or path-existence criteria. Path existence clearly implies non­
interference, because the specified configuration a( 0", -r( 1» must be non-interfer­
ing. The converse is not true, as shown in Figure 2.1, which depicts a non­
interfering assembly that does not satisfy the path-existence criterion. The 
shaft is a single part, and cannot be assembled to the bracket. Assembly in­
stances that satisfy the path-existence condition (and hence both criteria) are 
called geometrically feasible or geometrically realizable. Nominal and variational 
assemblies also are called geometrically realizable if all of their associated in­
stances are geometrically realizable. Later chapters of this book will show that 
an assembly instance may be geometrically feasible and yet fail other criteria. 
For example, it may be impossible to reach a component with the tool necessary 
to fasten it. 

The mathematics of assembly modeling has not been fully worked out. We 
understand reasonably well the characteristics of M. and M t , and hence of 
Ca,. The pose configuration space Mt typically is 6-D since general rigid bodies 
have 3 degrees of freedom of translational motion and 3 of rotational motion. 
Therefore Ct is 6n-dimensional. M. typically is not a finite-dimensional space. 
But if the solids in the represented domain can be described by a finite number 
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Figure 2.1: A non-interfering but geometrically infeasible assembly instance 

of parameters, then M., and also C, and Co., are finite-dimensional. For exam­
ple, if all solids of interest are cuboids, the length, width and height completely 
define a solid, and M, is 3-D. 

Some issues remain unresolved. For example, is any subset e of C t acceptable 
in an assembly model? And any E? We suspect that the answers may be "no". 
For example, not all subsets of M, are acceptable as variational classes. Some of 
them correspond to objects that are overconstrained, in the sense that portions 
of the objects' boundaries must be of perfect form or in a perfect relationship 
to others, and therefore are not manufacturable with physical processes, which 
have inherent uncertainties. A sharp characterization of variational classes 
is still evolving, but current thinking is that they must be regular sets in a 
topology related to that induced by the Hausdorff metric in M, [5] . Analogous 
results may apply to assembly modeling. We will ignore these issues in the 
sequel, and assume that feasibility is the only geometric condition that must 
be satisfied by mathematical models of assemblies. 

The previous definitions are purely deterministic. But manufacturing and as­
sembly processes have inherent uncertainties of a stochastic nature. Random­
ness can be introduced in our models by defining a stochastic assembly configu­
ration space nO. that consists of Co. with a probability density function w(O", T) 
defined on it. 

Random variations between parts sometimes compensate one another, leading 
to functionally acceptable assemblies of relatively imperfect components. It 
is often more economic to have loosely toleranced parts that sometimes (in­
frequently) cannot be assembled, than tightly toleranced parts guaranteed to 
always assemble. This implies that the geometric realizability requirements 
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for stochastic assemblies should be relaxed. A stochastic assembly may con­
tain infeasible instances, if the probability associated with such instances is 
sufficiently small. 

The mathematics of stochastic assemblies is more complex and not as well 
developed as its deterministic counterpart. 

2.2 Overview of assembly 
representation schemes 

Let us focus initially on the geometric aspects of assembly representation. The 
notion of representation scheme and associated properties introduced in [32] for 
individual solids can be readily extended to assemblies by exploiting the math­
ematical models discussed in the previous section. A representation scheme for 
assemblies is simply a mathematical relation between the appropriate mathe­
matical models and symbol structures called (computational) representations. 
(Here we are using the term "assembly" to encompass assembly instances, as 
well as variational and nominal assemblies.) The domain of a representation 
scheme is the set of mathematical models to which it applies. A representation 
is valid if it corresponds to at least one (geometrically feasible) assembly, and 
is unambiguous if it corresponds to only one assembly. 

An assembly instance can be represented unambiguously by a collection of 
solid models (i.e., unambiguous representations for rigid solids) for its com­
ponents, plus the associated geometric transformations that define the parts' 
poses. Solid modeling is a relatively mature technology (reviewed briefly in 
Section 2.3), and the representation of transformations by 4 X 4 matrices in 
homogeneous coordinates or by other means is well understood. 

A representation for an assembly instance in terms of solid models and, say, 4 x 4 
matrices of numerical elements is valid if the solid models and transformations 
are themselves valid, and if the corresponding configuration is geometrically 
realizable. Non-interference can be tested through pairwise regularized inter­
sections between all of the components. Regularized intersections are provided 
in most ofthe modern solid modelers, although substantial amounts of compu­
tation are involved. Testing for path existence is much more complicated. We 
do not know of general algorithms capable of establishing that no path exists. 
In the current state of the art an assembly planner must be invoked. If it fails 
to find a path, one concludes that the assembly is likely to be unrealizable. 
Because extant assembly planners make a variety of restrictive assumptions 
(e.g., assembly paths must be straight lines, only one part is moved in each op­
eration, and so on), planner failure does not guarantee geometric infeasibility. 
Success does ensure path existence. 

Most of the commercially-available Computer Aided Design (CAD) systems 
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provide facilities for defining assemblies through direct, explicit specification of 
poses. This approach has two major drawbacks: 

• Assembly representations typically are constructed by human designers, 
and it is difficult to define explicitly the required transformations. 

• A specific transformation defines a single point in pose configuration 
space. Therefore, the approach cannot describe articulated assemblies 
with moving parts. 

A better approach is to define the poses indirectly, through mating relations 
between surface features, which are subsets of the parts boundaries. Mating 
relations establish geometric constraints between parts, and are closely related 
to the mechanical behavior of assemblies. Designers typically find mating re­
lations a natural way of specifying assemblies. (Mating relations and similar 
concepts have been called in the literature ''joints", "connections", "liaisons", 
"technologically and topologically related surfaces", and so forth.) 

Indirect, constraint-based definition of assemblies raises delicate issues. For 
example: is a representation unambiguous? Whereas directly-specified poses 
obviously correspond to unambiguous representations, an indirect specification 
may correspond to a single pose configuration, to several, or to none at all. A 
constraint satisfaction, or constraint evaluation problem must be analyzed to 
determine if there are solutions, and if these are unique. Mating relations and 
constraint satisfaction are discussed in more detail in Section 2.4. 

Variational, and even nominal, assemblies are complex mathematical objects 
that may involve complicated subsets of high-dimensional configuration spaces. 
How can such entities be represented computationally? Again, mating relations 
provide an answer. A mating relation may specify, for example, that two planar 
surfaces remain in contact. This constraint can be expressed in terms of a 4 x 4 
matrix that defines the pose of one surface relative to the other. The matrix 
contains symbolic variables corresponding to the degrees of freedom not fixed by 
the constraint. In the example cited above three variables are needed, because 
there are two translational and one rotational degrees of freedom in a planar 
contact relation. 

The validity of a nominal assembly representation is difficult to establish com­
putationally, because it implies that all the corresponding assembly instances 
must be geometrically realizable. Even non-interference is difficult to test. 
If there is only one rigid body moving with respect to another, the motion 
is collision-free when the volume swept by the moving object does not inter­
sect the other. (However, swept volumes are difficult to compute for complex, 
curved objects.) If several objects move simultaneously, ordinary swept-volume 
analysis is insufficient, and 4-D space-time sweeps or "extrusions" must be con­
sidered [7]. 
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A variational assembly may be represented by a collection of toleranced parts 
connected through mating relations. Tolerancing (discussed in Section 2.5) is 
a method for representing variational classes through geometric constraints on 
part features. There are national (ANSI) and international (ISO) tolerancing 
standards. These are sometimes ambiguous, but roughly equivalent mathemat­
ical tolerancing theories have been proposed [33, 34], and ANSI has recently 
appointed committee Y14.5.1, charged with the task of defining mathematically 
the meaning of tolerance specifications. 

When part variability is taken into account, it makes sense to consider mating 
relations that also involve geometric uncertainty. For example, specifying that 
a shaft and a bearing have two concentric cylindrical surfaces in contact is not 
an accurate description of the assembly for detailed analysis. Perfect contact 
would prevent the shaft from turning because of friction. Also, two imperfect 
cylinders in general can neither be in perfect contact nor be perfectly concen­
tric. (What does concentricity mean for imperfect cylinders?) The functional 
requirements are for concentricity within some tolerance, and for a clearance 
(instead of contact) within some range. We do not know of standard means 
for representing geometric uncertainty between different parts in an assembly, 
but direct extensions of single-part tolerancing methods may be adequate. 

Consider a variational assembly representation consisting of a set of variational 
classes, defined by toleranced solids, and of mating relations. Is the repre­
sentation valid? For validity each possible combination of acceptable parts, 
that is, each (7' in ~ = Vl X Va x ... X Vn , must correspond to a geometrically 
realizable assembly for every pose configuration 1"' that satisfies the mating re­
lations. Non-interference testing for a variational assembly is an exercise in 
worst-case tolerance analysis, discussed in Section 2.5. Path-existence testing 
involves assembly planning in the presence of geometric uncertainties. 

Representations for stochastic and variational assemblies are similar. Stochas­
tic assemblies require the additional specification ofp.d.f.'s (probability density 
functions) to define Oa. Typically, p.d.f.'s are associated to the characteristic 
parameters of each of the parts in the assembly. (This is not the most general 
approach possible, but it is the only one used in current practice, insofar as 
we know.) P.d.f. specification is done by selecting a specific statistical distri­
bution (e.g., Gaussian) and assigning numeric values to its parameters (e.g., 
mean and standard deviation). Testing for (probable) geometric realizability 
involves statistical tolerance analysis, discussed in Section 2.5, and assembly 
planning under uncertainty. 

In current industrial practice, a designer considers a critical requirement of 
an assembly (for example, a certain clearance between a pin and a hole) and 
converts it into tolerances associated with each of the mating parts through a 
process usually called tolerance allocation or tolerance synthesis [8]. The com­
ponent tolerances are represented in engineering drawings or their electronic 
counterparts, but the critical assembly requirements usually are not. We be-
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lieve that assembly representations should contain both assembly and compo­
nent requirements, for the following reasons. The assembly requirements are 
insufficient. For example, a pin/hole clearance can be achieved by tolerancing 
the pin tightly and the hole loosely, or vice-versa, or by distributing the toler­
ances approximately equally between the two components. It is important to 
distinguish the three approaches because they have significant manufacturing 
and cost implications. The component tolerances also are insufficient. Without 
the explicit representation of the assembly-level requirements it is impossible 
to verify if they are indeed satisfied. Furthermore, should the component al­
locations need to be changed because of manufacturing or other life-cycle con­
siderations, it is impossible to modify them automatically without knowledge 
of the assembly requirements. 

If a representation contains both assembly-level tolerances (typically associ­
ated with mating relations), and component-level tolerances, it is important to 
keep the two sets logically separate. Together with untoleranced solid repre­
sentations and mating relations, assembly-level tolerances define a variational 
assembly A .. , whereas the component-level tolerances define another varia­
tional assembly Ac. If A.. = Ac the representation is redundant, and the 
assembly-level information is useful primarily when the design is modified, for 
example by changing the allocation of tolerances between individual compo­
nents. But, in practice, the two sets of constraints often are not equivalent. 
A representation containing both assembly and component tolerances defines 
a variational assembly A .. n Ac. It is useful to introduce a notion related to 
validity, called internal consistency, to characterize assembly representations 
whose component-level constraints suffice to ensure that the assembly-level re­
quirements are satisfied. A representation is worst-case internally consistent 
if A .. :) A c , and statistically internally consistent if the probability associ­
ated with Ac - Aa is below a specified threshold. Internal consistency can be 
assessed by worst-case or statistical tolerance analysis, discussed in Section 2.5. 

The concept of internal consistency may be enlarged so as to encompass other 
relationships between component-level and assembly-level data. For exam­
ple, an assembly representation in which a square pin and a square hole mate 
through a kinematic revolute joint is internally inconsistent. 

Not all assembly requirements are of a spatial nature, and even those which 
are geometric may not be expressible directly through mating relations. For 
example, one of the main requirements for a pick-and-place mechanism is that 
the end effector follow a specified trajectory, within a band of acceptable er­
ror. Another requirement is that the velocity have some specified range. This 
example shows ~hat there is a fine line between assembly requirements and 
behavioral or functional characteristics of a product, and that it is not clear 
where the line should be drawn. We believe that all this information should 
be captured in the representation of a product, but not necessarily as part of 
what we are calling an assembly representation. 
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Let us turn now to non-geometric information that is directly relevant to assem­
bling operations and cannot reasonably be inferred from other characteristics 
ofthe assembly. There are many examples: presence of adhesives or lubricants; 
welding data; fastener types; torques and forces required; special tools. We be­
lieve that all such information can be represented through attributes associated 
with mating relations. 

We do not have mathematical models that encompass the non-geometric as­
pects of assemblies, and therefore formal definitions of unambiguity, validity, 
and so on, are not applicable. But an informal notion of validity is still useful. 
Establishing the validity of non-geometric data is a complex problem that may 
involve physical reasoning and an extensive base of experiential knowledge. For 
example, how are we to decide if the specification of a certain adhesive is valid? 

2.3 Solid models and surface features 

A solid model is an unambiguous computer representation for a physical solid 
object, modeled mathematically as an r-set [32]. Although many schemes exist 
for representing solids, the most useful are Constructive Solid Geometry (CSG) 
and Boundary Representation (BRep). Much has been written, rightly and 
wrongly, about the virtues of each of these schemes. We believe that both 
are important and have complementary characteristics. The modelers we build 
contain both. 

Solids are represented in CSG by directed, rooted, acyclic graphs whose internal 
nodes correspond to regularized set operators or rigid motions, and whose ter­
minal nodes correspond to primitive solids such as blocks, cylinders, or "sculp­
tured", "free-form" solids. The primitives themselves typically are represented 
by a "type code" (for example, "block" or "cylinder") plus an n-tuple of pa­
rameters. For example, the parameters for a cylinder might be 7 real numbers, 
2 defining the cylinder's size (i.e. height and radius) and the rest defining its 
position, with 3 corresponding to the coordinates of the center of a base, and 
the other 2 defining the direction of a vector aligned with the cylinder's axis. 

The P ADL-2 modeler [6] and some of the modern commercial systems can ac­
commodate unevaluated, symbolic parameters for primitives and rigid motions. 
AM, an experimental assembly modeler under development at the University 
of Southern California's Programmable Automation Laboratory, admits as pa­
rameters arbitrary LISP expressions and functions. Symbolic parameters con­
stitute a powerful representational capability. They can be used to establish 
constraints between objects' surfaces, to define object families, and to represent 
nominal assemblies through symbolic rigid-motion parameters. A specific in­
stance of a solid in a parameterized family defined through CSG is constructed 
by binding numeric values to the symbolic variables, and evaluating the pa­
rameter expressions. Under very simple conditions (e.g., the size parameters 
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for the primitives must be positive) the instantiated object is valid, that is, 
it has a corresponding 1'-set. This makes eSG-based parameterizations very 
attractive. 

A BRep represents the topological boundary of an object through a graph 
whose nodes correspond to faces, edges and vertices, and whose arcs corre­
spond to adjacency relations. BReps also can be parameterized, but this raises 
delicate problems. For example, certain combinations of parameter values may 
be inconsistent with the BRep structure. New faces, edges or vertices may have 
to be introduced or old ones deleted for the representations of certain object 
instances to be valid. 

Mating relations and tolerance specifications are associated with constraints on 
subsets of the boundaries of solids. Most of these constraints apply to surface 
features of objects, although lower-dimensional entities are sometimes needed. 
A surface feature usually is a face, or a union of faces, and in rare cases it may 
be a subset or union of subsets of faces. For example, a flatness tolerance may 
apply only to a small region of a planar face because a mating part will contact 
the face only on that region. (Edge or vertex features can be defined in terms 
of surface features, and will be ignored in the sequel.) 

BReps represent faces explicitly, and therefore can easily be extended to cater 
to surface features. But surface features also can be represented in eSG. The 
boundary of a eSG solid is a subset of the union of the boundaries of the 
primitives in the eSG representation. This implies that an object's (BRep) 
faces can always be associated with one or more primitive faces. Instead of 
representing a surface feature directly through a BRep node, we can represent 
it indirectly by the primitive face or faces that give rise to it. We need meth­
ods for representing faces of primitives, and for combining these, through a 
union operation, into larger features when necessary. A specific scheme, called 
VGraph, for representing surface features in terms of eSG and assigning them 
tolerances is discussed in [36], and has been implemented in an experimental 
version of PADL-2 and also in the AM system. Surface feature representations 
based on eSG are more complicated than their BRep counterparts, but offer 
advantages in dealing with parameterized families of objects. 

2.4 Mating relations and 
constraint satisfaction 

To support the computations needed to display assemblies, test them for in­
terference, assess their stability, and for other applications, assembly instances 
must be represented by their component solids plus explicit, numerically-valued 
transformations with respect to a common or "lab" coordinate frame. A pose 
representation scheme based on 4 x 4 matrices, quaternions, or other methods, 
defines a set of natural parameters (e.g., Euler angles, rotation angles about the 
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Figure 2.2: Coplanarity (a) and coaxiality (b) constraints and corresponding 
matrices with rotational (e.g. 9",) and translational (e.g. ~y) free variables. 
(c( 9) and s( 9) denote cos 9 and sin 9.) 

principal axes) that characterize unambiguously the poses of the components of 
an assembly in lab coordinates. But direct specification of natural pose param­
eters of parts or their surface features has drawbacks, as noted earlier. Indirect 
specification through relative distances, angles, and geometric constraints such 
as coplanarity, parallellism, and coaxiality is much more attractive. Some of 
these constraints (e.g., parallelism) are applied primarily to surface features of 
a single part, whereas others (e.g., coplanarity) correspond to mating relations 
between parts. All of these geometric constraints can be expressed as (often 
non-linear) equations on the natural pose parameters of surface features. 

Mating relations between surface features can be described by static geometric 
constraints such as those just discussed. For example, "against" and "fits" 
conditions, which are equivalent to coplanarity and coaxiality for planar and 
cylindrical features, have been used in the RAPT system [1, 29] and in [21, 
22]. Static constraints typically do not fix all of the degrees of freedom of a 
feature. For example, coaxiality between the cylindrical surfaces of a pin and 
a hole allows rotary motion about the axis, and translational motion along the 
axis direction. Static constraints between features of known geometry can be 
expressed as transformations with symbolic parameters that correspond to the 
degrees offreedom. Examples are provided in Figure 2.2. Each transformation 
maps a coordinate frame attached rigidly to one feature onto another frame 
attached to the other feature. 

Mating relations also may be defined by kinematic constraints, which specify 
explicitly the desired relative motion between two features [19, 20, 27, 44]. For 
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example, one might specify a translational or prismatic joint between a square 
bar and a square "hole". Kinematic constraints can be converted directly into 
symbolic-parameter relative transformations, and therefore are mathematically 
equivalent to their static counterparts. Nevertheless, we favor assembly repre­
sentation schemes that support both static and kinematic constraints, because 
they help in capturing design intent, and therefore should make it easier to 
design an assembly or to reason about it. A kinematic constraint is closely 
related to the mechanical function and behavior a designer wants to achieve. 
In fact, a designer is likely to think first about the type of joint he or she wants 
to specify, and only later consider the detailed geometry of the surface features 
that "implement" the joint. Clearly, kinematic constraint information is avail­
able at the design stage, and can be easily captured if suitable user interfaces 
are provided. Note, however, that kinematic constraint specification raises the 
issue of consistency with features' geometry. For example, a rotary joint is 
incompatible with a square pin and hole geometry. The poses of components 
in a rigid assembly also can be defined through kinematic constraints, but a 
static-constraint specification is more natural, because no motion is intended. 

We have been discussing bi-directional constraints. For example, coaxiality 
between a pin and a hole is a symmetric relation. If the pin's position were 
to change, the hole would have to move for the constraint to be maintained; 
similarly, a hole positional change would cause a corresponding change in the 
pin's pose. Alternatively, one can consider uni-directional constraints, which 
are akin to sequential operations, and sometimes are called relative positioning 
operations [13, 38, 45]. Uni-directional geometric constraints often can be cap­
tured by assigning to the pose parameters of a "target" feature the values of 
symbolic expressions involving the parameters of previously-defined "source" 
features. Figure 2.3 shows a very simple example. The left face of the small 
block B can be constrained to be coplanar with the middle face of the L-shape 
A if the position of B is determined by evaluating the expression c = a-b. 
Observe that changes in a or b are correctly propagated to block B, and the 
constraint is enforced. However, a direct change in c will not be reflected back 
to object A, and will produce a configuration that does not satisfy the copla­
narity constraint. Expressions such as c = a - b are not treated as equations, 
and it is not possible in this scheme to solve for a given values for the other two 
parameters. Relative positioning via parameter expressions was implemented 
in the PADL-1 solid modeler through "distance chains" relating surfaces or 
half-spaces of objects defined by CSG [47], and is supported in PADL-2 [6] and 
some commercial modelers. 

Unidirectional constraints are computationally convenient and surprisingly pow­
erful, but have several drawbacks: (1) a sophisticated interface is needed to 
make the approach palatable to human users; (2) because constraints apply 
sequentially, previously-established relations may be broken unless special pre­
cautions are taken [19, 20, 38]; (3) complex constraints that correspond to 
systems of simultaneous equations are difficult, if not impossible to accommo-
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Figure 2.3: U ni-directional constraints and parameter expressions 

date. 

There is a substantial amount of additional literature on geometric constaints 
in the computer graphics area, from Sutherland's Sketchpad [41] to object­
oriented approaches such as Borning's ThingLab [3]-see [38], which contains 
many references. 

Consider now rigid assemblies defined through networks of mating relations. 
Constraint satisfaction methods analyze the networks to determine if they de­
fine a unique solution in pose configuration space, or ifthere are many solutions, 
or perhaps none, and to compute the solutions. The geometric constraints can 
be converted into a set of equations on the pose parameters of the surface fea­
tures involved. An elegant technique for finding the relevant equations involves 
extracting cycles from the constraint network [1, 29]. In essence, constraint 
satisfaction amounts to studying the roots of a set of ( nonlinear) equations. 

Numerical solutions may be sought by using, for example, modified versions 
of Newton-Raphson iteration [21, 25, 37]. Modifications are needed because 
the number of equations often is larger than the number of unknowns, and 
redundant equations must be identified. Numerical solution of large systems 
of nonlinear equations raises several delicate issues, which include: (1) the pro­
cess may fail to converge; (2) only one solution may be found when several 
exist; (3) the algorithm's behavior depends on the initial guess for the solu­
tion; and (4) the computation may be costly. Furthermore, if an assembly is 
articulated, the solutions contain higher-dimensional sets that correspond to 
the motions of the mechanism, and numerical equation solvers do not provide 
much useful information about the degrees of freedom of the assembly or about 
its motions. 
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An alternative approach consists of manipulating the equations symbolically 
[1, 29]. Casting the problem in algebraic terms enables powerful techniques to 
be deployed, for example Grobner basis computation [16]. These techniques 
provide information about the entire set of solutions, its dimensionality, and so 
forth. Symbolic elimination and simplification methods produce results con­
taining symbolic parameters that correspond to the degrees of freedom of an 
assembly. Unfortunately, Grobner basis calculation and related symbolic alge­
bra algorithms use rational arithmetic and are notoriously slow. 

To mitigate some of the drawbacks of numerical and symbolic constraint satis­
faction algorithms, a variety of heuristics and special-case short cuts have been 
proposed [1, 18,29]. Sequential, uni-directional constraint satisfaction methods 
[38, 46] are computationally attractive, and the parameter expression approach 
is by far the fastest, since no equations are solved. But these methods have 
their own drawbacks, discussed earlier. 

Recently, group theoretic methods have been applied to study the degrees of 
freedom of assemblies [26, 30, 43]. The key observation is that contact between 
two surfaces is maintained when the surfaces undergo rigid motions only if 
the rigid motions leave the surfaces invariant. For example, two cylinders 
in contact permit rotations around the axis and translations along the axis 
direction. These are precisely the rigid motions that map a cylinder onto 
itself, that is, the motions under which a cylinder is invariant-and therefore 
correspond to the symmetries of the cylinder. The symmetries of a feature are 
associated with a subgroup of the group of all rigid motions in Euclidean space. 
When parts are connected by several mating relations, their degrees of freedom 
may be computed by intersecting the corresponding symmetry groups. All the 
possible mating relations among a set of parts can be inferred by reasoning 
about symmetry groups. However, in our opinion, it is more reasonable to 
capture such relations at the design stage, since they are known to a designer 
even before the detailed geometry of the parts is specified. 

In summary, assembly representations through mating relations give rise to 
networks of spatial constraints, and these are intimately associated with sys­
tems of non-linear equations, with all their inherent difficulties. Recent work 
by Kramer illustrates the current state of the art [19, 20]. Kramer combines 
symbolic and numerical methods, and converts bi-directional constraints into 
uni-directional relations for efficient solution. Finally, note that most of the 
research on geometric constraint satisfaction has been devoted to equality con­
straints (but see [28, 46]). Inequalities are important for dealing with geometric 
uncertainty. 
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2.5 Variational classes and tolerance analysis 

Tolerances define permissible variations in the geometry of parts. A variational 
class is the set of solids that satisfies a given tolerance specification [33, 34]. 
(Note that other authors use these terms with a different meaning [45].) All 
the solids in a variational class should be "almost equal" in a suitable metric 
[5], functionally equivalent, and interchangeable in assembly operations. 

Tolerance specifications amount to geometric constraints on the size, pose and 
form of subsets of a part's boundary. Typically they apply to surface features. 
The precise meaning of tolerance specifications is a topic of active research. 
There are two main approaches for defining tolerancing semantics: 

• Shape and pose parameterization . 

• Tolerance zone specification, which may be parametric or non-parametric. 

We will explain these approaches with the help of a very simple 2-D example. 
Consider a planar quadrilateral polygon. If we assume that adjacent sides meet 
precisely at right angles, we have a perfect rectangle, which can be characterized 
completely by two parameters, its length L and height H. We have thus defined 
a family of objects with an associated 2-D parameter space, which we can 
identify with M$' the solid modeling space for this example. A pair (L, H) is 
a point in this space and therefore it defines a specific rectangle instance. A 
tolerance specification corresponds to a subset of M$' Typically, the subset is 
an interval (L -ll.L, L + ll.L) x (H -ll.H, H + ll.H). But other, more complex 
subsets may be defined indirectly, through constraints on entities that depend 
on the two parameters [45]. 

For a richer variational class we may relax the assumption of perfect orthog­
onality, and introduce four more parameters lh, .. . , 84, which are the angles 
between adjacent sides. The "length" and "width" must be redefined as dis­
tances between specified vertices. A variational class now corresponds to a 
subset of a 6-0 parameter space. This variational class includes quadrilat­
erals similar to that shown in Figure 2.4, which does not satisfy the earlier, 
perfect-orientation specification. 

What we have done in both examples is to parameterize the poses of four 
straight lines, and constrain the poses through their associated parameters. The 
form ofthe lines is assumed perfectly straight. Perfect form is a reasonable first 
approximation, but a more refined tolerance specification must acknowledge 
that surfaces cannot be manufactured with perfect shapes. Imperfect form 
can be accommodated by using higher-order approximations. For example, we 
can replace the straight lines by second-degree curves (conics), and introduce 
additional parameters to define the conics. Alternatively a spline can be used. 
A tolerance specification still corresponds to a subset of parameter space, but 
the space's dimensionality has increased. Shape and pose parameterization is a 
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Figure 2.4: A quadrilateral with non-orthogonal sides 

reasonable approach for perfect-form tolerancing, but its extension to imperfect 
form leads to a large number of parameters of dubious physical significance. 

In contrast, the tolerance zone approach makes extremely mild assumptions 
about the nature of the surfaces involved. They are required only to "vary 
slowly" at the scale of the tolerance values specified [4, 33]. Tolerancing con­
straints in this approach are translated into set inclusion relations. Typi­
cally, a surface feature of an object is required to lie in a region of space 
called a tolerance zone. These zones may be constructed parametrically or 
non-parametrically [34]. We illustrate the two possibilities with an imperfect 
rectangle-see Figure 2.5. First we parameterize the rectangle by its length and 
height, as before, and specify an admissible range for each of the parameters. 
N ext we construct the largest and smallest rectangles in the specified parameter 
range, and define a tolerance zone as their set difference, shown in Figure 2.5-a. 
Any object with a (slowly-varying) boundary in the tolerance zone is consid­
ered acceptable. In the non-parametric approach illustrated in Figure 2.5-b, 
we grow and shrink a perfect rectangle by specified amounts, and subtract the 
results to define the tolerance zones. The main distinction between parametric 
and non-parametric zones is the growing and shrinking method used. Instead 
of considering maximal and minimal values for parameters, expansion and con­
traction are achieved in the non-parametric approach through solid offsets [39]. 
which are special cases of Minkowski operations or sweeps. The two approaches 
produce slightly different tolerance zones, as shown in the figure, but the dif­
ferences do not seem to be practically important. Constructing tolerance zones 
for all the specifications used in practice is non-trivial, but an adequate theory 
is emerging [9, 17, 33, 40]. Note also that a tolerance zone specification may 
be converted into a set of constraints on parameters, if we assume that the 
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Figure 2.5: Parametric (a) and non-parametric (b) tolerance zones 

surfaces of actual parts have specific, parameterized shapes. 

Representations for variational classes depend on the specific approach adopted 
for tolerance semantics. The non-parametric theory requires representations 
for nominal solids, surface features, and attributes that constrain such features 
[36]. Shape parameterization, as well as parametric tolerance zones, have an 
additional requirement: feature and object representations must be parameter­
ized. 

Almost all of the extant tolerance analysis algorithms assume a semantics for 
tolerances in terms of shape and pose parameterizations. Typically, range or 
limit specifications are given for a few parameters or dimensions ~, and the 
corresponding range is computed for a resulting dimension d.,. = f(~). Figure 
2.6 shows a simple example. The resulting dimension is d = a - (b+ c) . Given 
limits for a, band c, what are the corresponding limits for d? Observe that 
the relative location of the right face of the slot in the figure with respect to 
the left face of the slot can be defined either as the single distance d or by the 
"chain" -b + a-c. (To construct this chain go left from the left face of the 
slot, then right to the rightmost face of the part, and then left to the right 
face of the slot.) In tolerancing jargon, two chains of dimensions associated 
with a feature constitute a loop. More generally, the given dimensions need not 
be aligned along a single direction, and a more complicated vector loop must 
be constructed to relate the relevant parameters. However, most systems deal 
only with linear loops of dimensions. 

In most tolerance analysis programs the function f that relates resulting and 
given dimensions must be specified by a user, either as a closed-form expression 
or by a procedure for computing d.,. from the other di. In some systems f is 
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Figure 2.6: An indirectly-toleranced slot 

defined implicitly by a simulation procedure that generates representations of 
parts in tolerance, "assembles" them, and "measures" the resulting dimensions 
[45] . 

Worst case analysis involves finding the minimal and maximal values for pa­
rameters, and therefore is an optimization problem. The equations that relate 
the resulting dimension to the given ones may be non-linear, when angular rela­
tionships are involved. Because the variations in the parameters are small, the 
equations often can be linearized, and the optimization carried out by linear 
programming [15, 42, 45]. 

Specific analysis problems must be formulated by human users so as to reflect 
critical assembly requirements, and the results of the analysis also must be in­
terpreted by humans in most of the existing tolerance analysis programs. For 
example, the slot size in the example above may preclude assembly with a mat­
ing part, but such an inference is beyond the capabilities of typical industrial 
systems. Increasing automation is being demonstrated in research systems [45]. 

The same vector-loop considerations can be used for statistical tolerance anal­
ysis. Now the part dimensions are viewed as random variables. P.d.f.'s for 
the given dimensions are specified by a user, and the statistics of the resulting 
dimension are computed by using analytic statistical methods [2, 8, 23], or nu­
merically, by Las Vegas techniques (which are the U.S. equivalent of old-world 
Monte Carlo analysis) [14, 45]. The traditional approach to tolerance analysis 
is well described in [2], which is a revised version of a report dating from the 
mid 1970's. 

Judicious formulation ofresulting dimensions coupled with worst-case or statis­
tical tolerance analysis can go a long way towards establishing non-interference 
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or internal consistency of assembly representations. In essence, traditional tol­
erance analysis seeks to show that constraints on components suffice to guar­
antee that assembly requirements are met, and therefore is closely related to 
internal consistency issues. 

Tolerance analysis algorithms based on the tolerance zone approach are still 
at the research stage. The most interesting results thus far are reported in 
[10, 11, 12]. Work under way at the University of Southern California seeks 
to compute tolerance zones and verify clearance and fit conditions by using 
the ideas outlined in [35]. The tolerance zone approach deals naturally with 
imperfect form. Coupled with assembly representations that contain the critical 
assembly requirements, it is expected to lead to highly automated and powerful 
tolerance analysis systems. 

2.6 Summary and open issues 

This chapter introduced mathematical models for (the geometric aspects of) 
assemblies in terms of configuration spaces whose elements correspond to col­
lections of solid mechanical parts and their poses (positions and orientations). 
Rigid assemblies were considered, as well as articulated mechanisms, with and 
without part variability, and with and without randomness. Sharp charac­
terizations for the subsets of configuration space that correspond to physical 
assemblies are unknown. 

Computational representations for assemblies proposed in the literature con­
sist essentially of (toleranced) solid models for the component parts, mating 
relations between surface features, and attributes of such relations. Attributes 
establish geometric and non-geometric constraints on the assembly. 

The validity and internal consistency of assembly representations raise a host 
of very complex problems, many of which require substantial mathematical and 
algorithmic development. These problems include interference calculations and 
path planning, to establish geometric realizability; constraint satisfaction, to 
find static poses and allowed motions of sets of parts connected by mating 
relations; and worst-case and statistical tolerance analysis, to check if part­
level tolerance specifications ensure that assembly requirements are met. 

Assembly representations should capture design requirements such as assembly 
clearances and desired motions. Some of this information can be inferred from 
the assembly geometry, but it seems more reasonable to capture requirements 
at the design stage, since they are known to the designer, than to re-create 
them later, in a process akin to reverse engineering. Computer aided design 
of assemblies was not considered in detail in this chapter but a good survey 
is available [24]. Two interesting issues raised by assembly design are the 
following. 
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1. Designers may proceed bottom-up, by constructing new part represen­
tations or using existing ones, and establishing mating relations and at­
tributes. But they also may operate top-down. The first approach can be 
supported through relatively straightforward extensions of current solid 
modeling technology. The second, top-down approach is more challeng­
ing, because one must be able to ignore low-level details and establish 
relations between features of incompletely specified objects. 

2. Assemblies are naturally decomposed by designers into subassemblies, 
typically through functional considerations. Subassemblies are not dif­
ficult to represent, and hierarchical structures can be combined with 
mating-relation graphs. However, the subassembly structure imposed 
by designers need not correspond to a desirable sequence of assembly 
tasks. In fact, some of the planners discussed in the following chapters 
assume a flat,non-hierarchical assembly structure and infer a suitable set 
of subassemblies associated with assembly operations. 

The main conclusions of this chapter may be summarized as follows. The 
mathematical aspects of assembly modeling are not fully understood. Assembly 
representations through mating relations and attributes are reasonably well 
established, although most of the associated constraint satisfaction methods 
suffer from lack of generality, efficiency, or robustness (or all of the above). 
Properties of assembly representations such as validity and internal consistency 
involve a variety of complex, open issues. Algorithms for converting assembly 
representations into sequences of assembly operations are discussed in later 
chapters of this book. 
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Chapter 3 

Representation of solid 
objects by a modular 
boundary model 

Leila De Floriani, Amitava Maulik, and George Nagy 

The geometric representation of man-made objects has always been considered 
essential for their design and construction. It is inconceivable that cathedrals, 
catapults, caravels and clockworks could have reached their level of perfection 
without the concurrent development of graphic tools as the lingua franca be­
tween designers, clients ("end-users"), and artisans. Drafting conventions were 
gradually refined and formalized according to the requirements of different dis­
ciplines (sheet metal, piping, trusses, part and assembly drawings, renderings). 
Till recently, "mechanical drawing" formed an important component of engi­
neering and architectural education. 

Early computer-aided drafting tools bore the same relation to engineering draw­
ing as word processors to typing: they facilitated the preparation of neat, error­
free prints, allowed storage and transmission in digital form, and speeded up 
immensely the updating of existing designs. Ancillary information, such as 
parts lists, machining directions, and surface finish, were kept in separate files 
and dimensions were treated as mere annotations. Electronic drawings con-



www.manaraa.com

42 

tained the minimum amount of structural information: no other views could 
be displayed than those entered by the draftsman, and few additional proper­
ties (such as weight) could be calculated. This remained the case even after 
the introduction of wireframe models. 

In the second phase of computerization, integral methods were developed to 
represent three-dimensional rigid objects themselves, rather than specific 2-D 
views of such objects. It was soon discovered that purely geometric coordi­
nate information and surface equations left unresolved certain ambiguities: in 
particular, such location information is insufficient to differentiate the inside 
from the outside. This led to the introduction of data structures for repre­
senting simple topological concepts and relations. However, the integrity and 
consistency of 3-D representations could not be verified as easily as 2-D repre­
sentations. It was therefore necessary to define transformations that, applied 
to a topologically valid object, guaranteed yielding another valid object . The 
computer models developed along these lines were sufficient to allow the ma­
nipulation and display of well-formed objects of arbitrary complexity, and form 
the basis of the current commercial systems. 

The third phase of computerization, which includes the research reported here 
on modular boundary models, extended the above techniques to families of 
objects. The ability to combine objects has implications both in design, where 
the combination is conceptual, and in manufacturing, where the combination 
is physical. Useful combinations include not only juxtapositions, where objects 
do not spatially overlap, but combinations of interpenetrating components. In 
the latter case, voids (such as holes) are also considered objects, and multiple 
positive and negative objects may share the same space. One may equivalently 
consider a hole as the complement of the corresponding solid, or simply as a 
negative object. Naturally, the representation and verification of the validity 
of such modular objects becomes more complicated. 

Another major limitation of classical CAD models has been their inability to 
describe form features and their relations. Pure solid modelers cannot be used 
for assembly and machining planning because they do not contain essential 
information that is most naturally associated with form features (i.e., tolerances 
and dimensions, materials, surface finish). Modular boundary models (MBMs) 
bridge the gap between the design and manufacturing phases through their 
ability to represent form features as model components [13,15] . Moreover, the 
MBM description of the object produced by the designer, in which components 
represent design features, can be locally modified (because of the modular 
nature of the model) to yield an MBM description in terms of manufacturing 
features. 

Since modular boundary models are rooted in the boundary representation of 
monolithic objects, we first review alternative representation schemes for indi­
vidual objects . Then, we introduce definitions for a class of modular boundary 
models for compound objects, and develop a specific model of that class, the 
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Face-to-Face Composition (FFC) model. The essential characteristics of this 
model are the explicit graph representation of the abutting and interpenetrat­
ing faces of the constituent object components, and the detailed representation 
of the resulting object in terms of a mutually exclusive, completely exhaustive, 
irregular cellular structure, called the cellular model. 

Our high-level conceptual model (called the F FC Graph) allows the application 
of graph-theoretic tools to validity issues, including those that arise when the 
object is decomposed into its constituent components. In discussing validity 
issues, we find that the locality of information due to modularity assists greatly 
in establishing geometric as well as topological validity. A direct representation 
of the FFC graph in the form of adjacency relations is, however, too cumber­
some for the complete low-level vertex, edge and facet information necessary 
for building and manipulating the model. This latter is thus relegated to the 
cellular representation. 

Since boundary evaluation is a common requirement for any model, we first 
suggest an algorithm to evaluate the boundary of the final object. Then we 
describe a data structure appropriate for the cellular representation, which is 
an extension of Weiler's radial-edge structure [54], and show how the FFC 
model of an arbitrary compound object can be constructed. Finally, we intro­
duce the Production Graph (based on the AND/OR assembly graph described 
in [14,25,48]), which shows the alternative sequences of material-removal and 
assembly operations for manufacturing the modeled object. 

We conclude that modular boundary models fit in the long-established trend 
from human to programmatic computer utilization of models. First generation 
models could be used only for direct screen or plotter output. Wireframe mod­
els could be projected and, with some human intervention, generate numerical 
machine tool control code. Second-generation models were adequate for 3-D 
surface display under varying lighting and viewing conditions. The current 
generation of models is intended for the computer-integrated manufacturing 
paradigm, linking automated (feature-based) design, production engineering, 
and quality control. 

However, before the ideas presented can be applied in an actual design and 
manufacturing environment, a number of additional problems must be solved. 
These include issues related to the numerical robustness of the various opera­
tions, the cost of the suggested data structure for objects typical of given ap­
plications, and the introduction of additional essential criteria for pruning the 
production graph to obtain feasible and economical manufacturing sequences. 
These issues are discussed briefly in the final section. 
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3.1 Object Representation Schemes 

Several object representation schemes have been developed in the past for dif­
ferent applications. Interesting classifications and discussions of such schemes 
are given in [36,41,46]. Some object models are special-purpose, in the sense 
that they can effectively represent only special classes of objects. Examples 
of such models are sweep representations, generalized cylinders and cones, and 
blob models. General-purpose models are characterized by a larger descriptive 
power, and are those used in modern CAD/CAM systems. 

The emphasis in object models for a CAD system used to be on the efficient 
performance of operations typical of a design environment. Examples of such 
operations were the creation of the object model, the visualization of the object 
on a graphic display, computation of integral properties, Boolean and interfer­
ence computations. More recently, the emphasis has shifted to information for 
assembly and machining planning. In other words, the model should not only 
describe the geometry of a solid object, but be capable of representing infor­
mation, like dimensions and tolerances, form features or surface finish, used in 
manufacturing. So, the new directions in research in solid modeling are towards 
more complete models which allow an explicit representation of tolerance and 
feature information. 

Classical solid models for CAD/CAM applications can be broadly classified 
into boundary, volumetric and hybrid schemes. Boundary schemes describe an 
object in terms of the surfaces enclosing it. Volumetric schemes describe an 
object in terms of solid primitives covering its volume. Hybrid schemes combine 
the two approaches. 

A boundary representation (B-Rep) of an object is a geometric and topological 
description of its boundary. The object boundary is segmented into a finite 
number of bounded subsets, called faces. Each face, in turn, is described by 
its bounding edges and vertices. Two other (non-primitive) elements are used 
to describe objects with multiply connected faces or internal cavities: the loop 
and the shell. A loop on a face f is a closed chain of edges bounding f. A 
shell is defined as any maximal connected set of object faces. In a B-Rep 
a clear separation is made between geometry and topology. The geometric 
description consists of the shape and location in space of each of the primitive 
topological elements (vertices, edges and faces). Topological information is 
concerned with the adjacency relations between pairs of individual topological 
elements (25 relations, in total). Several data structures have been proposed to 
encode a B-Rep: the winged-edge structure [4], the symmetric structure [57], 
the face adjacency hypergraph [2]. They all store the five topological elements, 
but differ in the number and kind of relations they store. The radial edge 
structure, proposed and implemented by Weiler [54], is capable of describing 
also solids not bounded by two-manifold surfaces. 
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The descriptive power of a B-Rep depends on the surfaces used (planes, quadric 
or free-form surfaces). Boundary schemes can represent a wide variety of solid 
objects at arbitrary levels of detail. They are unambiguous, but generally not 
unique. Validity is quite difficult to establish. A topologically valid B-Rep 
can be constructed by the use of a limited set of primitive functions, called 
Euler operators [2,7,21,35,36]. Geometric validity must, however, be tested 
algorithmically. 

Volumetric schemes can be classified into decomposition models, which describe 
an object as a collection of primitive objects combined with a single glueing 
operation, and constructive models, which describe an object as the Boolean 
combination of primitive point sets. 

Decomposition schemes can be further subdivided into object-based and space­
based schemes. The former describe an object as the combination of pairwise 
quasi-disjoint elementary cells whose union covers the object. Examples of such 
models are cell decompositions, like tetrahedralizations [5] mainly used for ob­
ject reconstruction, and finite element meshes. Space-based schemes describe 
an object by subdividing the space into regular volume elements, called vox­
e/s. Examples are spatial enumerations and adaptive schemes, like the Octree 
or the Bintree [26,38,46,47,49,50]. Adaptive subdivision schemes achieve stor­
age economy by combining neighboring voxels which are completely internal or 
completely external to the object. Space-based decomposition schemes provide 
only approximate object descriptions: the quality of the approximation is de­
termined by a fixed resolution. Such representations are unambiguous and also 
unique, except for positional nonuniqueness: all space-based representations 
vary under rigid transformations. Octrees and Bintrees are especially interest­
ing as auxiliary representations in a solid modeler, since Boolean operations 
and computation of integral properties can be done very efficiently on them. A 
general disadvantage of such schemes is the amount of storage required, even 
if pointerless linear representations have been developed [46]. 

Constructive schemes (Gonstructive Solid Geometry, CSG) [41,42,43] are a fam­
ily of schemes for representing solids as Boolean combination of primitive com­
ponents. A CSG model is described by a binary tree, called the GSG tree, in 
which internal nodes represent operators which can be either rigid motions or 
regularized set operators, while the terminal nodes are subsets of E3. CSG 
schemes are unambiguous, but not unique. The validity of a CSG scheme 
can be checked at a purely syntactic level, provided that the primitives are 
bounded. The main disadvantages of a CSG are the difficulty in computing 
integral properties and extracting or describing information related to surfaces 
(surface finish, tolerances, etc.). Variants of the CSG tree have also been pro­
posed. Wyvill and Kunii [58] devised the GSG-DAG, in which the Boolean 
operation allowed are set addition and set subtraction. This representation fa­
cilitates the construction of a spatial index, called a PM-GSG tree, on top of a 
CSG-DAG in order to speed up ray tracing on a constructive object description. 
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Hybrid models, as mentioned earlier, can be viewed as combinations of two dif­
ferent representation schemes. There are two major classes of hybrid schemes, 
PM-Octrees and PM-GSa trees (which combine an Octree with a boundary 
representation or a eSG model, respectively), and Modular Boundary Models 
(which combine a B-Rep with a constructive approach limited to a restricted 
set of Boolean operations). These latter will be discussed in the next section. 

The major drawbacks of adaptive space-based decomposition models, like the 
Octree or the Bintree, are that they provide only approximate object descrip­
tions, and contain a large number of nodes. Thus, several authors have pro­
posed schemes that combine the Octree with a B-Rep by using the octree as 
a spatial index over the boundary description [3,8,9,12,20,23,39,46,47]. These 
schemes have different names, but their underlying principle is the same. Like 
an Octree, a PM-Octree is based on the recursive subdivision of a finite cubic 
universe containing the object into octants. Terminal nodes can be full or void, 
as in the octree, or they can be of type face, edge or vertex. Face nodes are 
crossed by a single object face, an edge node contains a portion of an edge 
together with the two faces incident on it, a vertex node contains exactly one 
vertex and portions of all the edges and faces incident on it. The main advan­
tage of PM-Octrees is the simplicity of the algorithms for Boolean operations. 
Visualization and computation of integral properties can also be performed 
efficiently on such structures. PM-CSG trees are based on the same concept 
as the PM-Octree: the definition of a terminal node is changed to refer to a 
primitive object rather than to a boundary element [58]. 

Even by considering only the modeling operations performed in a CAD system, 
no representation scheme is uniformly best for all operations. So, many mod­
eling systems maintain more than one object description . Octrees, and more 
recently, PM-Octrees, have been mainly used as a secondary representation to 
speed up Boolean operations and computation of integral properties. In many 
commercial systems, eSG has been used as an interface to the designer, while 
keeping a B-Rep as internal representation. Such modelers require conversion 
algorithms capable of translating data among the different schemes. A conver­
sion algorithm must guarantee that the output is always correct and consistent 
with the input model. Also, ideally, the conversion should be completely in­
vertible. This cannot happen when we convert from an exact model, like CSG 
or B-Rep, to any spatial enumeration model. A survey of conversion algorithms 
between representations can be found in [19]. 

Besides the "pure" solid models discussed above, which describe only the shape 
of the object, other object models containing also semantic information have 
been developed for machining and assembly. In this class, we include assembly 
models and feature-based models. 

Generally speaking, assembly models describe an object as the composition of 
parts which must be combined to form the object, and the relative position and 
relations among the parts. They essentially differ in the kind of part-to-part 
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relations they describe. Braid [6] defines a tree-like assembly structure, in which 
the terminal nodes are assembly components, described in a boundary form, 
and non-terminal nodes represent assembly operations. Assembly operations 
could be of type collective (i.e., placing components side by side), conjunctive 
or disjunctive (i .e., Boolean operations). 

An early attempt at modeling the assembly of components was made in the 
AUTO PASS project [34] . The assembly model is a graph, in which the nodes 
are geometric objects (described by polyhedra) and the arcs represent four rela­
tions: part-of, attachment, constraint and assembly-component. More recently, 
an improved representation has been proposed by Lee and Gossard [32]. It is a 
hierarchical representation in which an assembly consists of subassemblies and 
components. Each component is described in a boundary form, and two mat­
ing relations are introduced: against (abutting planar faces) and fits (center 
lines of the two parts are collinear). This structure has been improved again 
by Ko and Lee [30] by adding additional mating conditions. Turner proposed 
an assembly model specifically developed for tolerance-based design [52]. 

Sanderson and Homem de Mello [48] discuss a set of algorithms and a relational 
scheme to generate a representation of all "feasible" assembly sequences. When 
given as input the pairwise relations (contacts, attachments, etc.) between the 
components, the scheme can handle assemblies which are constructed by com­
bining two subassemblies at a time. The input relational model is converted to 
a graph. The cut-sets that correspond to feasible disassemblies are determined 
from the geometric feasibility, mechanical feasibility, and stability predicates 
defined by the authors. These predicates essentially test the possibility of lo­
cal incremental translations, accessibility of the attachments, and gravitational 
stability. All the feasible disassemblies are then represented in the form of an 
AND/OR graph. The authors propose searching this graph for solution trees 
that represent either complete or partial assembly sequences. Partial sequences 
are used for the replacement offailed parts, whose identity cannot be predicted. 
We will make full use of these ideas in our model. 

Lee and Shin [33] discuss a co-operative planning system with job-specific ad­
visor routines to determine a partial-order graph for automatic generation of 
assembly sequences with a high degree of parallelism. The face-face contact 
between compatible surfaces of neighboring parts, and blocking relationships, 
where one part blocks the disassembly of another without actually touching it, 
are provided by the designer. The constraints imposed by these relationships 
are used by the Geometric Reasoner to determine the ranges of movements of 
each part. Then the Heuristic Advisor uses grouping heuristics and suggests 
tentative decompositions, which are checked for interference by the geometric 
reasoner. The Plan Co-ordinator takes the list of accepted decompositions and 
determines those tasks that can be accomplished most easily. Other advisors 
determine resources and their availability. This decomposition process is per­
formed iteratively till the decompositions of all subassemblies are determined . 
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a) Disjoint Union of two cuboids C1 and C2 . 

b) Restricted Difference of two cuboids Cl and C2 . 

Figure 3.1: Face-based operations on two cuboids C1 and C2 • 

U(Ci,Cj ), is the solid object defined as the set addition of Ci and Cj . Given 
two components Ci and Cj such that Cj is contained in Ci and their boundaries 
intersect at some faces, then the Restricted Difference of Ci and Cj, denoted 
D( Ci, Cj), is the solid object defined as the set difference Ci - Cj. Thus, the 
two previous operators can be applied only to pairs of components such that 
their boundaries have a proper 2-D intersection . Such components are called 
face-adjacent components. This ensures that the results of these operations are 
objects in our domain. Figure 3.1 shows examples of the two operators using 
cuboidal components (the portions of the boundary that have 2-D intersection 
are shown hatched). 

Note that the disjoint union operator is the glue operator defined in many 
boundary modelers [2,36], and also that the restricted difference operator can 
be interpreted as a glue operation applied to a positive and a negative object. 
A more convenient way of looking at an MBM, for the purpose of developing 
a boundary-based description, is to consider two kinds of components: positive 
and negative components corresponding to the actions of adding and removing 
material, respectively. Positive and negative components are then combined 
along faces by means of a single glue operator. The composition rules are: 

(i) if Ci and Cj are both positive or both negative, then they must intersect 
only along their boundaries and have portions of faces in COmmon. 

(ii) if Ci is positive and Cj is negative, then Cj must be contained in Ci, and 
they must intersect along their boundaries and share portions of faces. 
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A Hierarchical Partial Order Graph is formed whose terminal nodes represent 
simple parts and non-terminal nodes represent subassemblies along with the 
part relationships and parallelisms involved. 

Most of the work on assembly reviewed above is based on independent repre­
sentation of individual parts and separate data structures that store the re­
lations between them. Repeated evaluations or cumbersome additions to the 
data structures may be required to efficiently perform incremental interference 
checks as new parts are added to the workplace or during tests for global de­
tachability of parts from the assembly. But once two faces are specified and 
found to be in surface contact, the common portion of the two faces need not 
be treated during interference checks. This suggests deleting all the touching 
portions of the faces between different parts. Our modular description of the 
assembled object with parts as individual modules does exhibit this advantage. 

Another important aspect in object models for manufacturing is the need for 
an explicit description of form features. In other words, as for the assembly, 
the object model should be expressed as the composition of parts which corre­
spond to machining operations. Non-geometric information (which characterize 
the specific machining process) should be associated with form features. The 
problem of representing form features in an object model, or, equivalently, of 
developing a feature-based object representation scheme, has been addressed 
mainly in connection with the problem of extracting form features from the 
model produced by the designer (usually from a B-Rep) [15,16,22,24,27,28,56] . 
Henderson produces a feature-based representation, the feature graph, in which 
nodes are form features and arcs are relations among them. Woo uses a CSG 
model in which primitives are convex polyhedra extracted from a B -Rep by a 
recursive convex hull technique. A modular boundary model, which is a vari­
ation of the Hierarchical Face Adjacency Graph described in (13], is used in 
[15,16,22] to organize the extracted form features . 

3.2 Modular Boundary Models 

The class of solid objects we consider are those subsets of E3 bounded by 
compact, orientable, two-manifold surfaces [1] . Modular Boundary Models are 
a family of object representation schemes which describe a solid object as the 
Boolean combination of parts defined by their boundary under a restricted set 
of Boolean operators. 

Each part forming .an MBM is called a component. A component is a solid 
object Cs bounded by a compact orientable two-manifold surface (i.e., an ob­
ject in our domain). A component is described through a boundary model. 
The Boolean operators in an MBM are a disjoint union and a restricted set 
difference operation . Given two components Cs and Cj such that their bound­
aries intersect only at some faces, the disjoint union of Cs and Cj, denoted 
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Figure 3.2: Cuboids C1 , C2 , and C3 are all face-adjacent at the hatched 
connection face. 

Positive and negative components are identified by the directions of their face 
normals: in a positive component they are directed outwards, in a negative 
component they are directed inwards. 

Since an MBM is based on a Boolean combination of components represented 
in a boundary form, it could be considered as a hybrid boundary-CSG repre­
sentation. The conceptual difference is that, due to the restricted operators 
allowed, an MBM describes the connection between face-adjacent components 
explicitly, while the two operators are implicit. Thus, the MBM is an un­
evaluated representation from which the reconstruction of the boundary of the 
object requires two-dimensional set operations only (to eliminate portions of 
faces). 

Any face of a component which has a non-empty two-dimensional intersection 
with a face of at least one other component is called a connection face. The 
faces of the cuboids in Figure 3.1 to which the hatched portions belong are 
examples of connection faces. Note that a component may be face-adjacent at 
the same connection face to several components (see the example in Figure 3.2). 

MBMs of the first generation, like the Hierarchical Face Adjacency Hypergraph 
(HFAH) [13] or the Object Decomposition Graph (ODG) [15], descr'ibe only 
face-adjacency relations between pairs of components in the form of a directed 
graph. In such a graph, the nodes correspond to the components defining the 
object decomposition. Each arc (Ci, Cj ) joining two face-adjacent components 
Ci and Cj represents the face-to-face relations between Ci and Cj and is labeled 
with the pairs of corresponding connection faces of Ci and Cj. The orientation 
associated with the arc keeps track of the object construction sequence. Fig­
ure 3.3 shows an example of ODG. In the HFAH, the relations between object 
components is described as a tree, which restricts the class of modular decom­
positions which can be described. The HFAH has been developed and used [22] 
as a representation of object form features at different levels of resolution. 
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a) Object. 

c) Object Decomposition Graph. 

b) Exploded view of Modular Decomposition into components. 

Figure 3.3: The Object Decomposition Graph and Modular Decomposition 
of an object. 



www.manaraa.com

52 

Figure 3.4: C1 and C3 have volumetric interference. C2 and C3 also have 
volumetric interference even though they do not share a connection. 

3.3 The FFC Model 

The components in an MBM can have spatial interference, and this does not 
only happen for a positive and negative component which are combined to­
gether (see the example of Figure 3.4). If we consider both the spatial interfer­
ence among components and the partition of the component connection faces 
into subfaces shared with other face-adjacent components, we have a partition 
of the boundary of each component Ct into portions of its original faces, that 
we call facets. 

A facet of Ci can be either: 

(i) a maximal connected portion of the common intersection between one face 
of Ci and one face of any face-adjacent component Cj (and, thus, it is a 
subset of a connection face of Ct and a connection face of Cj ), or 

(ii) a maximal connected portion of a face of Ci defined by the intersection of 
such face with the boundary of any component Ck having a volumetric 
interference with Ci . 

A facet of a component Ct is either a connection facet, when it is that subset 
that represents the common portion of a connection face, or it is a boundary 
facet. When two or more components are face-adjacent, only one connection 
facet is used to represent the common portion of their connection faces. Let 
S be a solid object and MD be a family of positive and negative components 
defining a modular decomposition of S into face-adjacent components which, 
when combined through a glue operator, give S. The collection of the connec­
tion and boundary facets of all components of a modular decomposition MD 
of an object defines a fragmentation F of the union of the boundaries of its 
components. Figure 3.5 shows the fragmentation of the faces of the modular 
decomposition depicted in Figure 3.3. 

Given the fragmentation F defined by a modular decomposition MD of S, each 
face /j in F can be classified with respect to a component Ci as follows: 
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Figure 3.5: Exploded view showing facets in the fragmentation of the objects 
of Figure 3.3a. 

(i) Ii is a connection facet for Gi (i.e., Ii belongs to the boundary of Gt and is 
shared by at least another component face-adjacent to Gt ) 

(ii) Ij is a boundary facet for Gt (i.e., Ii belongs to the boundary of Gt and is 
not shared by another component) 

(iii) Ii is internal to Gt (i.e., Ii belongs to the boundary of another component 
and is contained in Gt) 

(iv) Ii is external to Gi (i.e., Ii belongs to the boundary of another component 
and has no interference with Gt ) 

Figure 3.6 shows the classification of the facets of the modular decomposition 
of the object in Figure 3.2 according to the four categories listed above. 

A connection facet is called homogeneous if it is a connection facet for an even 
number of components, otherwise it is called non-homogeneous. Figure 3.6 
shows examples of homogeneous and non-homogeneous connection facets. Ho­
mogeneous connection facets do not belong to the boundary of the object. 
Thus, the evaluation of the boundary of S from an MBM consists of eliminat­
ing the homogeneous connection facets. 

The components in MD and the fragmentation F of the faces of the components 
in MD with the above classification define a modular boundary model that we 
call the Face-to-Face Composition (FFC) model and denote M = (MD,F). A 
high-level relational description of the FFC model is given by a hypergraph, 
called the Face-to-Face Composition (FFC) graph. In the FFC graph the nodes 
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11 - 15 are boundary facets of C1. 
16 - 19 are connection facets of C1 . 

16, h, and fg are homogeneous connection facets. 
18 is a non-homogeneous connection facet. 
110, lu, and 112 are internal facets to C1 • 

Figure 3.6: Classifications of facets of components in Figure 3.2. 

correspond to the components in MD, the hyperarcs to internal and connection 
facets . More formally, if MD = {C1 ,C2 , ... ,Cn}, and F = {11,/2, ... ,lm}, 
then the FFC graph is a hypergraph G = (N,Aj, where 

(i) each node in N corresponds to a component Cj in MD (and thus can be 
identified with it); 

(ii) each directed hyperarc h in A is an ordered k-tuple h = (Cr1 , Cr2 , . . . , Crk), 
where Cra ' S = 1,2, ... , k, are nodes of G. It corresponds to a facet Ir 
in F such that Ir is a connection facet for at least two components in h 
or an internal facet for at least one component in h, and Ir is not external 
with respect to any component in h. 

An attribute is associated with each hyperarc h of G. It is an ordered k-tuple 
ha = (arl' ar2, ... ,ark), where ars is one of internal, connection, or boundary. 
Attribute ars denotes the relation of facet Ir with respect to component C rs . 

Figure 3.7 shows the FFC graph describing the modular decomposition depicted 
in Figure 3.3. Note that the external relation is not represented in the hyperarcs 
of the FFC graph. A facet which is only a boundary facet, and is not internal 
to any other component, is not described in the FFC graph. The FFC graph 
is a concise representation of the connection and interference relations among 
the components in the FFC model. Depending on its attribute, a hyperarc h 
in the FFC graph can be classified as a connection arc, if all the attributes 
in ha are of type connection, as an interference are, if at least one attribute 
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I 

Figure 3.7: FFC graph for the modular decomposition shown in Figure 3.2 
and Figure 3.6. (C and I denote connection and interference arcs respectively.) 

in ha is of type internal, and there is no connection attribute in ha, or as a 
mixed arc, when ha contains attributes of both type connection and internal. 
The spanning subgraph of the FFC graph G containing all the connection and 
mixed arcs of G is called the connection subgraph of G). 

We can obtain global interference information from the FFC graph. Two com­
ponents Cj and Cj have a proper volumetric interference (i.e., their intersection 
is a 3-D subset of their volumes), if there exists a hyperarc h incident in both 
of them such that the attribute associated with only one of them is of type 
internal. A component Ci is contained in another component Cj if 

(i) there exists one hyper arc incident on Cj for each facet of C;, 

(ii) a connection or an internal facet in Cj corresponds to each connection facet 
in Ci, 

(iii) and an internal facet in Cj corresponds to each boundary facet in Cj (see 
Figure 3.7). 

3.4 Validity issues in the FFC model 

The classification of the facets in a fragmentation induced by a modular de­
composition of a solid object can be used to verify validity issues related to 
an FFC model. We assume that the single FFC components are single-shell 
solid objects bounded by two-manifold surfaces, and they are described by a 
valid boundary model. Topological validity is guaranteed by Euler operators, 
while geometric validity is checked algorithmically. We want to ensure that the 
boundary model of an object obtained by evaluating its FFC model is both 
topologically and geometrically valid. 
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C2 s 

a) Resulting object S has multiple shells. 

non-manifold 
condition 

b) S has a non-manifold condition at an edge. 

Figure 3.8: Objects outside the domain of the FFC model as currently defined. 

One problem is that we may obtain a representation of an object outside our 
domain by combining components which are in the domain: for instance , we can 
have an object composed of more than one shell (see Figure 3.8a), or an object 
bounded by a non-manifold surface (see Figure 3.8b). For now, we check this 
algorithmically, but it would be possible to extend our domain. Moreover, the 
evaluated representation of S must describe an object without self-intersecting 
parts, and thus all the volumetric interferences must be eliminated by a suitable 
sequence of glue operations . A simple case illustrating this point occurs in 
Figure 3.3 if only C1 and C3 are combined to form S. This can clearly be 
checked by building the evaluated representation of S and then looking for self­
intersecting portions. This information, however, is embedded in the relations 
between the components in the modular decomposition MD and the facets of 
fragmentation F. Intuitively, the evaluated representation can describe a solid 
object only if the facets lying on the boundary have one extra positive, or one 
extra negative, component (depending on whether the MD describes a positive 
or a negative object) on one side and no material on the other side. 

The definition introduced is a static definition of validity which does not take 
into account whether S can be constructed through a sequence of glue oper­
ations by starting from the given modular decomposition. In other words, an 
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Figure 3.9: If C2 is lowered into C3 , then a valid object that cannot be built 
from the modular decomposition in Figure 3.3b. 

FFC model of an object can be valid, but not constructible (see the example of 
Figure 3.9). This is not a real problem since such a model could not be actually 
constructed with validity checks being performed at each update. 

Necessary and sufficient conditions for validity have been proven in [10]. The 
main result for validity of the FFC representation of positive objects is the 
following (an analogous result holds for negative objects). An FFC model is 
a valid representation of an object if and only if each facet Ii in F satisfies 
one of two conditions on nj, the difference between the number of positive and 
negative components in MD for which Ii is an internal facet: 

(i) if fj is a homogeneous connection facet, then nj is equal to -n or 1 - n, 
where n is the difference between the number of positive and negative 
components on either side of Ii for which it is a connection facet; 

(ii) if fj is either a boundary or a non-homogeneous connection facet, then 
nj is equal to -r, where r is the minimum between the differences of the 
number of positive and negative components for which Ii is a connection 
facet, computed on each side of f;. 

The previous result allows a validity check which involves only boundary and 
connection facets. From the classification of the facets in a fragmentation F 
introduced in the previous section, it follows that the boundary of S is formed 
by the non-homogeneous connection facets and by the boundary facets of the 
fragmentation. The homogeneous connection facets correspond to the sets of 
facets of F inside and outside S. 

3.5 Evaluating an FFC Model 

The problem of converting an FFC model into a boundary representation is 
termed boundary evaluation (by analogy with the well-known problem of con­
verting from CSG to B-Rep). The conversion problem is important for compat­
ibility with other modeling systems based on B-Rep, and for being able to use 
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visualization techniques developed for boundary descriptions. Further reserch 
will go in the direction of designing specific algorithms for displaying objects 
described by an FFC model without the need of evaluating the model. 

While the evaluation of a CSG representation is a difficult task because a large 
amount of information about the boundary of the object is only implicitly 
encoded in a CSG (see [44,45,51]), the evaluation of an FFC model is quite 
easy since the information about the object boundary is clearly represented 
in the FFC. The evaluation task is even easier if we do not require that the 
descriptions produced at intermediate steps be valid. 

The evaluation of an FFC model M of an object S, described by a modular 
decomposition MD and by a fragmentation F, consists of iteratively applying 
a union operation to pairs of face-adjacent components. At each step, two 
face-adjacent components C j and Cj are joined together along their common 
connection facets. If a connection facet h is homogeneous, it is eliminated 
as soon as any two components sharing it are merged. If a connection facet 
is non-homogeneous, it remains as part of the boundary of S. The evaluation 
process can thus be regarded as the elimination of the homogeneous connection 
facets from F. Note that the resulting boundary description of S might contain 
facets belonging to the same surface. In a planar-faced object environment, a 
segmentation of the boundary of S into maximal connected faces could be 
produced by applying a face-growing algorithm to the segmentation produced 
by the evaluation process. Examples of these two situations are shown in 
Figure 3.10. For clarity the face growing algorithm has been used on all figures 
illustrating the object. 

The boundary evaluation algorithm outlined above can produce invalid repre­
sentations at intermediate steps. To be sure that we produce valid intermediate 
results, the algorithm must follow the design sequence, i.e., the sequence used 
by the designer to create the object. 

The boundary evaluation algorithm of an FFC model can be expressed as 
a merging algorithm applied to the connection subgraph of its FFC graph. 
Performing the union of two components Ci and Cj is equivalent to merging 
the corresponding two nodes in the connection graph, and also in the set of 
extreme nodes of hyper arcs incident on both nodes. A hyperarc h is eliminated 
when all its extreme nodes have been merged together. Figure 3.11 illustrates 
this process on the connection subgraph of the FFC-graph shown in Figure 3.7. 

The boundary evaluation algorithm can also be applied in local modifications 
of the FFC model, for instance, for forming composite components from el­
ementary ones. When the boundary evaluation is applied to a single pair of 
face-adjacent components, we want to be sure that the boundary description 
of the resulting component is valid. Validity checks on such descriptions can 
be performed through the local checks discussed in the previous section. 
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a) Exploded view of the modular decomposition of S. 

b) Intermediate object S'. c) Final object S. 

Proceeding from S' to S requires: 
i) Deletion of the homogeneous connection facet (shown hatched). 
ii)Merging at edge e the two facets II and h, that belong to the same plane 
surface. 

Figure 3.10: Face-growing on an object with two positive (C1 and C3 ) and 
one negative (C2 ) components combined at their front faces . 

· · · · · · · 

........ 

........ 
". 

I f6 

I 

Figure 3.11: The hyperarc corresponding to facet fg is eliminated when 
components C1 and C3 (Figures 3.2, 3.6, 3.7) are merged, and f8 becomes an 
internal facet. 
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Boundary evaluation is an irreversible process since once two components have 
been joined the FFC model does no longer contains information representing 
the two original components. Provisions for undo operators must be made. 

3.6 Cellular representation of the FFC Model 

An FFC model of an object described by a modular decomposition MD can be 
represented as a partitioning of the portion of 3-D space defined by the union of 
the components in MD into pairwise quasi-disjoint 3-D cells. This is a special 
type of cellular decomposition [41], since the cells can be empty or full and 
their union covers the union of the components in MD. Here, S is covered by 
the union of only the full cells. 

Given the modular decomposition M D = {C1 , C2 , .•• , Cn }, the connection and 
interference information among the components of MD, represented by a frag­
mentation F, defines a cellular decomposition CD = {Cl' C2, ... , cp } of the U Ci 
into cells which satisfy the following properties: 

(i) Each cell Ci is a subset of at least one component in MD. 

(ii) The interiors of the cells are pairwise disjoint. 

(iii) The union of the cells in CD is the same as the union of the components in 
MD (each considered as a positive component); this union is called volume 
occupied by MD and denoted V. 

(iv) Each facet Ii in F is either a common facet to two cells or a facet bounding 
V. 

(v) Each vertex and each edge of the cellular representation must be common 
to all the cells adjacent to it. 

(vi) A cell is either empty if it describes empty space, or full, if it is a part of 
the object volume. 

Thus, a cellular representation of the FFC model is partially an object-based 
(like tetrahedralizations, finite element meshes, etc.) and partially a space­
based (like octrees or bintrees) decomposition. If we consider only the full 
cells, CD reduces to a cellular decomposition. Unlike space-based and object­
based decompositions, the cells in the cellular FFC representation have a more 
complex shape. A cell can be any simply-connected solid object (cells cannot 
have internal cavities). Figure 3.12 shows an exploded view of the cells in the 
cellular representation of S shown earlier in Figure 3.3. 

We encode the FFC model by using a data structure for its cellular representa­
tion plus a binary matrix describing the component-facet and facet-component 
relations. The component-cell and cell-component relations can be obtained 
from the previous ones provided that we store the cell-facet and facet-cell re­
lations in the data structure for the cellular representation. 
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Figure 3.12: Exploded view of cells covering the union of the components in 
Figure 3.3. 

Figure 3.13: There are 25 possible relations between elements in a cellular 
decomposition. 

A cellular decomposition CD is defined by five topological elements, namely, 
cells, facets, loops, edges and vertices. We can define 25 pairwise adjacency 
relations between each ordered pair of elements (arrow diagram in Figure 3.13), 
and 16 adjacency relations among the elements in a single cell. 

The topological elements required to represent the two manifold boundary of a 
single cell and their inter-relationships are shown in Figure 3.14a. The relations 
satisfy the definition of the symmetric data structure proposed by Woo and is 
sufficient to describe any arbitrarily complex two-manifold surface [57]. 

The six stored adjacency relations (arrow diagram in Figure 3.14b) are defined 
as follows: 
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cell 

facet 

nexcaround_loop 

.... 0 .......... . 
radial 

vertex 

a) Relationships between elements in the Symmetric data structure . 

F "Ee---...;~~ L "'Ee---...;~~ E "'Ee---...;.~ V 

b) There are six relations stored in a cell. 

Figure 3.14: The Symmetric data structure. 



www.manaraa.com

(i) Facet-Loop (FL): loops belonging to a given facet f. 
(ii) Loop-Facet (LF): facets (at most two) containing a given loop I. 

(iii) Loop-Edge (LE): ordered list of edges forming a given loop I. 

(iv) Edge-Loop (EL): loops to which a given edge e belongs. 

(v) Edge-Vertex (EV): extreme vertices of a given edge e. 

63 

(vi) Vertex-Edge (VE): ordered list of the edges incident in a given vertex v. 

Note that the loop-facet, edge-loop and edge-vertex relations are constant, in 
the sense that they involve a constant number of elements, while the remaining 
three are variable relations. It can be proven that such relations are sufficient 
to characterize the boundary of a single-shell solid object without errors or 
ambiguities [37] . Moreover, the remaining ten relations can be retrieved from 
the six stored ones in a number of operations proportional to the number of 
elements involved in each relation. 

The proposed data structure represents our cellular decomposition using the 
symmetric data structure for each individual cell. The topological elements and 
their inter-relationships are shown in Figure 3.15. It may be easily observed 
that the cell-elements maintain all their relationships in the symmetric data 
structure. A separate set of object elements have been defined as a framework 
for the identical cell elements and to store the geometry of facets and vertices. 
Adjacency relations between object elements of different types are not stored 
explicitly. They are derived from the corresponding cell elements. 

Figure 3.16 shows the edgelists around a cell-loop and a cell-vertex in the 
symmetric data structure. It may be noted that the edgelists around a cell­
vertex and cell-loop are traversed in a counter-clockwise direction when viewed 
from outside the solid. Since the same edgelists are used around cell-loops 
and cell-vertices a convention is used for the orientations of the edgelists with 
respect to the cell-loops and the cell-vertices. If an edgelist belongs to the 
lists of cell-vertex CVl and cell-loop ell then the cell-edge starts from cVl when 
traversing ell. Figures 3.17 , 3.18, and 3.19 show the extensions to the cellular 
data structure. The relations between the cell-elements remain the same. A 
cell has to be hypothetically isolated from the cellular object and then viewed 
from outside for the orientation conventions to be verified. Note that each 
facet, edge, vertex and loop is represented in each cell to which it belongs and 
also as an element of the decomposition. 

3.7 Building an FFC Model 

An FFC model of a solid object can either be constructed by combining a single 
component to an existing model (which is initially null) or by combining two 
separate FFC models. The first method can be considered as a specialization 
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object 

nexCin_object 
ate_in_other_obj 

nexUn_object 
ate_in_other_obj 

nexUn_object 
mate_in_othecobje t 

Figure 3.15: Relationships between elements in the cellular data structure. 
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Figure 3.16: Edgelists around a cell loop and around a cell vertex in the 
Symmetric data structure. 
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Figure 3.17: Plan view of a cell-loop as a list of cell edges. 
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Figure 3.18: View of a cell-vertex as a list of cell-edges in the cellular data 
structure. (Only the adjacencies of a cell-vertex of cell 1 are shown in full.) 



www.manaraa.com

67 

: ..... , edgelist .. 

0 cell_edge 

0 objecCedge 

f3 f1 

cell_facet 

cellI 

Figure 3.19: Cross-section of three object-facets sharing a common object­
edge and the associated cell elements. (Only the relationships between similar 
elements have been labeled.) 
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of the second, since a single component is a special case of an FFC model. 
For now, we have restricted our attention to FFC model construction by the 
first method, and this operation, that we call COMPOSE, is currently being 
implemented in our experimental geometric modeler based on the FFC model. 

The steps required to perform COMPOSE are first described followed by spe­
cialized Euler operators defined to create and manipulate the cellular data 
structure during COMPOSE. 

3.7.1 Adding a component to an FFC model: COMPOSE 

An FFC model can be constructed by a sequence of COMPOSE operations 
applied to an existing model (which is initially empty). A COMPOSE operation 
consists of adding a new component Ct to an existing FFC model M. The 
requirements are that either the new component share portions offaces with the 
boundary ofthe object S represented by M, and have no volumetric interference 
with S (if Sand Ct are both positive or negative), or Cj be contained in S (if 
Sand Cj have opposite sign). 

In terms of the FFC graph, a COMPOSE is equivalent to adding a new node 
Cj and a set of connection and interference hyper arcs describing the connection 
and interference relations of the new components with the existing ones. The 
addition of a component Cj can modify the connection facets of other compo­
nents by splitting existing connection facets. Figure 3.20 shows the modification 
of existing facets and the FFC graph when adding a component. 

The cellular representation of the FFC model is especially useful to enhance the 
efficiency of the construction of the FFC model. Each time a new component 
is added, it is intersected only with a restricted number of cells . Also, once 
interferences and connections are computed, we have to check the validity of 
the resulting object by checking the parity of the modified and new facets 
(see section 3.4). This also ensures that , at the completion of a sequence of 
COMPOSE operations, we have a valid object and a valid sequence of pairwise 
face-to-face compositions of parts which produce valid components at each 
intermediate step. 

The inputs to the COMPOSE algorithm are as follows: 

(i) The component-facet relations . 

(ii) The cellular data structure of the FFC model. 

(iii) The parity counters associated with each facet. 

(iv) A description of the component being added . 

(v) At least one pair of faces, with a face from the component and a face 
of a component in the FFC model, should be specified to abut after the 
specified transformations. 
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f6 

Figure 3.20: Some facets and the FFC-graph are modified when C2 is added. 
See Figures 3.6 and 3.7. (Arc labels C indicate connection facets.) 

The outputs of the algorithm are as follows : 

(i) The new component-facet relations. 

(ii) The new cellular data structure. 

(iii) The result of the validity check on the model. 

The COMPOSE algorithm consists of the following steps: 

(i) Convert component description to the symmetric data structure of a single 
cell using Euler operators. 

(ii) Starting from the connection facets specified detect the cells from the cur-
rent FFC model that need to be intersected with the new cell. 

(iii) Intersect cells using Euler operators. 

(iv) Update parity counters and perform validity checks. 

(v) Update the component-facet relations. 
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3.7.2 Euler operators to manipulate 
the cellular representation. 

The COMPOSE operation needs to create a new cell from the component and 
to manipulate the cellular data structure by creating and destroying topolog­
ical elements in it. The operators to accomplish this should have correctness 
properties similar to that of the widely used Euler operators [2,21,35,53]. 

In a cellular decomposition the boundary of each cell is represented by a bound­
ary model for a single shell. Utilizing this property the operators can maintain 
the correct topology of individual cells. Another property of the cellular decom­
position is that any two cell-elements sharing an object-element must have the 
same geometry. Therefore, adding a cell-edge to a cell-loop requires adding a 
cell-edge to the other cell-loop sharing the same object-loop. Similarly, splitting 
a single cell-edge requires splitting all the cell-edges sharing the corresponding 
object-edge. Thus, the same operations are performed on several cells. Since 
their effect on the individual cells is the same as that of the traditional Euler 
operators, we have retained the nomenclature and added· a prefix (CD) to the 
name of each operator. 

The set of Euler operators defined by Mantyla [35] were implemented at first to 
manipulate the symmetric data structure representing the boundary of a single 
cell. These operators were extended to manipulate a cellular decomposition. 
The names and actions of the operators and a few simple examples are shown 
in Figures 3.21 and 3.22. 

3.8 The Production Graph 

The FFC model of an object S can be built by pairwise combination, through 
the glue operation defined in section 3.2, of FFC models of simpler parts. This 
also means that the evaluation of an FFC model can be performed by merging 
pairs of object parts. We do not allow the construction of an FFC model by 
combination of more than two parts at a time. If an FFC model M of an object 
S can be built by adding a single component to an existing FFC model (initially 
a single component) at each step, then S is called linearly constructible. The 
object depicted in Figure 3.3 is an example of a linearly constructible object. 

Given a modular decomposition MD associated with an FFC model M of an 
object S, each sequence of pairwise combinations of face-adjacent parts, which 
produces an evaluated boundary description of S, is called a composition se­
quence. A composition sequence can be described as a binary tree, called an 
evaluation tree, in which the root represents the boundary model of S, the 
leaves represent the components in MD, and the intermediate nodes contain 
valid descriptions of parts of S. Figure 3.23 shows the evaluation tree for the 
object in Figure 3.3. A composition sequence for the object is obtained by a 
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OPERATOR 

CD_M_CFLV 
CD_K_CFLV 
CD_M_EV 
CD_K_EV 
CD_M_EF 
CD_K_EF 
CD_M_EKL 
CD_K_EML 
CD_M_F 

Figure 3.21: 

poof! 

ACTION 

Make cell, face, loop, vertex 
Kill cell, face, loop, vertex 
Make edge, vertex 
Kill edge, vertex 
Make edge, face 
Kill edge, face 
Make edge, Kill loop 
Kill edge, Make loop 
Make face, Kill loop hole, or 
Make face, cell 
Kill face, Make loop hole, or 
Kill face, cell 
Split edge, Make vertex 
Join edge, Kill vertex 

Euler operators for the cellular decomposition . 

~~.; .................. ~, 

~ l:%'.~--;9 )./ . / . 
• I / • 
: 6/ ... 
! . . -. .' . . 
.:, ........... oo ...... . 

71 

Figure 3.22: Examples of the actions of the first six Euler operators on a 
cellular decomposition. 



www.manaraa.com

72 

Figure 3.23: Evaluation tree for the object (5) depicted in Figure 3.3. 

postorder traversal of the evaluation tree. The preorder traversal gives a decom­
position sequence, i.e., a sequence of valid decompositions of S which produce 
the components in MD. 

An evaluation tree is generated during the construction process. Such a tree re­
duces to a list when we use the operator COMPOSE described in section 3.7.l. 
The evaluation tree can be used to evaluate the boundary of an object from 
its FFC model, and this ensures that we obtain a valid representation at each 
intermediate step. There are many ways of constructing an object from its FFC 
model that are different from the one chosen by the designer. All feasible eval­
uation trees are described by the AND/OR graph that we term the production 
graph. OR nodes represent alternative composition/decomposition sequences, 
AND nodes the combination of two face-adjacent parts. Figure 3.24b shows 
the production graph of the object depicted in Figure 3.24a assuming that the 
object of Figure 3.3a is placed on a large slab C4 . 

The production graph is a further development of the assembly AND /0 R graph 
proposed by Sanderson and Romem de Mello [25,48]. It does not include all 
possible component combinations, but represents only those that produce a 
valid representation of a part at each intermediate step . Given a production 
graph, a particular evaluation tree can be extracted by traversing the graph 
from the OR node describing S and selecting one arc incident from each OR 
node and both arcs incident from each AND node traversed. 

The production graph must be computed by selecting all decomposition se­
quences that produce feasible intermediate results. A decomposition sequence 
can be derived by recursively splitting 5 into two valid parts. To produce a de­
composition into valid representations of the parts, we must check the validity 
of such representations by applying the results in section 3.4. 
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a) Object S" obtained by placing S of Figure 3 on a slab C4 . 

(The dashed arrows identify the contribution of each component.) 

b) Production graph of S". 

Figure 3.24: An object and its production graph. 
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a) Cleavage graph of S". b )Assembly graph of S". 

Figure 3.25: The cleavage and assembly graphs of the object S". 

Feasible assembly and machining sequences are represented in the production 
graph as feasible composition sequences. In the production graph, an AND 
node can describe addition of two parts with the same sign, and is called 
an assembly node, or the combination of a positive and a negative part, and 
is called a cleavage node. Assembly nodes describe an assembly operation, 
cleavage nodes a machining (material removal) operation. Any subgraph of the 
production graph entirely composed of assembly nodes is called an assembly 
graph. Similarly, any subgraph made only of cleavage nodes is termed a cleavage 
graph. Figures 3.25a and 3.25b show assembly and cleavage subgraphs of the 
production graph of Figure 3.24b. 

In those situations when it is possible to combine all negative components with 
the positive ones that contain them, the production graph reduces to an as­
sembly graph, and thus it describes all feasible assembly sequences that can be 
obtained by starting from such parts. In this case, we will not have any internal 
facet in the fragmentation defining the FFC model, and the FFC graph will 
reduce to a connection graph in which the hyperarcs describe mating relations 
among components to be assembled together. In general, however, the assem­
bly and cleavage graphs cannot be separated in the production graph, since 
material removal operations are usually interspersed with assembly operations 
in a production sequence. 
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3.9 Concluding Remarks 

We have attempted to lay the groundwork for the development of third-genera­
tion solid modeling systems. The FFC model differs from previous models in 
the high-level, graph-theoretic representation of juxtaposition and interference 
relations among the faces of overlapping, arbitrary components. These com­
ponents themselves constitute individual objects that are represented by their 
boundaries and are guaranteed to be topologically valid through the use of 
Euler operators. The proposed data structure for the resulting object contains 
sufficient information to establish the adjacency relationship among the cells, 
and also their relationship to the original object components. An algorithmic 
method is available to construct compound objects from constituent objects 
that are themselves composed of individual components and are represented 
by FFCs. The recovery of the boundary of the compound object from the 
cellular model is quite straightforward. A possible application of the model 
is exhibited by the production graph, which shows alternative sequences of 
machining and assembling the modeled object. 

A number of issues remain to be solved. Foremost among them is the develop­
ment of robust geometric algorithms capable of dealing with almost coincident 
vertices, almost collinear edges, and almost coplanar faces resulting from nu­
merical approximation. 

The storage efficiency of the proposed data structure could undoubtedly be 
improved, since edges and facets are represented more than once. A direc­
tion to investigate is extension of the data structures developed for tetrahedral 
decompositions [18]. 

In the production graph, feasible decomposition sequences could be generated 
more efficiently by exploiting graph-theoretic properties of the conditions de­
veloped in [10]. Further, more realistic constraints on machining and assembly 
need to be developed in terms of specific manufacturing environments, such as 
tool-path and robot-arm geometries. 

So far, only the algorithm for composing a single component with an FFC model 
has been developed in detail. Although feasibility is obvious, considerable work 
remains to be done to fill in the steps for combining two arbitrary FFC models. 

It is worth investigating combining modular boundary representation with a 
PM-Octree in a solid modeler. Boolean operations and the computation of 
mass properties can be accomplished efficiently on PM-Octree representations. 
Furthermore, space-decomposition representations are easily generated from 
multiple camera views of actual objects [40] . 

We are actively looking at each of these problems and continuing implementa­
tion of the FFC model for polyhedral geometries. 
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Chapter 4 

Graphs of kinematic 
constraints 

Federico Thomas 

When a set of kinematic constraints are imposed between several rigid bodies, 
finding out the set of configurations that satisfy all these constraints is a matter 
of special interest. The problem is not new and has been discussed, not only in 
Kinematics, but also in the design of object level robot programming languages 
for assembly tasks. 

This chapter deals with the problem of finding out how constrained move­
ments, or kinematic constraints, are propagated and how some workpieces in 
an assembly reduce their degrees of freedom after this propagation, and how in­
consistencies between constraint movements can be found. Special attention is 
paid to those problems which can be solved using a simple topological analysis 
derived from the Theory of Continuous Groups of Transformations. 

Part of the material presented herein has already appeared in [16] . Here impor­
tant points have been clarified and some modifications have been introduced. 
Also, an important part. of this chapter is devoted to the propagation of kine­
matic constraints using part of the material appeared in [17]. 

This chapter is structured as follows. Section 4.1 shows the important role of 
kinematic constraints in the assembly domain. Section 4.2 provides all basic 
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theory about kinematic constraints needed in this chapter. Section 4.3 essen­
tially deals with the basic operations to be carried out on a graph of kinematic 
constraints, namely composition, intersection and star-polygon transform. Sec­
tion 4.4 introduces a basic algorithm for constraint propagation, which avoids 
the application of the star-polygon transform when obtaining the equivalent 
constraint between any two bodies in a graph of kinematic constraints with 
arbitrary topology. Section 4.5 presents an example and, finally, Section 4.6 
gives a brief summary of the main points in this chapter. 

4.1 The role of kinematic constraints in 
the assembly domain 

In the assembly domain, it does not suffice to make the workpiece models 
produced by a CAD system available in the programming environment, but 
a description of the way the different pieces should be fitted together is also 
required. This description can be provided in full detail by either the designer 
or the programmer, or rather be automatically inferred, at least in part, from 
constraints derived from both the shapes of the workpieces involved in the as­
sembly, after trying to find matings of complementary subparts between them, 
and the mechanics of the assembly operations themselves. 

Matings of complementary subparts of different workpieces have a direct trans­
lation into constrained movements, or kinematic constraints. In general, this 
translation assumes that the legal motion for compatible pairs of predefined 
subparts, or features, is provided by the user and thus already known. Al­
ternatively, it would be possible to infer legal motions directly from geometric 
models of predefined features. This problem has been reduced to find local 
symmetries [9] or, when working with polyhedral workpieces, to find cycles of 
edges [18]. The recognition and extraction of expected patterns of geometry and 
topology, corresponding to particular engineering functionality, as described in 
[20], will play an important role in this area in a near future. 

In the assembly domain, kinematic constraints are not only relevant when 
mating complementary subparts, but also when specifying relative locations 
between workpieces, specially when using an interactive graphics system. Let 
us look at a simple example. In order to specify the location of the block with 
reference to the box in fig. 4.1, we impose that faces PI and P2 of the block be 
against P4 and P3 of the box, respectively. Then, we might ask: Is there any 
configuration satisfying both constraints? In other words, are they consistent? 
If the answer is yes, how many degrees of freedom remain between the block 
and the box? Which are the values of the constrained degrees of freedom? It 
will be shown that a directed graph of kinematic constraints, that is, a graph 
whose nodes correspond to workpieces and whose arcs are labeled with a set of 
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Figure 4.1: Specifying the location of a block with reference to a box using a 
set of kinematic constraints. 

legal transformations linking the coordinate reference frame of the correspond­
ing workpieces, is a proper data structure to represent these problems. 

If we want to deal with graphs of kinematic constraints with arbitrary topology 
and constraints, then we must be able to find a solution to any inverse kinematic 
problem. Nevertheless, no general satisfactory solution, convenient for practical 
use, has been found for the general inverse kinematic problem. This problem is 
highly complicated because of its non-linearity, non uniqueness of the solution 
and existence of singularities. Fortunately, most kinematic graphs arising in the 
assembly domain are quite simple, since most planes and axis of symmetry of 
the involved geometric features are parallel and orthogonal in the final assembly. 

The automatic manipulation of kinematic constraints has attracted a lot of 
attention not only in Kinematics, but also in the design of object level robot 
programming languages, such as RAPT [14] or LM-Geo 112]. Several algebraic 
symbolic approaches have emerged, among which we will mention a system of 
rewriting rules [14] and a table look-up procedure [8]. 

Algebraic symbolic (as opposed to a numerical) methods for dealing with kine­
matic constraints can shed light on basic aspects of the problem. For example, 
as it is shown in 117], the way they propagate provide useful information on 
the sequence of assembly. 
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The algebraic symbolic method used by the RAPT interpreter can be factored 
into a solution for the rotation which will determine angles, followed by the for­
mation of real equations involving variables representing linear displacements 
and sines and cosines of the angle variable, which, in general, are difficult to 
deal with. 

The approach presented herein distinguishes between topological and geometri­
cal analysis of a set of kinematic constraints. The described topological analysis, 
well suited for the assembly domain, is derived from the Theory of Continuous 
Groups of Transformations, and it was essentially devised by Herve in [7] for 
obtaining the number of degrees of freedom in mechanisms (see [1] for a revi­
sion) . This analysis takes advantage of the fact that the legal relative motions 
resulting from mating two complementary subparts, such as pegs and holes or 
grooves and tongues, constitute cosets of subgroups of the Euclidean group, 
leading to a procedure based on a set of look-up tables. 

4.2 The Euclidean group and 
kinematic constraints 

It is well known that a rigid body in 3-dimensional space has 6 degrees of 
freedom, and, given a reference frame, any displacement can be obtained by a 
pure rotation about the origin followed by a pure translation. 

The set of all displacements of a rigid body, with the composition operation, is 
isomorphic to the Special Euclidean group 8E(3). The decomposition 8E(3) = 
~ x 80(3) shows the aforementioned fact that for any D E 8E(3), 

D = Trans(v)Rot(u,O}, 

where Trans(v) is a translation along the vector v E ~ and Rot(u, 0) E 80(3) 
is a rotation of angle 0 about the axis u. Rotations about the axes x, y and 
z are denoted by Twix, Twiy and Twiz, respectively. An arbitrary rotation 
can be written, using Euler's decomposition, as: 

Rot(u, 0) = Twix(<p)Twiz(</>}Twix('I/I) . 

A rotation can also be expressed using only the Twix operator and constant 
rotations as follows: 

Rot(u,O} = Twix(a) XTOY Twix(.B) XTOY Twix('"Y) 

where the constant rotation XTOY is defined as Twiz(7r/2). 
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While the results presented below do not depend on a particular representation 
of SE(3), we will use the well known 4x4-matrix representation of homogeneous 
transforms [13], which has become fashionable because its simplicity. Let us see 
a brief overview to this representation (see [2] for alternative representations 
such as screw coordinates, quaternions, dual numbers, etc.) 

4.2.1 Homogeneous transformations. An overview 

The representation of objects in an n-dimensional space using homogeneous 
coordinates needs a space of dimension n + 1 from which the original space is 
recovered by projection. For example, the vector v = xli + yd + zlk, where 
i,j, k are unit vectors along the Cartesian coordinate axes, is represented using 
homogeneous coordinates as a column vector: 

so that 

Xl = x/t 
YI = y/t 
Zl = zit 

Henceforth we will normalize t = 1. 

A transformation H is a 4 x 4-matrix so that, the image of a given point v 
under this transformation is represented by the matrix product u = Hv. 

Translations 

A transformation H representing a translation by a vector d = ai + bj + ck will 
be: 

(
100 a) o lOb 

H = Trans (d) = Trans (a,b, c) = 0 0 1 c 

000 1 

Thus, given a vector v = (x, y, Z, l)t, its image u under H will be 

( 
x+a ) 

u=Hv= y+b 
z+c 

1 
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It is easy to prove that the set of all translations constitutes a group under the 
matrix product operation, which will be denoted by T. 

Rotations 

The transformations representing rotations about the x, y, and z axes by angles 
1/J, () or cp, respectively, are: 

Rotx(.) ~ ( ! 0 0 

D cos.p - sin.p 
sin.p cos.p 

0 0 

C' 0 -sinO 

D Roty(O) = ,0 0 
1 0 

sm 0 cosO 
0 0 0 

C' - sin 4> 0 

D Rotz(4)) = Sir cos 4> 0 
0 1 
0 0 

Each element ij of the 3 x 3 upper left submatrix is equal to the cosine of the 
angle between the i-axis of the original coordinate frame and the j-axis of the 
rotated one. 

These matrices, as well as their products, are orthogonal matrices with deter­
minant equal to +1. They also constitute a group under matrix multiplication 
which will be denoted by So. 

Displacements 

The transformations representing rotations and translations can be multiplied, 
and the resulting matrices are said to describe displacements. 

The following properties must be emphasized: 

- Decomposition of a displacement. Every displacement H can be decom­
posed into the product of a translation and a rotation, so that 

H = Trans(d) H = Trans(a, b,c) H , V'H E SE(3) 

where H is the rotation component of the displacement H or, in other 
words, is the matrix resulting from setting the first three elements - a, b 
and c - of the last column of H to zero. 
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Hl ... Hi ... lin = Trans (dd Hl . .. Trans (dn) Hn 

Trans (dl + H l d2 + ... + H lH 2··· Hn-ldn) H1 H 2··· Hn , 

VIll··· Hn E SE(3) 
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If a transformation is postmultiplied by another transformation, the latter 
is applied with respect to the transformed frame described by the former. 
Conversely, if a transformation is premultiplied by another one, the latter 
is applied with respect to the reference frame [13]. Other authors [14], in 
using the transposes of the above defined transformations, adhere to the 
inverse rule. 

- Inverse displacement. Because of the properties of orthogonal matrices, 
the inverse displacement of His: 

1 At H- = H Trans (-a, -b, -c) , VII E SE(3) 

where Ht denotes the transpose matrix of H. 

A given displacement has been denoted using a upper case bold letter. Here­
after, sets of displacements, possibly subgroups, will be denote using just an 
upper case letter. 

4.2.2 Subgroups of the group of displacements 

It is well known that a group is a set of elements closed under an associative 
operation with an identity and inverse elements, as is the group SE(3) of 
displacements. A subgroup S c SE(3) is a subset of SE(3) which is itself a 
group under the same operation. The composition of elements of SE(3) can 
be extended to the composition of elements and subgroups. If S ~ SE(3) and 
D E SE(3), then the right coset S . D is the set {H · D I H E S}. The left 
coset D . S and the two-sided coset D1 . S . D2 can be similarly defined. More 
generally, the composition of two subgroups S1 . S2 is defined as {D1 . D2 I D1 E 

S1,D2 E S2}. 

Definition 1 (Conjugation classes of subgroups of SE(3» Every such 
class is an equivalence class with respect to the relation: 

S1 and S2 being subgroups of SE(3). 
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Table 4.1: Classification of the subgroups of SE(3) into conjugation classes 

Dimension Conjugation class Geometric 
(d.o.c.) Notation and associated elements Canonical subgroup 

lower pair of definition 

0 I Identity I 
displacement 

1 TV Rectilinear A direction of {Trans (x,O,O) I x E R} 
translation translation gi ven 

(P) Prismatic by a vector v 

RU Rotation around An axis of 
an axis revolution u {Twix ('1/1) I '1/1 E (-11",+11"]} 

(R) Revolution 

Hu,. Helicoidal An axis of {Trans (x,O,O)Twix(px) I 
movement revolution u and xER,p=constant} 
(H) Screw a thread pitch p 

2 Tp Planar A plane P {Trans (O,y,z) I x, y E R} 
translation 

Cu Lock movement An axis u {Trans (x,O,O) Twix ('1/1) I 
(C) Cylindrical x E R,'I/I E (-11",+11"]} 

3 T Spatial {Trans (x,y,z) I x, y, z E R} 
translation 

Gp Planar sliding A plane P {Trans (O,y,z) Twix ('1/1) I 
(E) Plane y, z E R, '1/1 E (-11", +1r]) 

S. Spheric rotation A point 0 in {Twix ('1/1) XTOY Twix(~) 
(S) Spherical the space XTOY Twix ('1) I 

'I/I,~,'1 E (-11",+1r]} 

Yv ... Translating A direction of {Trans (x,y,z) Twix(PX) I 
screw revolution v and x, y, z E R , p = constant} 

.. thread pitch p 

4 Xv Translating A direction of {Trans (x,y,z) Twix('I/I) 
gimbal revol ution v x, y, z E R,'I/I E (-11", +1I"J) 
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There exists infinite subgroups of SE(3), but they can be classified into a 
finite number of conjugation classes. This suggest that we can represent each 
conjugation class by a canonical subgroup, so that all subgroups of the same 
class can be expressed as a conjugate of it. 

An exhaustive classification of the continuous subgroups of SE(3) into con­
jugation classes can be carried out using classic methods of analysis of finite 
dimension continuous groups [3]. A list of the classes thus obtained and a 
canonical subgroup for each of them is shown in table 4.1 (adapted from [7)). 
Note that all lower pairs are included in this classification. Let us recall that 
a lower pair exists when one element is coupled to the other via a wrapping 
action and contact takes place along a surface. 

The notation used for these conjugation classes appears in the second column 
of table 4.1. Each class can be characterized by a set of geometric elements of 
definition which appear as subindices in the notation of the class. A geometric 
element of definition of a given subgroup is an affine space of !R3 of dimension 
0, 1 or 2 (a point, line or a plane) which characterize the subgroup. A scalar is 
also required to characterize the Hu,p and Yv,p subgroups. An instance of this 
elements leads to a subgroup belonging to the class. Instances will be denoted 
using numerical subindices. For example, Tp denotes the conjugation class of 
planar translations and Tp) denotes a given subgroup belonging to this class. 

The canonical subgroups are chosen in such a way that their geometric elements 
of definition satisfy the following conditions: 

- if it is a point, it coincides with the origin of the reference frame; 

- if it a line, it passes through the the origin of the reference frame and the 
x axis is aligned with it; and 

- if it is plane, it passes through the origin of the reference frame and the 
x axis is orthogonal to it. 

The election of canonical subgroups is thus arbitrary. If Si is a canonical sub­
group, it will be denoted Si' Given a subgroup Sl, (SI)G denotes the canonical 
subgroup in the same class. 

The degree of freedom of a kinematic chain is defined as the necessary and 
sufficient number of variables that define uniquely the position and orientation 
of all the workpieces involved. The dimension of one of the foregoing subgroups 
is defined as the degree of freedom of the constrained motion it allows. A set of 
variables is thus associated with every subgroup. The dimension of a subgroup 
is indicated as dim(·), where (-) denotes one of those subgroups. Obviously, 
dim(SE(3)) = 6. 

When the geometric elements of definition of two different subgroups satisfy 
some kind of spatial relationship - such as parallelism, collinearity or perpen-
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Table 4.2: Conditions of inclusion of one subgroup of SE(3) into another 

11ol.Po ~ 110 perpendicular to Po 
li1 ~ 110 ~ li1 and 110 collinear 

110 II Vo ~ liO and Vo parallel 

II 
T110 uo II Po UO II U1 

R110 uo ~U1 

HuooPo UO ~ U1 

TJt 

CUo 

T 

GJt 

YVooPo 

XVo 

T 

Vuo 

VPo 

GJ\ 800 

Uo II P1 uol.vo Vuo 

UO~P1 OOEUO UO II V1 

Uo = Vo,PI! = P1 UO II V1 

Po II P1 Po~vo VPo,VVl 

11() II V1 

VV1 

PO~V1 

11() II V1 

dicularity -, one may become subgroup of the other. The conditions of inclusion 
of one subgroup into another appear in table 4.2 (adapted from [7)). 

Now, we can introduce a formal definition of kinematic constraint. 

Definition 2 (Constraints and linking displacements) A constraint R is 
a set of displacements which can be expressed as a composition of cosets of 
canonical subgroups. That is, 

(4.1) 

where L1 , ... ,Ln - 1 are defined as linking displacements. A constraint is said 
to be trivial when it can be reduced to a single coset. 

The interest of most mechanisms is to provide a constrained motion which 
cannot be expressed as a constraint in the way it has been defined here. Nev­
ertheless, we are not interested in analyzing mechanisms, but reasoning about 
constrained motions in the assembly domain. 
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Hereafter, we will assume that our constraints are trivial. In this particular 
case, if ~ = LOSiL1, then Rf will denote the canonical subgroup Si, thus 
extending the notation introduced for subgroups. 

Constraints will be denoted by ~, where i is a subindex that identifies it. If 
~ is the set of legal transformations from the reference frame of B1 to the 
reference frame of ~, R;1 denotes the set of legal transformations in the way 
around, i.e. from B2 to B1. Note that Rf = (R;1)G for all ~. 

A constraint ~ has the variables and geometric elements of definition inher­
ited from Si . Given a reference frame, the subgroup with the same geometric 
elements of definition as a given constraint ~ will be called its associated 
subgroup, which will be denoted by Rf. Obviously, Rf tv Rf. 

4.3 Operations on a graph of 
kinematic constraints 

A directed graph of kinematic constraints - or GR graph, for short - is defined 
as a graph whose nodes correspond to workpieces and whose directed arcs are 
labeled with constraints. The two basic operations on a graph of kinematic 
constraints are composition and intersection of constraints. The former (fig. 
4.2a) involves finding the constraint between bodies B1 and B3 that results from 
composing the constraint between B1 and B2 - say ~ - with that between ~ 
and B3 - say Rj -, which will be denoted by ~ . Rj • The latter operation 
(fig. 4.2b) permits combining two given constraints, ~ and Rj, between the 
same two workpieces into a single resulting constraint, which will be denoted by 
~nRj. Let us analyze both operations in terms of composition and intersection 
of subgroups. 

4.3.1 Composition 

Let us assume a universe of three bodies - Bl, ~ and B3 -linked by two trivial 
constraints 

Then, the equivalent constraint between bodies B1 and B3, that results from 
composing R12 and R23, is: 

(4.2) 



www.manaraa.com

Bt 

92 

Ri (a) 
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Figure 4.2: Operations on a graph of kinematic constraints: (a) composition; 
(b) intersection; and (c) star-polygon transform. 



www.manaraa.com

93 

where 

We will denote (R12R23)C = 8182 according to 4.2. 

Thus, the problem of composing two trivial constraints can be reduced to the 
problem of composing two subgroups, and the outcome of the composition of 
two continuous subgroups of 8E(3) can be tabulated as shown in table 4.3 
(adapted from [7]). 

Clearly, the composition of two trivial constraints needs not be a trivial con­
straint itself, and the only information we need to find it out is the spatial 
relationships between their geometric elements of definition of both constraints. 

When we compose two constraints expressed in terms of canonical subgroups, 
the linking displacement (A2B1 in (4.2)) captures the information about the 
spatial relationship between their geometric elements of definition. Taking 
advantage of this fact, we can check the linking displacement to find whether 
the composition of two trivial constraints can be reduced to a trivial constraint. 

4.3.2 Intersection 

If body 83, still in the same example above, is rigidly linked to 8 1 forming a 
closed kinematic chain, the intermediate body ~ will only have the possibilities 
of motion given by R12 n Rial. 

We can write, 

If 8t and 8~ are subgroups of 8E(3), then (81 n8~C) is either null or is a coset 
of 81 n 8~ (proposition 2 of [15]). Then, we have 

(4.3) 

where 

D = EC, E E 8~, D E 8~, (4.4) 

81 being a conjugate subgroup of 81, and 8~ of 82. 
We will denote (R12 n Rial)! = 81 n 82 according to 4.3 and 4.4. 
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Table 4.3: Intersection and regular representation for the composition of all 
pairs of subgroups of SE(3) whose intersection is different from the identity 
displacement or one is not subgroup of the other 

Groups t o be {Jondltions on the Conditions on the Regular 
composed geometric linking Intersection representation 

elements displacement 

Tlb ' T1\ Tvo 
Vo =PO nPl 

T 

Tlb ' G1\ Tvo XVo 
vO=POnPl vO.LPl 

Glb ' (J1\ Tvo Rno' T· RUl 
vO=POnPl uo.LFb. ul.LPl 

YVoJ'O . Tlb vo A-Fb 111 t- ±l TVl Xvo 
vIII PO. vl.LvO 

YVoJ'O . (Jlb vo ,LLFb 111 'F ±1 TVl Xvo ·Rno 
vI II po. vl.LvO uo.LFb 

YVoJ'O . YVU'l vo I/'vl 111 'F ±1 TV2 Rno' T · RUl 
v2.LvO . v2.Lvl Uo II vo. ul II vI 

YVoJ'O ' Guo no.LvO 111 - 0 Tvo YVoJ'O ' Rno 

Guo 'Gul no II ul 111 - ±l Tno Guo · RUI 
124 ;lo 0 or 134 ;lo 0 

Tlb . (Jno nollFb 111 -0 1110 Tlb ' Rno 
T · Gno Tno Xvo 

vo II ul 

Glb·Gno no liP 111 - 0 Tno (Jlb ' Rna 

XVo ' (Jno uo I/'vo 111 'F ±l Tno XVo · xuo 

YVoJ'O ' Guo uo II vo 111 - ±1 HvoJ'O XVo 

Glb'Gno no.LPo 111 - ±1 Rno Xvo 
vo.LFb 

Soo ' Gno on e axis no 111 - ±1 Rno S.o · Tuo 
124 =0 
134 =0 

Soo ' Glb Ruo Soo ·Tlb 
on E axis no 

uo.LFb 

Soo ·Xvo Rna SE t3) 
on E axis no 

no II vo 

Soo·SOJ Ru~ Soo · Rno ·Rul 

no = ooOJ 01 e axis uo 

01 e axis ul 

Yvc; 'YV)II vo II vI 111 - ±1 
;loPl 

Tlb Po.lvO Xvo 

YVoJ'O . XVI vo I/'vl 111 ;lo ±1 Tlb Fb.lvo Xvo · Rul 
ul II vI 

Glb ' YUu,o vo.lFb 111 - ±l Tf\) XVo 
Glb . Xvo vo A-Fb 111 t- ±1 Tpo Rno .T · Rul 

no.LFb. u l II vo 

Glb · T Tpo XVo vO.LPo 
YVoJ'O . T Tpo XVo 

Xvo . XVI vo I/'vl 111 f:. ±l T Rno ·T· RUl 
uo II vo . ul II vI 
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Note that, although the intersection of two subgroups is at least the identity 
displacement, the intersection of two constraints may be the empty set. 

When the intersection of two constraints is null, i.e. it is not possible to find a 
set of displacements satisfying (4.4), it implies that both kinematic constraints 
can not be simultaneously satisfied. This situation can not be detected through 
the intersection of subgroups. Roughly speaking, if we state our problems 
of kinematic constraints purely in terms of compositions and intersections of 
subgroups, we will be unable to detect inconsistencies. As it has been pointed 
out in [1], Group Theory provides the means for a topological analysis of the 
behavior of a set of bodies linked by a set of kinematic constraints, but a 
geometric analysis is required if we care about dimensions. 

Thus, the problem of intersecting two constraints, say A15\A2 and B2"l S2Bl1, 
can be expressed, if their intersection is different from null, in terms of the 
intersection of two subgroups, and the information about the spatial relation­
ships between their geometric elements of definition can be obtained either 
from A2 . B1 or B2 . A1. Obviously, both information must be consistent. 

The outcomes of the composition and intersection of two continuous subgroups 
of SE(3), for all those cases in which the intersection is different from the 
identity displacement or one subgroup is a subgroup of the other, have also been 
tabulated in table 4.3. lij denotes the element (i,j) of the 4 x 4 homogeneous 
transformation representation for the linking displacement. 

See [9] for deeper prospects on the intersection of, possibly not continuous, 
subgroups of SE(3). 

As a summary, we can say that: (a) the composition of two trivial constraints is 
sometimes a trivial constraint; (b) the intersection of two trivial constraints is a 
trivial constraint or null; and (c) the intersection of two non-trivial constraints 
is not necessarily a constraint, as defined here. 

Definition 3 (Independence and inconsistency) Two trivial constraints, 
R1 and R2, are said to be independent iff(R1nR2)I is the identity displacement, 
and they are said to be inconsistent iff R1 n R2 is the empty set. 

Let us suppose that we want to find out the dimension of R13 = R12 . R23 or, 
in other words, the number of d.oJ. of the body 8 3 with respect to 8 1 . It can 
be stated that: 

This formula can be extended to the composition of n constraints, leading to 
a variation of the Chebyshev-Griibler-Kutzbach formula 

n n 

dim(R1,n+1) = L dim(~,i+1) - L dim(R1,1 n R 1,I+d (4.5) 
1 1=2 
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where 

j-1 

~j = IT RI,I+1 
l=i 

There are many examples of kinematic chains whose degree of freedom cannot 
be determined from its sole topology, i.e., they are elusive to the application of 
4.5 [1, page 86]. 

Definition 4 (Regular representation) The composition of two trivial con­
straints, R3 = R1R2 provide a regular representation for R3 iff (R1 n R2)I = I. 
Then, dim(R3) = dim(R1) + dim(R2) 

Notice that regular representations are not unique. 

4.3.3 Examples 

Firstly, let us analyze the composition of two constraints whose associated 
subgroups are Gpo and X Uo . This composition can be expressed as: 

Rc A 81 L 82 B 

= A Trans(O, y, z) Twix(O) L Trans (x' , y', z') Twix("p) B 

where L is the linking displacement between both constraints. On the other 
hand, GPD and XUo can be decomposed into composition of subgroups as fol­
lows: 

with u11..Po and u211no. 

If no ,lPo, then ll1 -# ±1 (see table 4.3) and the only possible simplification for 
Rc is: 

Rc = A Trans (x" , y", z") Twix(O) L Twix("p) B 

The simplified term, Trans(O, y, z), corresponds to the intersection of GEt, and 
XUo . In terms of subgroups (table 4.3), we have 
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with Ul.lPO and U2 II no. 
If uo.lPo, then Ul II no, ll1 = ±1, and GPo becomes a subgroup of XUo (ta­
ble 4.2). Consequently, Rc can be expressed as 

Rc = A Trans(xlll, ylll, Zlll) Twix(O)L' Twix(1/I) B 

= A Trans ( XIII, y"', z",) Twix( 0 + l' 111/1) L' B 

where L = L' Trans(O, h4' l34). 

Notice that the necessary and sufficient condition for the equality 

Twix(Ot) L Twix(02) = Twix(1/I) L 

to hold is that In = ±1, l24 = 0 and l34 = O. In this case 1/1 = 01 + ln82. 

Let us see another example. Imposing that the axes of the cylinders be aligned 
with the axes of their corresponding holes for the workpieces in fig. 4.3, the 
following expressions for both constraints will be obtained: 

The composition of both constraints yields: 

where the linking displacement is: 

Since no and Ul are parallel, and according to table 4.3, III = ±1; therefore, 
the composition of both constraints can be simplified leading to: 

or, in other words, 

where 81 E Cu and 82 E Ru. Expression (4.6) is a regular representation for 
the composition of both constraints. 

If, in addition to III = ±1, h4 = 0 and 134 = 0 (uo ~ ut), a further simplification 
could be carried out and R12R23 becomes a trivial constraint. In this case 
(R12R23)G E Cu. 
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Figure 4.3: Insertion of a clamp. Geometric elements of definition, kinematic 
constraints and canonical subgroups involved. 
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Let us suppose that now we want to obtain R12nRil , the equivalent constraint 
between 8 1 and ~. Then, (R12 n R.231)1 can be easily obtained using table 4.3. 
Observe that the simplified term in 4.6, Trans(x2' 0, 0), is (R12 n Ril )1G. This 
term encompasses the remaining d.oJ. of body ~ with respect to 8 1, when 83 
is kept rigidly linked, as in this case, to 8 1, 

We have proved that the above constraints are not independent, but we have not 
checked their consistency. Depending on the relative dimensions of the involved 
workpieces, they may be inconsistent. The only thing we can say using this 
kind of symbolic manipulation is that, if (R12 n Rin =/: 0, then 8 2 only have 
one translational degree of freedom with reference to 81. Checking consistency 
requires a geometrical analysis which requires, in turn, solving a kinematic 
equation. In our example, we would have to decide whether RI2R23 = I has 
a solution. Thus, although the previous ideas provide a theoretical framework 
within which it is easy to justify, for instance, when the composition of two 
constraints can be simplified, they must be complemented with an algorithm to 
obtain numerical values for the constrained d.o.f. if we care about dimensions. 
See [4] for new developments in this area. 

4.3.4 Star-polygon transform 

The above two basic operations are not enough for obtaining the equivalent 
constraint between any two bodies in an arbitrary graph of kinematic con­
straints. This fact can be easily proved by drawing a fully connected GR graph 
with four nodes and trying to obtain the equivalent constraint between any two 
of them through the iterative application of compositions and intersections of 
constraints. 

The star-polygon transform is included here to provide a complete set of op­
erations which make possible to obtain the equivalent constraint between any 
two bodies in an arbitrary GR graph. 

The star-polygon transform consists in removing one node of the GR graph by 
fully connecting all the nodes connected to it with the equivalent constraint 
between them (fig. 4.2c) . This operation can be seen as a generalized compo­
sition. Actually, when this transform is applied to a node of degree two, the 
result is the composition of two constraints. 

The problem with this operations is that, once it has been applied, the involved 
constraints share variables. Thus, when a variable is assigned somewhere in the 
graph, it is necessary to take into account that it may be shared by another 
constraint. In the next section, an algorithm, which represents a way around 
this difficulty, is introduced. This algorithm is able to find the equivalent 
constraint between any two bodies without resorting to this operation. 
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4.4 Propagation of constraints 

If, as the result of intersecting two constraints between the same two workpieces, 
the empty set is obtained, we say that they are inconsistent. The goal is 
now to verify the consistency of entire GR graphs. This can be stated as a 
problem of consistency in networks of relations. As it is pointed out in [10], 
any representation of the constraints that allow composition and intersection 
is sufficient for this purpose. 

Informally, a GR graph is consistent if there exist configurations between work­
pieces whose defining coordinate transformations belong to the corresponding 
constraints. Obviously, a GR graph without cycles is always consistent; thus, 
it is easy to realize the important role of cycles in GR graphs. 

Next, before introducing a general algorithm for propagating kinematic con­
straints, some few concepts on cycles in graphs are reminded. 

4.4.1 Preliminaries on cycles 

Two basic operations with cycles are the union and the ring sum. The union 
of two cycles C1 = (Vi, Ed and C2 = (V2, E2 ) is a graph G = C1 + C2 with 
node set V3 = Vi U V2 and arc set E3 = E1 U EJ.z. The ring sum of two cycles C1 
and C2 (written C1 E9 02) is another cycle or a set of cisjoint cycles consisting 
of the node set Vi U V2 and of arcs that are either in C1 or C2, but not in both. 

A set of cycles 11. in a graph G = (V, E) is said to be a complete set of basic 
cycles if (i) every cycle in the graph can be expressed as a ring sum of some or 
all cycles in 11., and (ii) no cycle in 11. can be expressed as a ring sum of others 
in 11.. The cardinality of a complete set of basic cycles is J1, =1 E 1 - 1 V 1 +1, 
which is called the cyclomatic number. Hence the maximum number of cycles 
is 2/.1 - 1. 

4.4.2 Isolation of blocks 

When a kinematic constraint is posted, it can affect other workpieces different 
from those it is incident to, but, in general, a constraint is limited in its scope. 
In order to isolate sub graphs within which the effect of a constraint is limited, 
the following operations are applied: 

1 Elimination of cutlines or bridges. This includes the elimination of pen­
dant constraints (fig. 4.4a). 

2 Split cutpoints or articulation nodes into two nodes to produce two dis­
joint subgraphs (f.g. 4.4b). 
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(b) 

Figure 4.4: Operations applied for the isolation of blocks: (a) elimination of 
cutlines; and (b) splitting cutpoints. 

As a result of these operations a set of subgraphs, or simply blocks, are obtained. 
A GR graph is consistent if each of its blocks is consistent. 

Now, we can introduce a definition for an important subclass of graphs of 
kinematic constraints. 

Definition 5 (Trivial GR graph) A GR graph is said to be trivial iff the 
equivalent constraint between any two nodes in any of its blocks can be expressed 
a trivial constraint. 

It is obvious that a GR graph without cycles is always trivial. 

Let us assume that the obtained blocks are planar graphs. This assumption, 
while not very restrictive, simplifies the treatment given below. Anyway, the 
provided results can be extended to non-planar graphs. 

A plane representation of a graph divides the plane into regions. A region is 
characterized by the set of arcs forming its boundary. In a plane representation 
of a planar connected graph the set of cycles forming the interior regions, or 
region cycles, constitutes a complete set of basic cycles. The set of region cycles 
is not unique. Actually, there are (J.i~1) different sets of region cycles. This can 
be easily seen by noting that a planar graph can be embedded on the surface 
of a sphere. The number of region cycles in the surface of a sphere would be 
f1. + 1, which are also the shortest cycles for a planar graph. 
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Let X be the set of region cycles in a planar block G. The cycle graph of X 
is the graph with vertex set X and arcs joining two distinct nodes if and only 
if the corresponding cycles have an arc in common. This graph is denoted by 
'D( G) and it can be easily proved that V( G) is a subgraph of the dual graph 
of G (see [6, page 106]). Nodes in a V(G) graph stand for cycles and arcs in 
'D( G), for shared arcs in G. For extension, constraints labeling a shared arc are 
called shared constraints. Note that an arc can only be shared by two region 
cycles. 

Let Ci be a region cycle whose arc set is labeled with the constraints 

according to fig. 4.5. Then, the constraint Rj can be substituted by 

Ri R n (R-1 R-1 R-1 R-1 ) j = j j-1 . .. 1 . n ... j+1 

without modifying the consistency of the corresponding GR graph (fig. 4.5b). 
In order to simplify the notation, we will write 

This is the basic mechanism for constraint propagation as it is shown below. 

4.4.3 A filtering algorithm for 
propagating kinematic constraints 

A general procedure to propagate the effect of constraints in GR graphs has 
been devised, either to characterize the set of configurations that satisfy all the 
constraints or to find out that there exist no such configurations. 

The propagation process consists in filtering all constraints, that is eliminating 
from the constraints those displacements which cannot appear in any solution. 
Eventually, if all constraints are reduced to only one element, a single solution 
is obtained. 

Global consistency in a block G is checked by eliminating local inconsistencies; 
that is, by eliminating inconsistencies in region cycles - which is equivalent 
to ensure node inconsistency in V( G) -, and by eliminating inconsistencies 
between adjacent region cycles - which is equivalent to ensure arc consistency 
in'D(G) (see [10] or [11]). The following procedure implements this idea. 



www.manaraa.com

103 

R· ] 

Ci 

R· n (R-:- 11 ••• R-1 1 • R- 1 ••• R-:- 11) 
] J- n J+ 

Figure 4.5: The basic mechanism for constraint propagation. A constraint Rj , 

labeling an arc in a cycle OJ, can be substituted by nC; Rj • 
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proced ure filter _constraints; 
input: G; /* a block of a GR graph * / 
output: G; 
repeat 

stop:= true; 

j* check node consistency * / 

/*1*/ 
/*2*/ 

forall region cycles Cj do 
forall constraints R; in Cj do 

Rj := nCjR;; 
t . 

if R; == 0 then exitO; 
enddo; 

enddo; 

/* check arc consistency * / 

/*3*/ 
/*4*/ 

forall shared constraints R; do 
R '-n Ric. T·- Ic i' 
if RT == 0 then exitO; 
if RT::/: ~ then 

stop:= false; 
~ :=RT; 

endif; 
enddo; 

until stop; 
end. 

Geometric inconsistencies can be found either when nCj R; or when nlcRf be­
come the empty set. In the first case, the cycle Cj becomes inconsistent; in 
the second one, all the cycles sharing the constraint ~ do. The problem of 
obtaining the minimum set of constraints that made a given GR graph become 
inconsistent is addressed in [17]. 

The above algorithm can be easily modified for its application for a topological 
analysis, stating the problem in terms of composition and intersections of ass0-

ciated subgroups instead of constraints. Then, sentences /*2*/ and /*4*/ can 
be removed and, if the outcome /*1 * / is not a subgroup for a particular Gj , it 
is not taken into account when computing /*3*/. In this case, the algorithm 
will halt when no progress is made, either because the graph is not trivial, 
or because all possible filterings have already been carried out. An example 
illustrating this idea is shown in the next section. 
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If the corresponding GR graph is planar, it is presumable that the complexity 
of the above algorithm is polynomial in the number of constraints [111 . 

The significance of the described algorithm is that it only needs to repeatedly 
handle a set of short cycles. Because of domain specific attributes, node and 
arc consistency provide a sufficient guarantee that there is a complete solution, 
in the same way the celebrated Waltz's filtering algorithm provides a complete 
solution for polyhedral scene labeling looking only for arc consistency [191. 

4.5 Example 

Let the workpieces in fig. 4.6a be elements of an assembly. The matings between 
complementary features of workpieces 8 1, ~ and 8 3 lead to the GR graph in 
fig. 4.6b, which only contains one block with one cycle. Thus, the equivalent 
constraint between any two workpieces can be obtained by simply reduction of 
the graph to a single edge linking them . For example, the equivalent constraint 
between 82 and 8 3, if different from null, will be a coset of 

i.e. ~ will remain fixed with reference to 83. This suggest that 82 and 83 
must be put together before 8 1 is assembled, providing valuable information 
about the assembly sequence. 

Now, let us consider all the workpieces in fig. 4.6a. Given the matings between 
their complementary features, the problem consists in deciding whether these 
matings are enough for fixing the relative location of these four workpieces. 
The corresponding GR graph appears in fig. 4.6c. Neither composition nor 
intersection of constraints can be applied to reduce it. 

Using the algorithm proposed in the last section, we can write the following 
table: 

RA • Cl C2 C3 results 1st Cl C2 C3 results 2nd 
iteration iteration 

Rl TU1 TU1 TU1 I I 
R2 TU2 TU2 I I I I I 
R3 TU3 I I I I I I 
E4 G~ ? ? G~ G~ G~ G~ 
Rs GU$ ? GU$ G~ C~ 
lis GU6 ? G U6 G~ G~ 

taking into account that: 
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(a) 

(b) (c) 

Figure 4.6: (a) A set of workpieces to be assembled; (b) the corresponding GR 
graph involving workpieces 8 1, 82 and 83; and (c) the GR graph involving all 
workpieces. 
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which can be directly inferred from the linking displacements. 
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The outcomes of (nC;Rj)A appear in row Rj and column Ci . In the first iteration, 
some of this subgroups cannot be obtained since the corresponding constraint 
is not trivial. In the third iteration no new progresses can be carried out 
and, since it was possible to compute (~Rj)A for i = 1..3 and j = 1..6, the 
algorithm finishes after propagating all the constraints. Then, it can be said 
that, if all introduced constraints are geometrically consistent, then the bodies 
Bl, ~ and B3 will remain fixed and, if they are considered as a subassembly, 
then the body B4 will have two d.o.f. with reference to it. 

4.6 Summary 

A kinematic constraint has been defined as a set of displacements which can be 
expressed as a composition of cosets of Euclidean subgroups. A constraint is 
said to be trivial when it can be reduced to a single coset. Thivial constraints 
include all kinematic lower pairs. 

A characterization of the spatial relationships between bodies in assemblies as 
trivial kinematic constraints, as well as a tabulation of the outcomes of the 
composition and intersection of the corresponding subgroups has been given. 
The theoretical foundation for this systematization has been taken from [7]. 

A graph of kinematic constraints has been defined as a graph whose nodes 
correspond to workpieces and whose directed arcs are labeled with trivial kine­
matic constraints. 

It has been shown that it is not always possible to obtain the equivalent con­
straint between any two bodies in a graph of kinematic constraints by simply 
composing and intersecting constraints, so that the graph is reduced to a single 
arc linking both bodies. An algorithm that provides a way around this diffi­
culty has been proposed. This algorithm filters all the constraints in a graph of 
kinematic constraints. This process consists in eliminating from the constraints 
those displacements which cannot appear in any solution. 

It has been shown how - relying on the composition and intersection of sub­
groups - it is possible to carry out a topological analysis of the motion possi­
bility for a set of bodies linked by a set of trivial kinematic constraints. It has 
also been shown that it is not possible to derive geometric inconsistencies from 
this analysis. 
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Chapter 5 

Relative positioning of 
parts in assemblies using 
mathematical 

• programmIng 

Joshua U. Turner 

In extending solid modeling technology to the modeling of assemblies of dis­
crete parts, it is important to capture the position of each part in the assembly 
relative to the positions of its neighbors. By describing each part position in 
terms of relationships between various features of the part and mating features 
of its neighboring parts, it is possible for the solid modeling system to compute 
the modeling transformations needed to simulate the desired assembly config­
uration. In this chapter we formulate a mathematical programming approach 
to this problem. This approach is particularly useful in situations that arise in 
the solution of tolerancing problems. 

It should be noted carefully that the relative positioning problem is distinct 
from the path planning problem or the assembly sequence problem. Here it is 
only the final position of each part that is of concern. 
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The AUTOPASS language of Lieberman and Wesley [1], [2], [3], first described 
a representation for feature-based assembly modeling, in which part positions 
are specified in terms of coplanarity and coaxiality relations between mating 
part features. Lee and Gossard [4] give a variant on this representation. Turner 
[5], [6], and Gossard et al. [7] give representations in which part positions are 
specified using relative positioning operators imbedded in a eSG-like tree. 

Ambler and Popplestone [8]' Lee and Andrews [9], and Rocheleau and Lee 
[10] give strategies for computing the modeling transformations implied by the 
feature relationships. Their methods attempt to satisfy all feature relationships 
among all parts simultaneously, and require that all relationships be satisfied 
exactly. Mullineux [11] extends the method of Rocheleau and Lee so that 
part relationships need not be exactly satisfied, but in so doing, creates a 
large, seemingly intractable unconstrained optimization problem. Rossignac 
[12] gives a strategy for computing the part positioning transformations through 
a concatenation of simple atomic operators. His method requires the user to 
specify the operator sequence, and does not allow for multiple mating feature 
relationships between a pair of parts. 

In this chapter we extend previous work by formulating an efficient approach 
based on mathematical programming, that allows for part shapes in which it is 
not possible to satisfy some or all of the mating feature relationships exactly. 
This makes it possible to apply feature-based assembly modeling techniques 
to variational models of parts and assemblies which arise when tolerances are 
taken into account. The feature relationships are treated as inequalities. Math­
ematical programming is used to find the optimal configuration of the parts. 

Although most problems can be solved in a sequential manner, positioning 
one part at a time, in some cases it is necessary to position several parts 
simultaneously. The mathematical programming formulation supports both 
sequential and simultaneous positioning operations. 

If the nominal part positions are available, and if the actual part shapes are 
assumed to incorporate small variations to the nominal shapes, then the math­
ematical programming problem can be linearized, and solved quickly. This 
can be particularly important in the solution of problems involving tolerances, 
where the nominal part positions are known, and where we want to determine 
the effect of small variations applied to each of the parts upon the positions of 
the other parts, and ultimately, upon the overall functional requirements of the 
assembly. Further details as to the application of these methods to tolerancing 
problems may be found in Turner [5], [6], [13], [14], [15], [16]' [17]. 

The next section gives a summary of the general mathematical programming 
schema. The rest of the chapter applies this schema to two common situations: 
1) the assembly of planar polyhedra, and 2) the assembly of parts with mating 
patterns of holes and posts. By applying the assumption of small variations, 
both problems are linearized. 
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5.1 Relative Positioning 
by Mathematical Programming 

Generally, regardless of whether a sequential or a simultaneous strategy is 
adopted, the simple relative positioning relationships presented in the preced­
ing work suffer from a lack of generality. It is not clear how more complex 
assembly constraints would be modeled. 

For instance, a coplanarity or coaxiality constraint may not be meaningful 
when two parts come in contact in several places. As an instance, suppose a 
flat plate is to be positioned so that it lies across the top of a U -shaped part. 
If the two ends of the U are not exactly coplanar with each other, then it will 
not be possible for coplanarity between the two parts to be maintained at both 
ends. Generally, in an actual part instance, the two ends of the U will not be 
exactly coplanar, even if they are nominally coplanar. As another example, if 
one part is a shaft to be inserted into a U-shape bracket so as to pass through 
a hole at each end of the U, and if the two holes are not coaxial, then it will 
not be possible for coaxiality between the two parts to be maintained at both 
ends. 

Since such assembly situations are common, particularly when part variations 
are modeled, it is important to develop suitable relative positioning capabilities. 

This section introduces a general approach to relative positioning based on 
mathematical programming. The general idea is as follows: Given a target 
object B to be positioned relative to a given reference object A. B is to be 
positioned such that certain of its features mate with certain features of A. The 
mating features should be aligned as closely as possible. Interference should be 
avoided. 

In establishing a position for the target object B, there are six degrees of 
freedom (three translational, and three rotational). Lozano-Perez and Wesley 
[18] have observed that these six degrees of freedom may be conceived as six 
independent parameters, collectively spanning a six-dimensional configuration 
space that governs the position of B. The specification of a particular position 
for B is equivalent to selecting a particular value for each of these six parameters 
(a particular point in the configuration space). The mathematical programming 
model may be formulated based on the following two observations: 

1. The requirement that the various features of B avoid interference with 
the corresponding features of A is equivalent to a collection of functional 
constraints on the feasible points of the configuration space. 

2. The requirement that mating pairs of features be aligned as closely as 
possible corresponds to one or more objective functions. on the space. 
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These non-interference constraints and alignment objectives can be based on 
any desired relationships between the part geometries, including, but not lim­
ited to, relationships between mating planar or axial features. 

So the establishment of an optimum feasible position for B can be formulated as 
a mathematical programming problem: The six dimensions of the configuration 
space of B are the decision variables. The pairing of mating non-interfering 
features establishes one or more functional constraints on the feasible points 
of the configuration space. The goal of aligning one or more feature pairs as 
closely as possible determines one or more objective functions. These objective 
functions may be optimized sequentially, or simultaneously. 

Where the relative positions of three or more parts are to be established simul­
taneously, the decision space will have six variables per part, for all the parts 
except one part selected as a fixed frame of reference. 

The next two sections give two common examples of this schema, and show 
that in the case where small variations may be assumed, both can be solved as 
linear programming problems. 

5.2 Mating Polyhedra 

First, consider the case of assemblies composed of polyhedral parts. All mating 
pairs of features take the form of contacts between parallel planar faces. 

The condition of non-interference between two parts could be evaluated by 
computing their volumetric intersection and then determining whether the re­
sult is a non-empty volume, but this is rather expensive: typical approaches 
grow quadratically with the number of faces of the two parts. 

A less expensive non-interference test involves an examination of each pair of 
mating faces. If each face of a mating pair lies entirely outside the half-space 
bounded by the other face, then there is no interference. Since each of the two 
faces is planar, this condition can be evaluated by substituting the vertices of 
each face, in the plane equation of the other. Actually, we need consider only 
those vertices of each face which are part of its convex hull. 

If the two mating faces only partially overlap, then this test is too restrictive. 
We need only be concerned with the region of overlap. The following procedure 
gives a simple approach to handling this most general case. 

1. Assuming that the nominal position of part B is already known, locate 
part B so that it takes on its nominal position with respect to part A. 

2. For each pair of mating faces fA and fB, project fA onto the plane of fB. 

3. Compute the intersections of the boundaries of the two faces. 
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Figure 5.1 : Procedure for Generating Non-interference Constraints 

4. Compute the convex hull of: a) the vertices of intersection, b) the vertices 
of face !B that are interior to the projected face fA, and c) the vertices 
of projected face fA that are interior to fB. 

5. Attach all of the vertices of this convex hull to face fB, so that any 
transformation applied to part B applies to these vertices as well. 

6. Generate constraints to the effect that no vertex of this convex hull may 
appear on the material side of of the half-space bounded by fA. 

Providing that the nominal parts do not intersect, and that large deviations 
from nominal are not possible, this procedure will assure the non-intersection 
of the two parts in their final positions. Figure 5.1 illustrates the procedure. 

Constraints are generated to the effect that PI and P2 must remain below the 
plane of fA. Note that P3 is not constrained. 

In addition to these non-interference constraints, one or more objective func­
tions are required. The objective functions will specify that the two objects 
should be positioned so that for one or more pairs of mating faces, the contact 
between the two faces is maintained as much as possible. Maximum contact is 
maintained by minimizing the maximum distance between the two faces. For 
mating polyhedra it is sufficient to minimize the maximum distance between 
each vertex of the convex hull computed in the preceding procedure, and the 
plane of the corresponding face fA. If contact is to be maintained between 
two or more pairs of mating faces, then a choice can be made whether these 
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objectives are to be achieved simultaneously or sequentially. Sequentialobjec­
tives give a result which is analogous to the fixturing of one part with respect 
to another using an ordered sequence of datum surfaces. Simultaneous ob­
jectives give an overall best fit without favoring one pair of mating features 
over another. In either case, well established techniques from mathematical 
programming can be applied. 

The preceding formulation yields a linear problem in the vertices of the parts 
to be positioned. The vertex coordinates, in turn, are functions of the six po­
sitioning degrees of freedom. If small variations can be assumed, then these 
functions can be linearized, and the relative positions of the parts can be com­
puted rapidly, using linear programming. 

To make this discussion more concrete, let us look at a simple two-dimensional 
example. Suppose that an object B is to be positioned relative to another object 
A. B will be positioned by applying a rigid transformation to the coordinates 
of B. In two dimensions a rigid transformation may be expressed in terms of 
three parameters (two translational, and one rotational). These will be denoted 
tx , ty, and (). If the initial coordinates of any given point of B are given by 
p = (x,y), then after transformation, the same coordinates will be given by 

p' = (x cos() - ysin () + tx , x sin () + y cos() + ty) 

Let us assume that the nominal position of B is already known. Under the 
assumption of small variations, we may assume that only small rotations will 
be necessary to accommodate any variations in B . This allows us to use the 
following approximations: 

sin () ~ () 
cos()~l 

Then the transformed coordinates of the point are given by 

p' ~ (x - y() + t x , x() + y + ty) 

Figure 5.2 gives the geometries of the two objects that will be used. 

For convenience, the geometry of A is given by identifying the equations of its 
bounding edges. The geometry of B is given by identifying the coordinates of 
its vertices. The desired position of B with respect to A is shown with dashed 
lines. (The role of the parameter b Is to allow for some variability in the shape 
of A. For now, assume that b = 0.) 

The geometry of B after transformation is shown in Figure 5.3. 

Now non-interference constraints will be derived on the position of B, treating 
each of its four edges in turn. First, B must be positioned so that its bottom 
edge falls above the line y = O. This effectively constrains the y-coordinates of 
the two endpoints: 
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Figure 5.2: Reference Object (A) and Target Object (B) 
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Figure S.3: Target Object (B) after Transformation 

(S.l) 

(S.2) 

Next, the left edge of B must be to the right of the line x - by = o. The 
following constraints are obtained by substituting the endpoints of the edge in 
the line equation: 

(5.3) 

(S.4) 

Similarly, the non-interference constraints applied to the top edge, and the 
right edge give: 

l+ty ::; 1.1 (S.5) 

(5.6) 

(S.7) 

1 + tx ::; 2 (5.8) 
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These eight functional constraints define a feasible region of the configuration 
space spanned by tx , ty , and e. 
To determine an optimum position within the configuration space, the following 
goals are added: first, that along its left edge, B should come as close as possible 
to touching A; second, that along its bottom edge, B should come as close as 
possible to touching A These two goals will be satisfied in sequence, resulting in 
a series of transformations in which B is first moved into an optimum position 
with respect to its left edge, and then, holding that relationship fixed, moved 
into an optimum position with respect to its bottom edge. 

The first goal may effectively be achieved by minimizing the maximum distance 
of the left edge of B from the corresponding edge of A Thus, the goal is to 
minimize the maximum of the left hand sides of equations 5.3 and 5.4. (There 
are well-known techniques in linear programming practice [19] for minimizing 
the maximum of several goals.) 

Once this first goal has been achieved, the second goal may attempted. In 
order to fix the position of B with respect to the first goal, equations 5.3 and 
5.4 are replaced by equality constraints. The computed values of the left hand 
sides at the point at which the first goal is optimized, are used as right hand 
sides for these equality constraints. Now the second goal may be achieved in 
the same manner as the first. 

These equations were set up and solved using linear programming. The param­
eter b was introduced to allow for some variability in the shape of part A. The 
problem was solved for different values of b. The results are shown in Figure 
5.4. Note that B is always positioned to fall inside A, and that the two goals 
are achieved to the extent possible, with preference given to the first Wal. 

5.3 Mating Holes and Posts 

Now consider an assembly consisting of two flat parts, one of which has a 
pattern of holes, and the other of which has a mating pattern of posts or pegs. 

Let the hole radii be denoted ~, and the hole positions be denoted Pi. Let the 
radii and positions of the posts be denoted Ti and Pi where i = 1, .. . , M. 

The minimum clearance between a mating hole and post is given by 

The non-interference constraints will specify that each clearance be non-negative. 

Optimum alignment is achieved if the two parts are positioned so that the 
minimum clearance will be maximized over all the mating sites. So the objective 
will be to maximize minimum clearance. One way to achieve this objective is 



www.manaraa.com

120 

b = 0 b = 0 .15 

b = 0.05 b = 0.2 

b = 0 .1 b = 0.3 

Figure 5.4: Solution of the LP Problem for Different Values of b 
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to introduce a new decision variable, Z, and to maximize Z subject to the 
constraints: 

(5.9) 

z 2:: 0 

Taking the position of the hole part as fixed, and positioning the post part 
relative to the hole part, the coordinates of the Pi in equation 5.9 will be 
functions of the decision variables tx , t y , and (). Under the assumption of small 
variations, these coordinates may be given by 

as in the previous problem. 

So far, this is a nonlinear problem, because IIPi - p~11 is a nonlinear function 
of the decision variables tx , ty , and (). The problem can be linearized at the 
expense of an approximation. The form of this approximation is as follows -
rather than measure the exact distance between Pi and pi, we can measure the 
directed distance between the two points. This distance is given by: 

where "." indicates a dot product, and the left-hand term of the dot prod­
uct gives the measurement direction. In other words, Dij is a signed value 
which gives the length of the projection of (Fi - Pi) onto the direction vector 
(cos <Pj , sin <Pj ). 

In general, this distance measure will understate the distance between the two 
points. However, by taking a number of different measurement directions, 
the largest of these distance measures will approximate the true distance. In 
particular, we will take 

A... _ • (360) 
'PJ-J - n 

j=O, ... ,n-l 

where a larger value of n will give a more accurate approximation. 

Then the final form of equation 5.9 is: 

where i = 1, ... , M and j = 0, ... , n - 1. Thus there will be one constraint per 
value of j for each hole-post pair. 

These equations were set up and solved using linear programming. Figure 5.5 
and Figure 5.6 give an example of two parts before and after positioning. 
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Pig"", 5.5, Hole Part and Post Part Before POSitioning 

5.4 ComPuter Time 



www.manaraa.com

--

Figur" 5.6: Hole Part and Post Part After n "t" " 

rOSllOnmg 

Ifnonlinear methods are Used th h 
. 

icantly higher, but again COsts Canenb t e "'mp~t,,, t'mes required Win be signif_ 

"" 
, 

e InlnlInIzed blT perfc .... " h 

operations 1n a seqUential fashion 
,I.. 

" J 
or"dng t e aSSeInbly 

as InUCll as POSSIble" 

5.5 Lilllitations 

In hoth ex"'"Ples, it lYas n",,~ to i k h 

;n ord., to linearize the equa'ions In ,::vo e t e ."""",,,Ption of small '"ariations 

for SitUations in which lar''''e V:ar" t: any apPl'cat>ons We WOUld like to allow 

<> la Ions are reqUired t " " 

to another. HOWever the Pr""edin , , . 
° Pas",on one Part rela,;Ve 

of rotation is n~ g S ra e.,os are no, reliable if more 'han 100 

Bu, if We are Will;ng to make relatiVe ... 

not be a problem. SuppOSe We deVel PO'''t,o'''ng ~ t",,:, step Pro""", this need 

0p a grOSs Pas't>onmg strategy intended to 

123 



www.manaraa.com

124 

place the parts in approximate position to one another. This gross positioning 
strategy could be simply a matter of associating a local coordinate system with 
each of a pair of mating parts, where these local coordinate systems are derived 
from the part geometries, and then generating a transformation matrix that 
lines up the two coordinate systems. 

Given such a gross positioning strategy, the linearized situations illustrated in 
this chapter can be used to provide a fine positioning strategy. 

If a single application of the fine positioning strategy has unacceptable error 
due to linearization, then several successive linearizations may be necessary. 

The approach was discussed in terms of establishing the position of a single 
target object B relative to an existing frame of reference A. However, the 
approach can also be applied to determine the positions of several objects 
simultaneously. For instance, given three objects, A, B, and C, to be mutually 
positioned so that certain constraints apply. Taking one of the three objects 
as fixed, the constraints may be interpreted as conditions on a cross-product 
space formed from the configuration spaces of the other two objects. 

5.6 Summary 

This chapter has introduced a general approach to relative positioning based on 
mathematical programming. Non-interference conditions determine functional 
constraints. Alignment conditions determine one or more objective functions. 
These non-interference constraints and alignment objectives can be completely 
general. Mathematical programming is used to establish an optimum feasible 
position. 

The treatment of alignment conditions as objective functions allows for the 
formulation of relationships in which conditions such as coplanarity, and coax­
iality cannot be satisfied exactly. Where multiple alignment objectives are 
specified, these objectives can be satisfied in a given sequence, as illustrated in 
the first example, or can be satisfied simultaneously. (In this latter case, an 
overall objective is formulated - namely, minimize the maximum of any of the 
individual objectives.) 

Two common situations were used to illustrate these ideas. It was shown that 
if small variations can be assumed, then the original nonlinear programs can be 
linearized. Because the linearizations are only accurate within a small range, 
several successive linearizations may sometimes be necessary to obtain accept­
able answers. Code is currently being written to handle three-dimensional 
versions of these situations, using an existing solid modeling system. 
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Chapter 6 

Representations for 
assembly sequences 

Luiz S. Homem de Mello and Arthur C. Sanderson 

Several methodologies for representing assembly sequences have been utilized. 
These include representations based on directed graphs, on AND/OR graphs, on 
establishment conditions, and on precedence relationships. The latter includes 
two types: precedence relationships between the establishment of one connec­
tion between parts and the establishment of another connection, and prece­
dence relatioships between the establishment of one connection and states of 
the assembly process. Those based on directed graphs and on AND/OR graphs 
are explicit representations since there is a mapping from the assembly tasks 
into the elements of the representations. Those based on establishment condi­
tions and on precedence relationships are implicit representations because they 
consist of conditions that must be satisfied by the assembly sequences. 

This chapter analyzes these five representations and shows how they are in­
terrelated and how one can be derived from the others. The correctness and 
completeness of these representations are also addressed. 
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CAP STICK RECEPTACLE HANDLE 

Figure 6.1: A four-part assembly in exploded view 

6.1 Terminology and notation 

A mechanical assembly is a composition of interconnected parts forming a sta­
ble unit. Each part is a solid rigid object that is its shape remains unchanged. 
Parts are interconnected whenever they have one or more compatible surfaces 
in contact. Surface contacts between parts reduce the degrees of freedom for 
relative motion. A cylindrical contact, for example, prevents any relative mo­
tion that is not a translation along the axis or a rotation around the axis. 
Attachments may act on surface contacts and eliminate all degrees of freedom 
for relative motion. For example, if a cylindrical contact has a pressure-fit 
attachment, then no relative motion between the parts is possible. 

A subassembly is a nonempty subset of parts that either has only one element 
(Le. only one part), or is such that every part has at least one surface contact 
with another part in the subset. Although there are cases in which it is possible 
to join the same pair of parts in more than one way, a unique assembly geometry 
will be assumed for each pair of parts. This geometry corresponds to their 
relative location in the whole assembly. A subassembly is said to be stable if its 
parts maintain their relative position and do not break contact spontaneously. 
All one-part subassemblies are stable. 

The assembly process consists of a succession of tasks, each of which consists 
of joining subassemblies to form a larger subassembly. The process starts with 
all parts separated and ends with all parts properly joined to form the whole 
assembly. For the current analysis, it is assumed that exactly two subassemblies 
are joined at each assembly task, and that after parts have been put together, 
they remain together until the end of the assembly process. 

It is also assumed that whenever two parts are joined all contacts between 
them are established. Due to this assumption, an assembly can be represented 
by a simple undirected graph < P, C > in which P = {PI, 112, .. . , P N} is the 
set of nodes, and C = {CI' C2, .• . ,cd is the set of edges. Each node in P 
corresponds to a part in the assembly, and there is one edge in C connecting 
every pair of nodes whose corresponding parts have at least one surface contact. 
The elements of C are referred to as connections, and the graph < P, C > is 
referred to as the assembly's graph of connections. A connection encompasses 
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Figure 6.2: The graph of connections for the four-part assembly 

all contacts between two parts. Figure 6.1 shows an assembly in exploded view, 
and figure 6.2 shows its corresponding graph of connections. 

6.1.1 Assembly states 

The state of the assembly process is the configuration of the parts at the begin­
ing (or at the end) of an assembly task. The configuration of parts is given by 
the contacts that have been established. Since whenever two parts are joined 
all contacts between them are established, the configuration of parts is given by 
the connections that have been established. Therefore, a state of the assembly 
process can be represented by an L-dimensional binary vector !f. = [Xl X2 •.• XL] 

in which the ith component Xi is true (T) or false (F) respectively if the ith 

connection is established in that state or not. 

For example, the initial state of the assembly process for the product shown 
in figure 6.1 can be represented by the 5-dimensional binary vector [F F F F F] 

whereas the final state can be represented by [T T T T T]. If the first task of 
the assembly process is the joining of the cap to the receptacle, the second state 
of the assembly process can be represented by [F T F F F J 

As mentioned above, it is assumed that whenever a subassembly is formed all 
connections between its parts are established. Therefore, any subassembly can 
be characterized by its set of parts. In the rest of this paper, references to 
subsets of parts should be understood as references to the subassemblies made 
up of those parts. It will always be clear from context what the whole assembly 
is. Because of this assumption, any state of the assembly process can also be 
represented by a partition of the set of parts of the whole assembly. For exam­
ple, the initial state of the assembly process of the assembly shown in figure 
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6.1 can be represented by { {CAP}, {RECEPTACLE}, {STICK}, {HANDLE} } 

whereas the final state can be represented by { {CAP, RECEPTACLE, STICK, 

HANDLE} }. If the first task of the assembly process is the joining of the cap 
to the receptacle, the second state of the assembly process can be represented 
by { { CAP, RECEPTACLE}, {STICK}, {HANDLE} }. 

Given an assembly's graph of connections and one of the two representations 
of assembly states described above (binary vector or partition), it is straight­
forward to obtain the other representation. 

There are partitions of the set of parts of the whole assembly that cannot char­
acterize a state of the assembly process. For example, the partition { {CAP, 

HANDLE}, {RECEPTACLE}, {STICK} } cannot characterize a state of the as­
sembly process for the assembly shown in figure 6.1 because the subset { CAP, 

HANDLE} does not characterize a subassembly. Partitions that can charac­
terize a state of the assembly process will be referred to as state partitions, 
and partitions that cannot characterize a state will be referred to as nonstate 
partitions. 

Similarly, not all L-dimensional binary vectors can characterize a state. For 
example, for the assembly shown in figure 6.1 the 5-dimensional binary vector 
[T T F F F 1 does not correspond to a state because if connections Cl and C2 

are established then connection C3 should also be established. L-dimensional 
binary vectors that can characterize a state will be referred to as state vectors 
whereas L-dimensional binary vectors that cannot characterize a state will be 
referred to as nonstate vectors. 

Any state of the assembly process can be associated to a simple undirected 
graph < P, Ck > in which P is the set of nodes of the assembly's graph of 
connections, and Ck is the subset of connections (Ck ~ C) that is established in 
that state. This graph is referred to as the state's graph of connections. Except 
for the final state of the assembly process, a state's graph of connections has 
more than one component. 

The subassembly predicate sa will be used to determine whether or not a 
subset of parts makes up a subassembly. The argument to this predicate is 
a subset of parts, and its value is either true or false depending on whether 
or not that subset of parts corresponds to a subassembly. For example, for 
the assembly shown in figure 6.1, saC { RECEPTACLE, HANDLE}) = T whereas 
saC { CAP, HANDLE}) = F. From the assembly's graph of connections it is 
straightforward to compute sa for any given subset of parts. 

For the analysis in this chapter, a partition of the set of parts whose elements 
all satisfy the subassembly predicate is an assembly state representation, re­
gardless of whether that state actually occurs in any of the different ways the 
assembly can be assembled. The corresponding L-dimensional binary vector 
is also an assembly state representation. And the corresponding configuration 
of parts is an assembly state. For example, for the assembly shown in figure 
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6.1, the partition { {CAP, RECEPTACLE, HANDLE}, {STICK} } as well as the 
corresponding 5-dimensional binary vector [F T F F T] are assembly state rep­
resentations. Yet, since it was assumed that once parts are put together they 
remain together, the configuration of parts (Le. the state) corresponding to 
these representations cannot occur in any assembly process. Once the cap and 
the handle are joined to the receptacle, it is no longer possible to join the stick. 

We will use the subassembly-stability predicate st to determine whether or not 
a subassembly described by its set of parts is stable. The computation of st 
has been addressed elsewhere (e.g. the work of Boneschanscher[l]). 

An assembly state representation for which all subassemblies satisfy the stabil­
ity predicate is said to be an stable assembly state representation. For example, 
for the assembly shown in figure 6.1, the partition { {CAP, RECEPTACLE, HAN­

DLE }, {STICK} } as well as the corresponding binary vector [F T F F T I are 
stable assembly state representations. 

6.1.2 Assembly tasks 

Given two subassemblies characterized by their sets of parts ()i and ()j, we say 
that joining ()j, and ()j is an assembly task if the set ()k = ()i U ()j characterizes 
a subassembly. For example, for the assembly shown in figure 6.1, if ()i = 
{ RECEPTACLE} and ()j = {HANDLE} then joining ()i and ()j is an assembly 
task, whereas if ()i = {CAP} and ()j = {HANDLE} then joining ()i and ()j is not 
an assembly task. The subassemblies ()i and ()j are the input subassemblies of 
the assembly task, and ()k is the output subassembly of the assembly task. Due 
to the assumption of unique geometry, an assembly task can be characterized 
by its input subassemblies only, and it can be represented by a set of two 
subsets of parts. For example, for the assembly shown in figure 6.1, the joining 
of the cap to the receptacle is represented by { {CAP}, {RECEPTACLE} }. 

Alternatively, a task can be seen as a decomposition of the output subassembly 
into the two input subassemblies. Therefore, an assembly task can be char­
acterized by the output subassembly and the set of its connections that are 
in neither of the input subassemblies. In this view, an assembly task is rep­
resented by a set that contains a subset of parts and a subset of connections. 
For example, for the assembly shown in figure 6.1, the joining of the cap to the 
receptacle is represented by { {CAP, RECEPTACLE}, {C2} }. 

The set of connections in the representation of an assembly task corresponds 
to a cut-set of the graph of connections of the task's output subassembly. Con­
versely, each cut-set of a subassembly's graph of connections corresponds to 
an assembly task[7]. Given the set of all cut-sets of a subassembly's graph of 
connections, the set of their corresponding assembly tasks is referred to as the 
tasks of the subassembly. 
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An assembly task is said to be geometrically feasible if there is a collision-free 
path to bring the two subassemblies into contact from a situation in which they 
are far apart. And an assembly task is said to be mechanically feasible if it 
is feasible to establish the attachments that act on the contacts between the 
two subassemblies. We will use the geometric-feasibility predicate g/ and the 
mechanical-feasibility predicate m/ to determine whether or not two subsets 
of parts characterize, respectively, a geometrically feasible and a mechanically 
feasible assembly task. These predicates take as argument a set of two sub­
assemblies, each characterized by its set of parts. The computation of these 
predicates is discussed elsewhere[7] . 

6 .1.3 Assembly sequences 

Given an assembly that has N parts, an ordered set of N - 1 assembly tasks 
Tl T2 .• • TN-l is an assembly sequence if there are no two tasks that have a 
common input subassembly, the output subassembly of the last task is the 
whole assembly, and the input subassemblies to any task Ti is either a one­
part subassembly or the output subassembly of a task that precedes Ti. To 
any assembly sequence Tl T2 ·· · TN-l there corresponds an ordered sequence 
8182 . . ·8N of N assembly states of the assembly process. The state 81 is the 
state in which all parts are separated. The state SN is the state in which all 
parts are joined forming the whole assembly. And any two consecutive states 
Si and Si+1 are such that only the two input subassemblies of task Ti are in Si 

and not in Si+l, and only the output subassembly of task Ti is in Si+l and not 
in Si . Therefore, an assembly sequence can also be characterized by an ordered 
sequence of states. 

An example of an assembly sequence for the assembly shown in figure 6.1 is: 

1. The first task (T1) consists of joining the cap to the receptacle. 

2. The second task (1"2) consists of joining the stick to the subassembly made 
up of the cap and the receptacle. 

3. The third task (T3) consists of joining the handle to the subassembly made 
up of the cap, the stick, and the receptacle. 

An assembly sequence is said to be feasible if all its assembly tasks are geomet­
rically and mechanically feasible, and the input subassemblies of all tasks are 
stable. The assembly sequence described above is feasible . An example of an 
unfeasible assembly sequence for the assembly shown in figure 6.1 is: 

1. The first task (Tl) consists of joining the cap to the receptacle. 

2. The second task h) consists of joining the handle to the subassembly 
made up of the cap and the receptacle. 
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3. The third task (73) consists of joining the stick to the subassembly made 
up of the cap, the stick, and the receptacle. 

This assembly sequence is infeasible because the third task (73) is not geomet­
rically feasible since there is no collision free path to bring the stick into the 
receptacle, once both the cap and the handle have been joined to the receptacle. 

An assembly sequence (not necessarily feasible) can be represented in different 
ways. We will use the following representations: 

• An ordered list of task representations. The number of elements in this 
list is equal to the number of parts minus one. 

• An ordered list of binary vectors. Each vector must correspond to a state 
(not necessarily stable). The number of elements in this list is the equal 
to the number of parts. 

• An ordered list of partitions of the set of parts. Each partition must 
correspond to a state (not necessarily stable). The number of elements 
in this list is equal to the number of parts. 

• An ordered list of subsets of connections. The number of elements in this 
list is equal to the number of parts minus one. 

For example, the feasible assembly sequence for the product shown in figure 
6.1 that was described above can be represented as follows: 

• The three-element list of task representations 

( { {CAP} , {RECEPTACLE} } 

{ {CAP, RECEPTACLE} , {STICK} } 

{ {CAP, RECEPTACLE, STICK} , {HANDLE} } ) 

• The four-element list of 5-dimensional binary vectors 

([FFFFF] [FTFFF] [TTTFF] [TTTTT]) 

• The four-element list of partitions of the set of parts 

( { {CAP} , {RECEPTACLE} , {STICK} , {HANDLE} } 

{ {CAP, RECEPTACLE} , {STICK} , {HANDLE} } 
{ { CAP, RECEPTACLE , STICK} , {HANDLE} } 

{ {CAP, RECEPTACLE , STICK, HANDLE} } ) 

• The three-element list of sets of connections ( { C2 } {CI' C3 } {C4' CS} ). 
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Given the assembly's graph of connections and an assembly sequence in any 
of these four representations, it is straightforward to obtain the other three 
representations. 

Furthermore, these assembly sequence representations have the following prop­
erties: 

• Any ordered list of binary vectors (lf1 ~ . .. lfN ), in which ~ = [Xi 1 Xi 2 
Xi3 ... XiL], that represents one assembly sequence is such that 

[(j>i)J\(Xik= T)]=>(Xjk= T). 

This corresponds to the fact that once a connection is established, it 
remains established until the end of the assembly process. 

• Any ordered list of partitions of the set of parts (81 8 2 , .. 8 N ) that rep­
resents one assembly sequence is such that 

This corresponds to the fact that once parts are put together they remain 
together until the end of the assembly process. 

• Any ordered list of sets of connections (-Yl'Y2 ... "IN-i) that represents one 
assembly sequence is such that "Ii U "12 U . . . U 'YN-l = C and "Ii is a cut­
set of the state's graph of connections associated to the ith state of the 
assembly process. 

Since each assembly sequence can be represented by ordered lists, it is possible 
to represent the set of all assembly sequences by a set of lists, each correspond­
ing to a different assembly sequence. Since many assembly sequences share 
common subsequences, attempts have been made to create more compact rep­
resentations that can encompass all assembly sequences. The next five sections 
discuss different approaches towards representing all assembly sequences of a 
mechanical assembly. 

6.2 Directed Graph Representation 
of Assembly Sequences 

Given an assembly whose graph of connections is < P , C >, a directed graph 
can be used to represent the set of all assembly sequences. The nodes in this 
directed graph correspond to stable state partitions of the set P. These are the 
partitions 8 of P such that if 0 E 8 then 0 is a stable subassembly of P . The 
edges in this directed graph are ordered pairs of nodes. For any edge, there are 
only two subsets Oi and OJ in the state partition corresponding to the first node 
that are not in the state partition corresponding to the second node. Also, 
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there is only one subset Ok in the state partition corresponding to the second 
node that are not in the state partition corresponding to the first node, and 
Ok = OJ U OJ. Furthermore, the assembly task that joins Oi and OJ is feasible. 
Therefore, each edge corresponds to an assembly task. This graph is referred to 
as directed graph of feasible assembly sequences, and it can be formally defined 
as follows: 

Definition 1 The directed graph of feasible assembly sequences of an 
assembly whose set of parts is P is the directed graph < Xp, Tp > in which 

Xp = { e I [e E t1(P)] 1\ [VO(O E e) => (sa(O) 1\ st(O))] } 

is the assembly's set of stable states, and 

Tp = {(ei' ej ) I [(ei' ej ) E Xp x Xp] 1\ 

[U( 9 i - (9i n 9j )) E 9 j - (9i n 9j ) ] 1\ 

[Iej - (ei n ej ) 1= 1] 1\ [lei - (ei n ej ) 1= 2] 1\ 

[ mf( ei - (e i n ej )) ] 1\ [gf( ei - (ei n ej )) ]} 

is the assembly's set of feasible state transitions. 

The notation t1(P) has been used to represent the set of all partitions of P, 
and the notation U( {A, B,···, Z}) has been used to represent AU BU· · · U Z. 

Figure 6.3 shows the directed graph of feasible assembly sequences for the 
assembly shown in figure 6.1. Each node of the graph in figure 6.3 is labeled 
by a partition of the set of parts that represents a stable assembly state. To 
facilitate the exposition, the nodes in figure 6.3 also have identification numbers 
placed at their upper left corners. 

A path in the directed graph of feasible assembly sequences < Xp, Tp > 
whose initial node is e1 = { {PI} {P2 } ... {PN } } and whose terminal node 
is e F = { { PI. P2, ... ,PN } } corresponds to a feasible assembly sequence for 
the assembly P, and conversely. In such a path, the ordered sequence of edges 
corresponds to the ordered sequence of tasks, while the ordered sequence of 
nodes corresponds to the ordered sequence of states of the assembly process. 
For example, the feasible assembly sequence described in the previous section 
corresponds to nodes 1, 2, 7, and 13 of the graph shown in figure 6.3. 
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Figure 6.3: Directed graph of feasible assembly sequences for the assembly 
shown in figure 1 
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An AND/OR graph can also be used to represent the set of all assembly sequences. 
The nodes in this AND/OR graph are the subsets of F that characterize stable 
subassemblies. The hyperarcs correspond to the geometrically and mechani­
cally feasible assembly tasks. Each hyperarc is an ordered pair in which the 
first element is a node that corresponds to a stable subassembly Ok, the second 
element is a set of two nodes { Oi, OJ } such that Oi U OJ = (h and the assembly 
task characterized by 0i and OJ is feasible . Each hyperarc is associated to a 
decomposition of the subassembly that corresponds to its first element and can 
also be characterized by this subassembly and the subset of all its connections 
that are not in the graphs of connections of the subsubassemblies in the hy­
perarc's second element. This subset of connections associated to a hyperarc 
corresponds to a cut-set in the graph of connections of the subassembly in the 
hyperarc's first element. This AND/OR graph can be formally defined as follows: 

Definition 2 The AND/OR graph of feasible assembly sequences of 
an assembly whose set of parts is F = {Pl,P2,··· PN } is the AND/OR graph 
< Sp, Dp > in which 

Sp = {O E II(F) I sa(O) /\ st(O)} 

is the set of stable subassemblies, and 

Dp = { (Ok, {Oi, OJ}) I [Oi, OJ, Ok E Sp]/\ [U( {Oi, OJ}) = I'h]/\ 

[mf( {Oi, OJ} )]/\ [gf( {Oi, OJ})]} 

is the set of feasible assembly tasks. 

The notation II(F) has been used to represent the set of all subsets of F. 

As an example, figure 6.4 shows part of the AND/OR graph for the assembly 
shown in figure 6.1. Each node of the graph in figure 6.4 is associated with a 
subset of parts that corresponds to a subassembly. To facilitate the exposition, 
both the nodes and the hyperarcs in figure 6.4 have identification numbers. 
There are only two stable subassemblies of the product shown in figure 6.1 
whose corresponding nodes were not included in figure 6.4; they are the sub­
assembly made up of the cap, the receptacle, and the handle, and the subassem­
bly made up of the cap, the stick, and the handle. They were not included to 
avoid cluttering the figure . Since these subassemblies cannot be reached from 
the top node, they do not occur in any feasible assembly sequence. 

From the AND/OR graph of feasible assembly sequences one can define feasible 
assembly trees as follows: 
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Figure 6.4: AND/OR graph of feasible assembly sequences for the assembly 
shown in figure 1 
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Definition 3 Given the AND/OR graph of feasible assembly sequences of an 
assembly whose set of parts is P = {PI, P2, . . . ,p N} any AND/OR path having 
{PI,P2,"',PN} as its initial node, and having {PI} , {P2}"",{PN} as its ter­
minal nodes is a feasible assembly tree of that assembly. 

An assembly tree induces a partial order among its hyperarcs: hyperarc hi is 
said to precede hyperarc hj if there is a node nk in the assembly tree such that 
hi is incident from nk and hj is incident to nk. At least one sequence of the 
hyperarcs of an assembly tree is consistent with this partial order. Further­
more, every sequence of the hypearcs that is consistent with the partial order 
corresponds to a feasible assembly sequence. 

The Correspondence between 
the Directed Graph and the AND/OR Graph 

Every feasible assembly sequence in the directed graph of feasible assembly 
sequences corresponds to a feasible assembly tree in the AND/OR graph of feasi­
ble assembly sequences. And every feasible assembly tree in the AND/OR graph 
of feasible assembly sequences corresponds to one or more feasible assembly 
sequences in the directed graph of feasible assembly sequences. The two theo­
rems below establish the correspondence between assembly trees and assembly 
sequences. Proofs of these theorems are presented elsewhere[5]. 

Theorem 1 Given an assembly tree of an assembly, if hI h2 ' " hi = ((Ti, Gi )· · · 
. . . hN-I is a sequence of all the hyperarcs of that assembly tree that is consistent 
with the partial order induced by the tree, then the sequence fh , n2 . .. nN in 
which n l = {{PI}, {Pz}, .. . {PN}} and niH = (ni - Gi) U {(Ti} is a feasible 
assembly sequence of the assembly. 

Theorem 2 If n l , n2 ... nN is an assembly sequence of an assembly whose 
set of parts is P = {PI,P2,'" PN} and 

a 
Sp = n l U n2 u .. · u nN 

{(Ti} = niH - (ni n ni+l) for i = 1,2" " ,N - 1 

Ga; = n i - (ni n ni+d for i = 1,2, . .. , N - 1 

hi=((Ti,Ga.) fori=I,2,···,N-l 
a 

Hp = {hI. h2,"', hN-I} 

then < S;, H% > is an assembly tree of that assembly. 

The useful feature of the AND/OR graph representation is that it encompasses 
all possible assembly sequences. One advantage of the AND/OR graph is that 
for most assemblies that have more than 5 parts it has fewer nodes than the 
directed graph of assembly states[6]. Furthermore, it explicitly shows the pos­
sibility of simultaneous execution of assembly tasks. 
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6.4 Establishment Condition 
Representation of Assembly Sequences 

If we represent the states of the assembly process by L-dimensional binary 
vectors, then a set of logical expressions can be used to encode the directed 
graph of feasible assembly sequences. Let 2i = {gh , ;f2 , ... , ;fKj} be the set of 
states from which the ith connection can be established without precluding the 
completion of the assembly. The establishment condition for the ith connection 
is the logical function 

K L 

Fi(;f) = Fi(X1,X2, ' " ,XL) = 2: II '"'fkl 
k=1 i=1 

where the sum and the product are the logical operations OR and AND respec­
tively!, and '"'Ik I is either the symbol Xl if the lth component of h is true (T), 
or the symbol XI if the lth component of h is false (F) . Clearly, Fi(Xk) = T if 
and only if Xk is an element of~. It is often possible to simplify the expression 
of Fi (;f) using the rules of boolean algebra. 

Any assembly sequence whose representation as an ordered sequence of states 
is (;f1 ~ . .. ;fN) and whose representation as an ordered sequence of subsets 
of connections is ('"'11 '"'12 ..• '"'IN-1) is feasible if and only if it is such that if 
the ith connection is established in the kth task (Le. C; E '"'Ik) then FiCh) = 
T. Therefore, the set of establishment conditions is a correct and complete 
representation of assembly sequences. 

Knowing F1(;f), F2~), .. . , FL~), and the assembly's graph of connections, 
it is straightforward to construct the assembly's directed graph of assembly 
states. This representation was first introduced by Bourjault[2]. 

Obtaining the establishment conditions from the directed graph 

The establishment conditions can be obtained from the directed graph of feasi­
ble assembly sequences by systematically looking at the edges that are incident 
from and to nodes that correspond to states from which the assembly can be 
completed. 

As an example, the establishment conditions for the assembly shown in figure 
6.1 that are obtained from its directed graph of feasilbe assembly sequences, 
which is shown in figure 6.3, are: 

IThe logical operation AND will be denoted either by the symbol "A" or by the product of the 
two logical variables. Similarly, the logical operation OR will be denoted either by the symbol "v" 
or by the sum of the two logical variables. 
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Fl (Xl, X2 , X3, X4, XS) = Xl· X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • XS+ 

Xl· X2 . X3 • X4 . Xs + Xl . X2 • X3 • X4 • XS+ 

F 2(Xl , X2, X3, X4, XS) = Xl· X2 • X3 • X4 • Xs + Xl· X2 . X3 • X4 • XS+ 

Xl· X2 . X3 • X4 • Xs + Xl . X2 . X3 • X4 • XS+ 

Xl . X2 . X3 . X4 • Xs + Xl . X2 . X3 • X4 • Xs + 

F4(Xl, X2, X3, X4, XS) = Xl· X2 . X3 • X4 • Xs + Xl· X2 • X3 . X4 . XS+ 

Xl· X2 • X3 • X4 • Xs + Xl· X2 • X3 • X4 • XS+ 

FS(Xl, X2, X3, X4, XS) = Xl· X2 . X3· X4 • Xs + Xl . X2 . X3 • X4· XS+ 

Xl· X2 . X3 . X4 • Xs + Xl· X2 • X3 • X4 . XS+ 
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The first establishment condition (Fl(Xl, X2, X3, X4, xs» corresponds to the 
fact that the only states in which connection Cl (Le. the connection between 
the cap and the stick) can be established without precluding the completion of 
the assembly are either the state in which no connection has been established 
(node 1 in figure 6.3), or the state in which only connection C2 is established 
(node 2), or the state in which only connection C3 is established (node 4), or 
the state in which only connection Cs is established (node 5), or the state in 
which only connections C2 and C4 are established (node 9), or the state in which 
only connection Cl and C2 are not established (node 12). It should be noticed 
that there is no term corresponding to the state in which only connection C4 

is established (node 6); although it is feasible to establish connection Cl the 
resulting state (node 10) is a dead-end from which the assembly cannot be 
completed. 

The establishment conditions defined in this chapter can only discriminate be­
tween feasible and nonfeasible assembly sequences. There are sequences of 
states that "satisfy" the establishment conditions but are not assembly se­
quences and therefore cannot be feasible assembly sequences. For example, the 



www.manaraa.com

144 

sequence of states [F F F F F] [T T T F F] [T T T T T J and its corresponding se­
quence of subsets of connections ({ Cl , C2 , C3} {C4' C5}) "satisfy" the above set 
of establishment conditions. Yet, they do not not correspond to an assembly 
sequence since it does not encompass exactly 3 assembly tasks. 

It is possible to simplify the expressions of the establishment conditions using 
the rules of boolean algebra. The expressions above can be rewritten in dis­
junctive normal form[4], as: 

FI (Xl, X2 , X3 , X4, Xs) = Xl· X2 • X3 • X4 + Xl . X2 . X4 • XS+ 

Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • Xs 

X2 . X3 . X4 . Xs + Xl . X2 . X4 . xs+ 

A second type of simplification is possible if we consider the nonstate vectors 
as DON'T CARE conditions. For the assembly shown in figure 6.1, there are 19 
nonstate vectors: 

[FFFTT] [FFTFT] [FFTTF] [FTFTT] [FTTFF] 

[FTTFT] [FTTTF] [FTTTT] [TFFTT] [TFTFF] 

[TFTFT] [TFTTF] [TFTTT] [TTFFF] [TTFFT] 

[TTFTF] [TTFTT] [TTTFT] [TTTTF] 

If we consider these vectors as DON'T CARE combinations in the simplification 
process, the resulting expressions for the establishment conditions are: 

H (Xl , X2 , X3 , X4, Xs) = Xl . X2 . X4 + Xl . X2 • X5 + Xl . X2 . X5 
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Still a third type of simplification is possible if we consider DON'T CARE con­
ditions the states that do not occur in any feasible assembly sequence. For the 
assembly shown in figure 6.1, there are two states that do not occur in any 
feasible assembly sequence; they correspond to nodes 8 and 10 in figure 6.3 
and their corresponding binary vectors are: [F T F F T] and [T F F T F] If we 
also consider these vectors as DON'T CARE combinations in the simplification 
process, the resulting establishment conditions for the assembly shown in figure 
6.1 are: 

The expressions for the establishment conditions above are simpler than those 
listed previously. Although they can correctly discriminate between feasible 
and unfeasible assembly sequences, they are not as safe to be used in the 
real time control of the assembly process. For example, these expressions in­
dicate, correctly, that the assembly sequence whose representation as an or­
dered sequence of states is ([F F F F F] [F T F F F] [F T F F T] [T T T T T]) 
and whose representation as an ordered sequence of subsets of connections is 
({C2} {cs} {C1C3C4}) is not feasible because Fs(F,T,F,F,F) =F, and there­
fore the second assembly task, in which the 5th connection is established, is not 
feasible. But should the assembly process accidentally reach the state whose 
binary vector representation is [F T F F T] these expressions for the establish­
ment conditions would indicate, incorrectly, that it is feasible to establish con­
nections Cl, C3, and C4 and therefore to complete the assembly. This happens 
because this state ([F T F F T]) was considered a DON'T CARE condition. 

6.5 Precedence relationships between 
the establishment of one connection 
and states of the assembly process 

Two types of precedence relationships can be used to represent assembly se­
quences: precedence relationships between the establishment of one connection 
and states of the assembly process, and precedence relationships between the 
establishment of one connection between two parts and the establishment of an­
other connection. This section addresses the former type and the next section 
addresses the latter. 
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We will use the notation Ci -4 S(;,;.) to indicate that the establishment of the itk 
connection must precede any state S ofthe assembly process for which the value 
of the logical function S(;,;.) is true. The argument of S(;,;.) is the L-dimensional 
binary vector representation of the state s. We will use a compact notation for 
logical combinations of precedence relationships. For example, we will write 
Ci + Cj -4 S(;,;.) when we mean [Ci -4 S(;,;.)] V [Cj -4 S(;,;.)]. 

An assembly sequence whose representation as an ordered sequence of binary 
vectors is (;fl ~ ... hi) and whose representation as an ordered sequence of 
subsets of connections is ('1'2 ... IN-d satisfies the precedence relationship 
Ci -4 S (!f) if 

S(;£,;;) => 3l[(l < k) /\ (Ci E IZ)] for k = 1,2"" N 

For example, for the assembly shown in figure 6.1, the assembly sequence whose 
representation as an ordered sequence of binary vectors is ( [F F F F F 1 [T F F F 

F 1 [T T T F F 1 [T T T TTl ) and whose representation as an ordered sequence 
of subsets of connections is ({ C1} { C2 , C3} { C4, C5}) satisfies the precedence rela­
tionship C1 -4 X2 . X3 because the only states for which S(!f) = X2 . X3 is true are 
the third and the fourth, and the establishment of connection C1 occurs on the 
first assembly task. This sequence does not satisfy the precedence relationship 
C4 -4 Xl • X2 . X3 because for the third state the value of S(!f) = Xl • X2 • X3 is 
true but the establishment of connection C4 occurs on the third assembly task, 
which occurs after the third state. 

Let 'II s be the set of assembly states that never occur in any feasible assembly 
sequence. These include the unstable assembly states plus the stable states 
from which the final state cannot be reached plus the states that cannot be 
reached from the initial state. Let 'II x = {;';'1, !f2 , ... , !0} be the set of all 
L-dimensional binary vectors that represent the assembly states in 'II sEvery 
element ;£j of Wx is such that the value of the logical function G(!fj) is true, 
where 

K L 

G(;,;.) = G(X1 , X2, ... , XL) = L IT A/el' 

k=l Z=l 

(6.1) 

The sum and the product in equation 6.1 are the logical operations OR and 
AND respectively, and Ak I is either the symbol Xl if the ltk component of;£,;; is 
true, or the symbol Xl if the ltk component of ;';'k is false. In many cases the 
expression of G(;,;.) can be simplified using the rules of boolean algebra. Allow­
ing for simplifications, but keeping the logical function as a sum of products 
(disjunctive form[4]) , equation 6.1 can be rewritten as 

J' 

G(;,;.) = L 9j(!f) (6.2) 
j=l 
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where each term 9j(If) is the product of a subset of { Xl, X2, . . . ,XL, Xl. X2, ... 

. . . ,XL} that does not include both Xi and Xi for any i. Each term 9j(If) can 
be rewritten grouping all the nonnegated variables first and all the negated 
variables last, that is 9j(If) = Xa . Xb . .. Xh . xp . x q · .. Xz· 

Any assembly sequence that includes a state that is in Ws is an unfeasible 
assembly sequence. Therefore, a necessary condition for the feasibility of an 
assembly sequence whose representation as an ordered list of binary vectors is 
(If I !f.z ... !f.N) is that G(IfI) = G(!f.z) = ... = G(hv) = F. This condition is 
equivalent to gj(Ifi) = Ffor i = 1,2, ... ,N and for j = 1,2, .. . , J'. This 
necessary condition is also sufficient if the assembly has the following property: 

Property 1 Given any two states Si and Sj not necessarily in the same as­
sembly sequence, let Ii and Ij be the sets of connections that are established in 
assembly tasks 'Ii and '1j from Si and Sj respectively. If 

< P, Oi > is the state's graph of connections associated to Si 

< P, OJ > is the state's graph of connections associated to Sj 

Ii C Ij 

Oi C OJ and 

1"i is geometrically and mechanically feasible, 

then 

1"j is geometrically and mechanically feasible, 

This property corresponds to the fact that if it is geometrically and mechani­
cally feasible to establish a set of connections ('j) when many other connections 
OJ have already been established, then it is also geometrically and mechanically 
feasible to establish fewer connections ('i C Ij) when fewer other connections 
(q C OJ) have been established. Although many common assemblies have this 
property, there are assemblies that do not have it. An example of an assembly 
that does not have this property is presented elsewhere[5]. 

If the assembly has property 1, the following lemma establishes a necessary and 
sufficient condition for the feasibility of an assembly sequence. 

Lemma 3 Given an assembly whose graph of connections is < P, C > (with 
C = {Cl' C2, ... , CL}) let W s be the set of states that do not occur in any 
feasible assembly sequence. If the assembly has property 1, then an assembly 
sequence is feasible if and only if it does not include any state in W s. 

If (Ifl!f.z ... !f.N) is an ordered list of binary vectors that represents an assembly 
sequence, the condition gj(IfI) = gj(If2) = ... = gj(IfN) = F corresponds to a 
precedence relationship. The following lemma establishes the correspondence. 
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Lemma 4 Given an assembly made up of N parts whose graph of connections 
is < p,a > (with a = {C1' D.!, ... ,cd), let 

g(;&.) = Xo. . Xb ..• Xh • Xp • Xq ..• X z 

with 

{a, b, ... I h} n {P, q, . .. I z} = 0 

and 

{a, b I • • • , h} U {p, q, ... , z} C {I , 2, ... , L} 

If the assembly has the property 1 and if (;&'1 ~ ••. ;&'N) is the representation of 
an assembly sequence as an ordered list of L-dimensional binary vectors, then 
the condition 

g(;&'l) = g(~) = ... = g(;&.N) = F 

is equivalent to the condition 

Cp + cq + ... + Cz ~ B(;&.) 

where 

L 

B(;&.) = II .AI and .AI = {XI 
i=l true 

if 1 E {ab · · · h} 
otherwise 

The product in this lemma is the logical operation AND. The logical function 
B(;£) is the product of the variables Xk that are not negated in the expression 
of g(;£), that is B(;&.) = Xo. • Xb . .• Xh. 

Applying lemma 4 to each of the J' terms on the right side of equation 6.2 we 
obtain J' precedence relationships. Given an assembly sequence, if it satisfies 
all J' precedence relationships then it does not include any state in\!! sand 
therefore is feasible. Conversely, if the assembly sequence does not include any 
state in \!! s (and therefore it is a feasible assembly sequence) then it satisfies all 
precedence relationships. Therefore, the set of J' precedence relationships is a 
correct and complete representation of the set of all feasible assembly sequences. 
This fact is established by the following theorem. 

Theorem 5 Given an assembly made up of N parts whose graph of connec­
tions is < P, a> (with 0= {C1' C2, ..• , cd), let 

J' 

G(;&.) = L 9j(;&') 
j=l 
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be a disjunctive form of the logical function that is true if and only if 0[ is a 
binary-vector representation of a state that does not occur in any feasible assem­
bly sequence. Let Aj be the set containing the indexes of the variables that are 
asserted in gj (O[). Let N j be the set containing the indexes of the variables that 
are negated in gj(O[) . If the assembly has property 1, and if (1'1,1'2, ... ,I'N-l) 
is an ordered sequence of subsets of connections that represents an assembly se­
quence, then (1'1 , 1'2, ... , I'N-l) satisfies the set of J' precedence relationships 

LCk-+ 11 Xi forj=1,2,·· · ,J' 
kENj iEAj 

if and only if it corresponds to a feasible assembly sequence. 

An example will illustrate the use of theorem 5. For the assembly shown in 
figure 6.1, which has property 1, Wx = {[F T F F T] [T F F T F] } (these 
binary vectors correspond to nodes 8 and 10 in the directed graph of assembly 
states shown in figure 6.3). Therefore, 

G(O[) = G(XlJ X2, X3, X4, xs) = 
Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • Xs (6.3) 

In this case the expression of G(O[) cannot be further simplified and we have 

91 (0[) = Xl . X2 . X3 . X4 • Xs 

92(0[) = Xl . X2 • X3 . X4 . Xs 

Al = {2,5} Nl = {1,3,4} 

A2 ={1 ,4} N2={2,3,5} 

Therefore, the precedence relationships are: 

(Set 1) 

A simpler set of precedence relationships can be obtained if in the simplification 
of G(;f) we set the nonstate vectors as DON'T CARE conditions. For the assembly 
shown in figure 6.1, there are 19 nonstate vectors: 

[FFFTT] [FFTFT) [FFTTF) [FTFTT) 

[FTTFT] [FTTTF) [FTTTT] [TFFTT] 
[TFTFT] [TFTTF] [TFTTT] [TTFFF] 
[TTFTF] [TTFTT] [TTTFT] [TTTTF] 

[FTTFF] 

[TFTFF] 
[TTFFT] 

Considering the above 19 nonstate vectors as DON'T CARE conditions in the 
simplification of G(;!L) yields 

G(;!L) = G(Xl, X2, X3, X4, xs) = Xl . X2 . Xs + Xl . X2 . X4 

Therefore, the precedence relationships are 

(6.4) 

(Set 2) 
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This set is simpler and yet equivalent to Set 1. 

It should be noticed that an unfeasible assembly sequence, such as the assembly 
sequence whose representation as an ordered sequence of subsets of connections 
is ({ C2} {cs} {Cl' C3, C4}), does not satisfy both sets of precedence relationships 
above (Le. Sets 1 and 2). It should also be noticed that there are ordered 
sequences of N - 1 subsets of connections and their corresponding ordered se­
quence of binary vectors, such as ({cd {C2}{C3, C4, cs}) and ( [F F F F F 1 [T F 

F F F 1 [T T F F F 1 [T T T TTl ) that do not represent an assembly sequence, 
but satisfy Sets 1 and 3 of precedence relationships. The precedence relation­
ships obtained using the result of theorem 5 can only discriminate the feasible 
from the unfeasible assembly sequences. The information in the assembly's 
graph of connections allows the discrimination of assembly sequences from or­
dered sequences of subsets of connections that do not correspond to assembly 
sequences. 

In order to be able to discriminate the representations of feasible assembly 
sequences from any sequence of N - 1 subsets of connections, the set W x must 
also include all nonstate vectors, and, of course, these combinations should not 
be considered DON'T CARE conditions. 

Corollary 6 Given an assembly made up of N parts whose graph of connec­
tions is < P, C > (with C = {Cl' C2, . .. , cd), let 

J' 

G(~) = 2: gj(~) 
j=l 

be a disjunctive form of the logical function that is true if and only if ~ is either 
a non-state binary-vector or a binary-vector representation of a state that does 
not occur in any feasible assembly sequence. Let Aj be the set containing the 
indexes of the variables that are asserted in gj (;~). Let Nj be the set containing 
the indexes of the variables that are negated in gj (~) . If the assembly has 
property one, then an ordered sequence of N - 1 subsets of connections satisfies 
the set of J' precedence relationships 

2: Ck -4 II Xi for j = 1,2" " , J' 
kENj iEAj 

if and only if it represents a feasible assembly sequence. 

For the assembly shown in figure 6.1 there are two assembly states that do not 
occur in any feasible assembly sequence. And there are nineteen 5-dimensional 
nonstate vectors which were listed above. Let G(~) be the logical function that 
is true if and only if ~ is one of these twenty-one 5-dimensional vectors, that is 
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G(~) = Xl· X2 . X3 • X4 • Xs + Xl . X2 • X3 • X4 . X5 + 
Xl . X2 . X3 • X4 • Xs + Xl • X2 • X3 • X4 . Xs + 
Xl . X2 . X3 . X4 • Xs + Xl . X2 • X3 • X4 . Xs + 
Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs + 
Xl . X2 . X3 . X4 • Xs + Xl . X2 • X3 • X4 • Xs + 
Xl . X2 • X3 . X4 • Xs + Xl . X2 • X3 . X4 • Xs + 
Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • Xs + 
Xl • X2 • X3 . X4 • Xs + Xl . X2 • X3 . X4 • Xs + 
Xl . X2 • X3 . X4 . Xs + Xl . X2 • X3 • X4 • Xs + 
Xl • X2 • X3 • X4 • Xs + Xl • X2 . X3 . X4 • Xs + 
Xl . X2 . X3 . X4 . XS· 
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(6.5) 

The first two terms in this function correspond to the two states that do not 
occur in any feasible assembly sequence and the other 19 terms correspond 
to the nonstate vectors. Using the rules of boolean algebra to simplify this 
function, we obtain 

G(~) = Xl· X2 • Xs + Xl . X2 • X3 + Xl . X2 . X4 + Xl . X2 • X3 + 
Xl . X2 . X3 + X3 . X4 • Xs + X3 • X4 . Xs + X3 . X4 • Xs · 

Therefore, the precedence relationships are: 

(Set 3) 

The ordered sequences of subsets of connections ({ CI , C2} { C3 , C4 , cs}) which 
does not correspond to an assembly sequence but satisfies Sets 1 and 2 of 
precedence relationships does not satisfy Set 3. The third state satisfies S(;f) = 
Xl • X2 but connection C3 is established during the third assembly task, which 
occurs after the third assembly state; therefore, this sequence does not satisfy 
the precedence relationship C3 -+ Xl . X2. 

But it should be noticed that Set 3 of precedence relationships will be "sat­
isfied" for ordered sequences of subsets of connections containing fewer than 
N - 1 subsets. For exam pie, the sequence ({ CI , C2 , C3} {C4 , cs}) "satisfies" Set 
3 of precedence relationships. Yet, this sequence does not correspond to a fea­
sible assembly sequence because it does not contain exactly N - 1 subsets of 
connections. 
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6.6 Precedence relationships between 
the establishment of one connection and 
the establishment of another connection 

We will use the notation Ci < Cj to indicate the fact that the establishment of 
connection Ci must precede the establishment of connection Cj. And we will 
use the notation Ci ::; Cj to indicate the fact that the establishment of con­
nection Ci must precede or be simultaneous with the establishment of connec­
tion Cj. Furthermore, we will use a compact notation for logical combinations 
of precedence relationships; for example, we will write Ci < Cj • Cic when we 
mean (Ci < Cj) 1\ (Ci < CIc), and we will write Ci + Cj < Cic when we mean 
(Ci < CIc) V (Cj < CIc). 

An assembly sequence whose representation as an ordered sequence of binary 
vectors is (;£1;£2··· ~) and whose representation as an ordered sequence of 
subsets of connections is ('Y(Y2·· ·'YN-d satisfies the precedence relationship 
Ci < Cj if c; E 'Ya, Cj E 'Yb, and a < b. Similarly, the sequence satisfies c; S Cj if 
c; E 'Ya, Cj E 'Yb, and as b. For example, for the assembly shown in figure 6.1, 
the assembly sequence whose representation as an ordered sequence of binary 
vectors is ([F F F F F] [T F F F F] [T T T F F] [T T T T T]) and whose represen­
tation as an ordered sequence of subsets of connections is ({ Cl} {C2, C3} { C4, cs} ) 
satisfies the precedence relationships C2 < C4 and C2 S C3 but does not satisfy 
the precedence relationships C2 < C3 and C2 SCI. 

Each feasible assembly sequence of a given assembly can be uniquely char­
acterized by a logical expression consisting of the conjunction of precedence 
relationships between the establishment of one connection and the establish­
ment of another connection. For example, for the assembly shown in figure 6.1 , 
the assembly sequence ([F F F F F] [T F F F F] [T T T F F] [T T T T T]) can be 
uniquely characterized by the following conjunction of precedence relationships 

The set of all M feasible assembly sequences can be uniquely characterized by 
a disjunction of M conjunctions of precedence relationships in which each con­
junction characterizes one assembly sequence. Clearly, this logical combination 
of precedence relationships constitutes a correct and complete representation 
for the set of all assembly sequences. 

It is often possible to simplify this logical combination of precedence relation­
ships using the rules of boolean algebra. Further simplification is possible if 
one notices that there are logical combinations of precedence relationships that 
cannot be satisfied by any assembly sequence. For the assembly shown in figure 
6.1, for example, the combination (Cl < C2) 1\ (C2 < C3) 1\ (C3 < C4) 1\ (C4 < C5) 

cannot be satisfied by any assembly sequence. These combinations can be 
set as don't care conditions in the simplification of the logical combination of 



www.manaraa.com

153 

precedence relationships. 

It is possible to obtain simpler precedence relationships and the rest of this 
section describes two ways to do that. 

Precedence relationships derived from 
those obtained in the previous section 

The precedence relationships obtained in the previous section have the form 

Cp + Cq + ... + Cz -+ Xa • Xb ••.•. Xh 

which is equivalent to the disjunction of precedence relationships 

(Cp -+ Xa • Xb • ••• • Xh) V (Cq -+ Xa • Xb .•• •• Xh) V . , . 

.. . V (C" -+ Xa • Xb • • • •• Xh) . 

It is straigth forward to see that the precedence relationship 

Cp -+ Xa • Xb ••••• Xh 

is equivalent to 

Cp ~ Ca + Cb + ... + Ch· 

Therefore, the disjunction of precedence relationships above is equivalent to 

(Cp ~ Ca + Cb + ... + Ch) V (cq ~ Ca + Cb + ... + Ch) V .. · 

... V (c" :5 Cc + Cb + ... + Ch) 

Each set of precedence relationships obtained in the previous section yields a 
conjunction of disjunctions of precedence relationships. For example, for the 
simple product shown in figure 6.1, we obtained, in the previous section, Set 1 
of precedence relationships. That set is equivalent to the following conjunction 
of disjunctions: 

[(CI :5 C2 + cs) V (C3 :5 C2 + cs) V (C4 :5 C2 + cs)]A 

[(C2 :5 CI + C4) V (C3 :5 Cl + C4) V (cs :5 Cl + C4)] 

Precedence relationships derived from 
the set of feasible assembly sequences 

Another simpler precedence relationship representation of all assembly se­
quences can be derived from the set of feasible assembly sequences if the assem­
bly has the property 1 described in the previous section as well as the following 
property: 
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Property 2 If the subsets (It,~, ... ,Ole of the set of parts P characterize stable 
subassemblies, then the set 0 = 01 U 02 U . . . U Ole also characterizes a stable 
subassembly. 

Like in the case of property 1, many common assemblies have this second 
property. Yet, there are assemblies that do not have it. An example of an 
assembly that does not have this property is presented elsewhere[5]. 

The following theorem indicates how to obtain a simple precedence relation­
ship representation of the assembly sequences for assemblies that have both 
properties 1 and 2. 

Theorem 7 Given an assembly made up of N parts whose graph of connec­
tions is < P,C > (with C = {Cl,C2,' " ,cd), let 

be a set of M ordered sequences of subsets of connections that represent feasible 
assembly sequences. If the assembly has properties 1 and 2, then any ordered 
sequence of N - 1 subsets of connections that represents an assembly sequence 
corresponds to a feasible assembly sequence if it satisfies the set of2L precedence 
relationships: 

M M 

C;::;L11j i=I,2,"',L and L Hi; ::; c; i = 1,2" .. ,L 
;=1 ;=1 

where 

if Cle E Ilj and I 2: i 
otherwise. 

if Cle E Ilj and::; i 
otherwise. 

The sum and the product in this theorem are the logical operations OR and AND 

respectively. Each term 11; (for i = 1,2"", L, and for j = 1,2"", M) is the 
product of the variables corresponding to the connections that are established 
at the same time or after the establishment of connection c; in the jth sequence. 
Similarly, each term Hi; (for i = 1,2"", L, and for j = 1,2"", M) is the 
product of the variables corresponding to the connections that are established 
at the same time or before the establishment of connection Ci in the lh sequence. 
Precedence relationships that have T on either side are always satisfied. 
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An example will illustrate the use of theorem 7. The assembly shown in figure 
6.1 has properties 1 and 2. For that assembly, the set of feasible sequences can 
be obtained from the directed graph shown in figure 6.3. There are ten feasible 
assembly sequences and they are: 

({ CI}{ C2, C3}{ C4, CS}) ({ CI}{ CS}{ C2, C3, cd) ({ C2}{ c!, C3}{ C4, CS}) 

({ C2}{ C4}{ CI, C3, CS}) ({ C3}{ CI, C2}{ C4, CS}) ({ C3}{ C4, cs}{ CI, C2}) 

({ C4}{ C2}{ CI, C3, es}) ({ C4}{ C3, cs}{ Cl, C2}) ({ cs}{ cIl{ C2, C3, C4}) 

({ cs}{ C3, C4}{ Cl, C2}) 

Applying the result of theorem 7 to the above set of feasible sequences for the 
assembly shown in figure 6.1, the precedence relationships having connection 
CI alone on one side are: 

CI < C2'C3'C4'CS+C2'C3'C4'Cs+C3'C4'CS+ 

C3 . Cs + C2 . C4 . Cs + C2 + C3 . es + C2 + C2 . C3 . C4 + C2 

and 

T+ T+C2 . C3 + C2 . C3 . C4' Cs + C2 . C3 + Cz • C3 . C4 . cs+ 

Cz . C3 . C4 . Cs + C2 . C3 . C4 . Cs + Cs + Cz . C3 . C4 . Cs :5 CI· 

Using the rules of boolean algebra, these two precedence relationships can be 
simplified yielding C! :5 Cz + C3 . Cs and T:5 CI . The second precedence rela­
tionship is always satisfied and can be ignored. Similarly, applying the result 
of theorem 7, simplifying the logical expressions, and deleting those precedence 
relationships that have T on either side, we obtain four addional precedence 
relationships. The resulting set of precedence relationships is: 

CI:5C2+C3' CS cZ:5cI+C3'C4 c3:5Cl'CS+Cz'C4 
(Set 4) 

C4 :5 Cs + C2 . C3 cs:5 C4 + CI . C3· 

Set 4 of precedence relationships still contains some redundancies and can be 
shown to be equivalent to: 

(Set 5) 

The simplest way to see the equivalence is to verify that Set 5 correctly dis­
criminates the feasible assembly sequences from the unfeasible ones. 

It should be noticed that an unfeasible assembly sequence, such as the as­
sembly sequence whose representation as an ordered sequence of subsets of 
connections is ({ cz} {cs} {CI' C3, C4}), does not satisfy Set 5 of precedence rela­
tionships. It should also be noticed that there are ordered sequences of subsets 
of connections, such as ({ C3} {Cl' C4} {C2' cs}), that do not represent an assem­
bly sequence, but satisfy Set 5 of precedence relationships. The precedence 
relationships obtained using the result of theorem 7 can only discriminate the 
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feasible from the unfeasible assembly sequences. The information in the as­

sembly's graph of connections allows the discrimination of assembly sequences 
from ordered sequences of subsets of connections that do not correspond to 
assembly sequences. 

Theorem 7 is a sufficient condition. The set of precedence relationships ob­
tained using this theorem is correct but not necessarily complete. For example 
if the set of M ordered sequences of subsets of connections is 

{ ({ C3}{ CI, C2}{ C4, cs}) ({ C3}{ C4, C5}{ CI, C2}) ({ CI}{ cs}{ C2, C3, C4}) } 

the resulting precedence relationships are: 

(Set 6) 

Some of the feasible sequences, such as ({ CI}{ C2, C3}{ C4, C5}), satisfy Set 6 of 
precedence relationships. Other feasible sequences, such as ({ C2} {CI' C3} { C4, 

Cs }) and ({ cs} {CI} {C2' C3, C4}), do not satisfy Set 6. But if the set of M ordered 
sequences of subsets of connections includes the representations of all feasible 
assembly sequences, then the resulting set of precedence relationships consti­
tutes a correct and complete representation of the feasible assembly sequences. 
This leads to the following corollary: 

Corollary 8 If the set of of M ordered sequences of subsets of connections in 
theorem 7 includes the representations of all feasible assembly sequences, the 
resulting set of precedence relationships is a correct and complete representation 
of the feasible assembly sequences. 

Finally, it should be noticed that these precedence relationships can be obtained 
by answering the following two questions for each connection: 

1. What connections must be undone when the ith connection is established? 

2. What connections must not be left to be done after the ith connection is 
established? 

De Fazio and Whitney[3] have proposed questions similar to these. The proof 
of theorem 7[5] shows that if the assembly has properties 1 and 2, then these 
questions lead to a correct and complete precedence relationship representation 
of assembly sequences. Furthermore, in order to answer these questions one 
must actually know what all the feasible assembly sequences are. 
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Figure 6.5: The ball-point pen 
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Figure 6.6: The graph of connections for the ball-point pen shown in figure 6.5 

6.7 The Ball Point Pen Assembly 

Both Bourjault[2] and De Fazio and Whitney[3] have used a ball point pen to 
illustrate their algorithms for the generation of mechanical assembly sequences. 
Figure 6.5 shows the ball point pen. It contains 6 parts, namely the cap, 
the body, the button, the head, the tube, and the ink. Although the ink is 
not actually rigid, in this analysis it can be considered rigid as long as the 
subassembly made up of the tube and the ink is considered unstable. 

Figure 6.6 shows the ball point pen graph of connections. It has 6 nodes and 5 
connections. In order to be consistent with previous work[2, 3], it is assumed 
that there is no contact between the ink and the head. Therefore, the graph 
of connections does not include an edge connecting the node corresponding to 
the ink to the node corresponding to the head. 

Directed graph of feasible assembly sequences 

Figure 6.7 shows the directed graph of feasible assembly sequences. Each node 
of the graph in figure 6.7 is labeled by a 5-dimensional binary vector that 
represents a stable assembly state. 

AND/OR graph of feasible assembly sequences 

Figure 6.8 shows the AND/OR graph of feasible assembly sequences for the ball 
point pen. Figure 6.8 does not include the nodes of the AND/OR graph that 
cannot be reached from the top node, since they do not occur in any feasible 
assembly sequence. These nodes correspond to the following subassemblies: { 
CAP, BODY}, { BODY, HEAD, BUTTON }, { CAP, BODY, BUTTON }, { BODY, 

HEAD, TUBE, BUTTON }, { CAP, BODY, HEAD, BUTTON }, and { CAP, BODY, 

HEAD, TUBE, BUTTON } . 
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Figure 6.7: The directed graph of feasible assembly sequences of the ball-point 
pen shown in figure 6.5 

Establishment conditions 

The establishment conditions that are obtained from the directed graph of 
feasible assembly sequences are: 

FI (~) = Xl · X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs + 
Xl . X2 • X3 • X4 • Xs + Xl • X2 • X3 • X4 • Xs 

F2 (~) = Xl· X2 • X3 . X4 • Xs + Xl • X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • Xs + 
Xl . X2 . X3 . X4 . Xs + Xl • X2 • X3 • X4 . Xs 

F3 (~) = Xl· X2 • X3 • X4 . Xs + Xl • X2 • X3 • X4 • Xs + 
~.~.~.~.~+~ . ~ . ~.~.~ 

F4 (~) = Xl· X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs + 
Xl . X2 . X3 • X4 . Xs + Xl . X2 . X3 • X4 . Xs 

Fs (~) = Xl· X2 • X3 • X4 • Xs + Xl . X2 . X3 • X4 • Xs + 
Xl . X2 • X3 • X4 . Xs + Xl • X2 • X3 • X4 . Xs 
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Figure 6.8: AND/OR graph of feasible assembly sequences for the ball-point pen 
C = CAP 0 = BODY H = HEAD T = TUBE I = INK U = BUTTON 

Using the rules of boolean algebra to simplify the logical expressions above, we 
obtain: 
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Further simplification is possible if the simplification process takes into account 
the fact that some states do not occur in any feasible assembly sequence. These 
states are: 

[FFFFT] 

[FTFFT] 

[TFFTF] 

[TTFTT] 

[FFFTF] 

[FTFTF] 

[TFFTT] 

[TTTFF] 

[FFFTT] 

[FTFTT] 

[TTFFF] 

[TTTFT] 

[FFTFT] 

[FTTFT] 

[TTFFT] 

[FFTTT] 

[FTTTT] 

[TTFTF] 

and the resulting further simplified establishment conditions are: 

H(!f) = Xl . X4 + Xl . X2 = Xl . (X2 + X4) 

F2(!f) = Xl . X2 + X2 . X4 = X2 • (Xl + X4) 

F3(!f) = X3 

F4 (!f) X4 · X3 

FS(!f) = Xs· Xl 

As pointed out in section 6.4, these last expressions can discriminate correctly 
between feasible and unfeasible assembly sequences but they are not safe for 
real time control. For example, these expressions indicate, correctly, that the 
assembly sequence whose representation as an ordered sequence of states is 
([ F F F F F 1 [T F F F F 1 [T T F F F 1 [T T T F F 1 [T T T T F 1 [T T T T T]) and 
whose representation as an ordered sequence of subsets of connections is ({ Cl} 
{C2} {C3} {C4} {cs}) is not feasible because F2 ( [T F F F F]) = F, and therefore 
the second assembly task, in which the 2nd connection is established, is not 
feasible. But should the assembly process accidentally reach the state whose 
binary vector representation is [T T F F F 1 these expressions for the establish­
ment conditions would indicate, incorrectly, that it is feasible to establish con­
nections C3 , C4 , and Cs and therefore to complete the assembly. This happens 
because this state ([T T F F F]) was considered a DON'T CARE condition. 

Precedence relationships between the establishment 
of one connection and states of the assembly process 

There are 18 states that do not occur in any feasible assembly sequence, and 
they have been listed previously. Therefore, the logical function that is true if 
and only if is argument is a binary vector representation of a state that does 
not occur in any feasible assembly sequence is 

G(;£) = Xl · X2 • X3 • X4 • Xs + X l . X2 . X3 • X4 . Xs + Xl . X2 • X3 • X4 . Xs + 
Xl • X2 • X3 • X4 . Xs + Xl • X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs + 
Xl . X2 . X3 • X4 . Xs + Xl . X2 . X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs + 
Xl . X2 • X3 • X4 • Xs + Xl • X2 . X3 . X4 . Xs + Xl . X2 • X3 • X4 • Xs + 
Xl . X2 • X3 • X4 • Xs + Xl • X2 . X3 • X4 . Xs + Xl . X2 • X3 • X4 • Xs + 
Xl • X2 • X3 • X4 . Xs + Xl . X2 • X3 • X4 • Xs + Xl • X2 • X3 . X4 • Xs· 
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The expression of G(~} can be simplified using the rules of boolean algebra. A 
simpler disjunctive form of this function is 

G(~} = Xl· X2 . X4 + X3 • X4 + Xl . Xs 

Therefore, the set of precedence relationships 

(Set 7) 

is a correct and complete representation of the assembly sequences. Set 7 of 
precedence relationships is the same set that was obtained by De Fazio and 
Whitney[3]. 

Precedence relationships between the establishment 
of one connection and the establishment of another connection 

From the Set 7 of precedence relationships obtained in the previous section, 
the following conjunctions of precedence relationships can be derived: 

(Set 8) 

Another precedence relationship representation can be obtained using theorem 
7 presented in section 6.6. There are 12 feasible assembly sequences and they 
are: 

({1}{3}{4}{2}{5}) ({1}{3}{4}{5}{2}) 
({1}{5}{3}{4}{2}) ({2}{3}{4}{1}{5}) 

({1}{3}{5}{4}{2}) 
({3}{1}{4}{2}{5}) 

({3}{1}{4}{5}{2}) ({3}{1}{5}{4}{2}) ({3}{2}{4}{1}{5}) 
({3}{4}{1}{2}{5}) ({3}{4}{1}{5}{2}) ({3}{4}{2}{1}{5}). 

Applying the result of theorem 7 to the above set of feasible assembly sequences 
for the assembly shown in figure 6.5 and using the rules of boolean algebra, 
we obtain the following precedence relationship representation of assembly se­
quences: 

Cl ::; Cs 

C3 ::; C2 . C4 + CI • C4 • Cs 

Cs ::; T 

T::; C3 

CI ::; Cs 

(Set 9) 

Set 9 can be further simplified. The precedence relationships that have T 

on either side are always satisfied and can be dropped. Furthermore, since 
CI ::; Cs the second and third precedence relationships can be simplified to 
C3 ::; C2 . C4 + Cl . C4 and C4 ::; C2 + CI respectively. Furthermore, C4 ::; C2 + Cl 

requires that either C4 ::; C2 or C4 ::; CI; in both cases C3 ::; C2 • C4 + Cl . C4 
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is also satisfied because C3 ::; C4. Therefore, the following set of precedence 
relationships 

(Set 10) 

constitutes a correct and complete representation of the the set of feasible 
assembly sequences. Set 10 is similar to set 7. 
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Chapter 7 

A basic algorithm for the 
generation of mechanical 
assembly sequences 

Luiz S. Homem de Mello and Arthur C. Sanderson 

This chapter presents an algorithm for the generation of mechanical assem­
bly sequences that is correct and complete. The algorithm takes a descrip­
tion of the assembly and returns the AND/OR graph representation of assembly 
sequences[lOJ. It is assumed that exactly two parts or subassemblies are joined 
at each time, and that after parts have been put together they remain together. 
It is also assumed that whenever parts are joined forming a subassembly, all 
contacts between the parts in that subassembly are established. Furthermore, 
it is assumed that the feasibility of joining two subassemblies is independent of 
how those subassemblies were built . These assumptions are consistent with the 
trend towards product designs that are suitable for automatic assembly[l, 3] . 

The correctness of the algorithm is based on the assumption that it is always 
possible to decide correctly whether two subassemblies can be joined, based 
on geometrical and physical criteria. This chapter presents an approach to 
compute this decision. An experimental implementation for the class of prod­
ucts made up of polyhedral and cylindrical parts having planar or cylindrical 
contacts among themselves is described. 
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The amount of computation involved in generating the AND/OR graph repre­
sentation of assembly plans depends on the number of parts that make up 
the product, on how those parts are interconnected, and also on the resulting 
AND/OR graph. Bounds for the amount of computation involved are presented. 

The algorithm described in this chapter operates on a relational model of an 
assembly. The relational model used in this work provides an efficient data 
structure which maintains contact geometry and connection information at 
one level of representation and complete part geometry at a second level. This 
hierarchy permits many of the planning decisions, such as local geometric fea­
sibility, to be made by accessing only the highest level of the representation. 
In this sense, much of the planning process is carried out in terms of an ab­
straction of the actual assembly parts description. That is, the algorithmic 
structure which we describe here operates primarily in the relational graph 
domain, and not on the full part geometry unless needed for evaluation of a 
particular feasibility predicate. The relational graph structures the search for 
assembly plans by organizing the cut-sets of the graph. This organization of 
the algorithm and data structure are a principal contribution of this chapter. 

Many different types of feasibility predicates could be incorporated into this 
overall structure. In this chapter, we discuss internal task predicates which are 
related to constraints imposed by other factors such as availability of resources, 
and stability predicates which assess the stability of the resulting subassemblies. 
We do not attempt to explore these criteria and constraints exhaustively here. 
We have focussed on the evaluation of local geometric feasibility as the princi­
pal criterion implemented for the studies described in this chapter. This local 
geometric criterion is a minimal constraint for all feasible assemblies and pro­
vides a good means to illustrate and evaluate the performance of the algorithm. 
This chapter should be viewed as a framework for assembly sequence planning 
which provides a basis for the incorporation of many different possible specific 
physical and geometric criteria. In many cases, the physical and geometric 
reasoning required for such criteria are active topics of research in themselves, 
and the development of extended feasibility criteria will be based on results of 
that research. 

7.1 A Relational Model for Assemblies 

A mechanical assembly is a composition of interconnected parts forming a sta­
ble unit. Each part is a solid rigid object, that is, its shape remains unchanded. 
Parts are interconnected whenever they have one or more surfaces in contact. 
Surface contacts between parts reduce the degrees of freedom for relative mo­
tion. A cylindrical contact, for example, prevents any relative motion that is 
not a translation along the axis or a rotation around the axis. Attachments 
may act on surface contacts and eliminate all degrees of freedom for relative 
motion. For example, if a cylindrical contact has a pressure-fit attachment, 
then no relative motion between the parts is possible. 
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The representations of products developed for high level robot programming 
languages (e.g. AUTOPASS[14]) emphasized the geometric aspects such as the 
shape of the parts and the contacts between parts. That emphasis is consis­
tent with the goal of generating a sequence of robot actions that will join two 
subassemblies, given the sequence in which parts or subassemblies should be 
put together. However for the generation of the assembly sequences, a purely 
geometric description of the product is not sufficient. There are sequences that 
would be feasible from a geometric point of view, but are unfeasible in practice 
due to forces resulting from fasteners. Therefore, a model of assemblies to be 
used in generating assembly sequences must represent explicitly the fastenings 
that bind one part to another. 

The representation of assemblies used by the algorithms described in sections 
7.2 and 7.3 is a relational model that includes three types of entities: parts, con­
tacts, and attachments. It also includes a set of relationships between entities. 
Both entities and relationships can have attributes. Formally, the relational 
model of an assembly is a 5-tuple < P, C, A, R, a-functions> in which 

• P is a set of symbols, each of which corresponds to one part in the 
assembly. No two elements of P correspond to the same part. 

• C is a set of symbols, each of which corresponds to a contact between 
surfaces of two parts of the assembly. No two elements of C correspond 
to the same contact. The two surfaces must be compatible. An example 
of a pair of compatible surfaces are a cylindrical shaft and a cylindrical 
hole. The same pair of parts may have more than one contact. And the 
same surface of one part may be in contact with surfaces of two or more 
other parts. 

• A is a set of symbols, each of which corresponds to an attachment that 
acts on a set of contacts. No two elements of A correspond to the same 
attachment. An attachment always has an agent, which can be either 
the attached contact, or another contact, or a part. The access to an 
attachment may be blocked by one or more parts. 

• R is a set of symbols, each of which corresponds to a relationship between 
pairs of elements of PUC U A. No two elements of R correspond to the 
same relationship. 

• a-functions is a set of attribute functions! whose domains are subsets of 
PUC U A U R. These functions associate entities or relationships to their 
characteristics such as the type of attachment, the entities related by a 
relationship, and the shape of a part. 

Examples of each type of entity, of relationships and of attribute functions will 
be discussed. 

1 A function is defined as a subset of the cartesian product of two sets (the domain and the 
range) that has no two pairs whose first elements are the same, and such that every element in the 
domain appears in one pair. 
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This definition of a relational model representation of assemblies is sufficiently 
general to encompass a large class of assemblies including those with rigid parts 
and no internal mechanisms. The set of functions can be enlarged to include 
all the information that might be necessary to generate assembly sequences. In 
practice, it may be convenient to restrict the class of assemblies represented. 
Our current experimental implementation has the following restrictions: 

• The contacts between parts involve one of the following pairs of compat­
ible surfaces: 

- planar surface and another planar surface, 

- cylindrical shaft and cylindrical hole, 

- polyhedral shaft and polyhedral hole, 

- threaded cylindrical shaft and threaded cylindrical hole. 

• The types of attachments are: 

- glue attachment, 

- pressure fit attachment, 

- clip attachment, 

- screw attachment. 

Examples of attribute functions are the following: 

• The function that associates a part to a description of its shape: 

shape: p~ S 

where S is the set of all shape descriptions. 

• The function that associates a part to a description of its location: 

location: P ~ T 

where T is the set of all 4 x 4 homogeneous transformation matrices. The 
matrix n associated to part Pi corresponds to the position and orientation 
of a reference frame attached to part Pi with respect to a global frame 
of reference for the whole assembly. The choice of this global frame of 
reference is arbitrary, but the same global reference must be used for all 
parts. 

• The function that associates a contact to its type: 

type-oj-contact: C ~ contact-types 

where contact-types = { planar, cylindrical, slot, threaded-cylindrical }. 
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CAP STICK RECEPTACLE HANDLE 

Figure 7.1: A four-part assembly in exploded view 

• The function that associates a planar contact to the coordinates, with 
respect to the assembly's global frame of reference, of a vector normal to 
the contact plane: 

normal: {c I [c Eel /\ [type-oJ-contact (c) = planar I} ~ R3 

• The function that associates a planar contact to the part-relationship 
that relates the contact to the part that is back of the contact, i.e. the 
part that is such that the normal to the contact plane points to the part's 
outside: 

back: {c I [c Eel /\ [type-oJ-contact ( c) = planar I} ~ R 

This function must be consistent with the function normal. 

• The function that associates a planar contact to the part-relationship 
that relates the contact to the part that is forward of the contact i.e. the 
part that is such that the normal to the contact plane points to the part's 
inside: 

Jorward : {c I [c Eel /\ [type-oJ-contact (c) = planar I} ~ R 

This function must be consistent with the function normal. 

• The function that associates a part or a contact to its part-contact rela­
tionships: 

part-contact-relationships: PUC ~ TI(R) 

where TI(R) is the set of all subsets of R . 

• The function that associates a part-contact relationship to its part: 

part: {rl [r E RIA [type-oJ-relationship( r) = part-contact]} ~ P 

• The function that associates a part-contact relationship to its contact: 

contact: {rl[r E RI /\ [type-oJ-relationship(r) = part-contact]} ~ C 

The relational model of an assembly must be consistent. For example, if 
part(rd = PI and contact(rd = CI then rl E part-contact-relationships (PI) 
and rl E part-contact-relationships (CI) must hold. Furthermore, the relational 
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RS 

R14 

Figure 7.2: The relational model graph for the assembly shown in figure 3 

model of an assembly must satisfy some syntactic constraints, the most impor­
tant of which are: 

• every contact must have exactly two part-contact relationships; 

• every part must have at least one part-contact relationship, except in the 
case the assembly has only one part; 

• every attachment must have at least one target-attachment relationship, 
and at least one agent-attachment relationship. 

The relational model of an assembly can be represented by a graph plus the 
associated attribute functions. Figure 7.1 shows a simple assembly, and figure 
7.2 shows its corresponding relational model graph. 

The nodes in figure 7.2 correspond to the entities. Nodes corresponding to part 
entities are rectangles, nodes corresponding to contact entities are circles, and 
nodes corresponding to attachment entities are triangles. All nodes contain la­
bels indicating their corresponding entities. The attribute functions associated 
with the contact entities Cl, C2 and C3 are shown in Table 7.1. 

The labeled lines connecting two nodes in figure 7.2 correspond to the rela­
tionships. Except for RS, R6, R13, and R14, all relationships are part-contact. 
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Table 7.1: Attribute Functions for the Contact Entities in Figure 4 

C1 C2 C3 

type-of-contact planar threaded- cylindrical 
cylindrical 

normal (0 1 0) nil nil 

back CAP nil nil 

forward STICK nil nil 

axis nil «000)(010)) «000)(010)) 

part-contact (Rl R2) (R3 R4) (R7 R8) 

relationships 

target-attachment nil (RS) nil 

relationships 

agent-attachment nil (R6) nil 

relationships 

Relationships RS and R13 are target-attachment; they indicate that the con­
tacts C2 and CS, respectively, are attached. Relationships R6 and R14 are 
agent-attachment; they indicate that the agents of the attachments are the 
target contacts themselves. 

Given the relational model of an assembly < P, C, A, R, a-functions> a num­
ber of other useful representations may be generated. For example, the graph 
of connections of the assembly, as defined by Bourjault[4J, is the simple graph 
< V, E > in which 

V=P 

E = {(Pi,pj)l[Pi E PJ A [pj E PJA 

3c3rt3r2[[c E C] A [{rt,r2} =part-contact-relationships(c)JA 

[Pi = part(rdJ A [pj = part(r2)]]} 

Figure 7.3 shows the graph of connections for the simple assembly shown in 
figure 7.1. 
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Figure 7.3: The graph of connections for the four-part assembly 

7.1.1 Subassemblies 

A subassembly is a nonempty subset of parts that either has only one element 
(Le. only one part), or is such that every part has at least one surface contact 
with another part in the subset. Although there are cases in which it is possible 
to join the same pair of parts in more than one way, a unique assembly geometry 
will be assumed for each pair of parts. This geometry corresponds to their 
relative location in the whole assembly. A subassembly is said to be stable if its 
parts maintain their relative position and do not break contact spontaneously. 
All one-part subassemblies are stable. 

Given the relational model of an assembly < P, a, A, R, a-functions> the rela­
tional model of a subassembly of that assembly is a relational model < Ps, as, 
As, Rs, a-functionss > in which Ps E P, as E a, As E A, Rs E R, and 
every function in a-functionss, is a subset of the corresponding function in a­
functions. In addition to the syntactic constraints mentioned above that every 
relational model of an assembly must satisfy, the relational model < Ps , as, As, 
Rs, a-functionss > of a subassembly of < P, a, A, R, a-functions> must also 
satisfy the constraint: 

'lic'lirl'lir2[[c E C] /\ [{rl' r2} = part-contact-relationships(c)]/\ 

[part(rd E Ps] /\ part(r2) E Ps] -+ [c E as] 

This constraint corresponds to the assumption that whenever parts are joined 
forming a subassembly all contacts between the parts in that subassembly are 
established. It requires that those contacts in the model of the assembly whose 
two part-contact relationships involve parts in the subassembly must also be 
in the model of the subassembly. For example, for the assembly shown in 
figure 7.1, there is no subassembly relational model in which Ps = {CAP, RE­
CEPTACLE, STICK} and as = {C2 C3}. If both the cap and the stick are in 
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Ps, then contact Cl must also be in as. This constraint allow the charac­
terization of any subassembly < Ps, as, As, Rs, a-functionss > of an assembly 
< P, 0, A, R, a-functions> by its set of parts Ps only. This feature will be used 
in the algorithm for the generation of mechanical assembly sequences described 
in the subsequent sections. In that algorithm, the intermediate subassemblies 
will be characterized by their sets of parts. Given a subset of parts Ps, there is 
a corresponding subgraph < Vs, Es > of the assembly's graph of connections 
< V , E >. In this sub graph , the set of nodes Vs includes all the elements of 
V that correspond to the parts in Ps. And the set of edges Es includes all the 
elements of E that have both end points in Vs. A subset of parts Ps charac­
terize a subassembly if and only if the corresponding subgraph < Vs , Es > is 
connected (i.e. has only one component). A predicate that is satisfied only by 
the subsets of parts that correspond to subassemblies can be defined as follows: 

Definition 1 The subassembly predicate associated to subassemblies of assem­
bly \I! =< P, 0, A, R, a-functions> is the predicate 

saiIf : II(P) - {true,false} 

with saiIf(l1) = true if the subgraph < Vs, Es > in which 

Vs=O 

Es = { (Pi,Pj)I[Pi E 0]/\ [pj E 0]/\ 

is connected. 

3c3r13r2[[c E C] /\ [{rll r2} = part-contact-relationship(c)] 

/\[Pi = part(rl)]/\ [Pj = part(r2)]] } 

7.2 Decompositions of an Assembly 

The problem of generating the assembly sequences for a product can be trans­
formed into the problem of generating the disassembly sequences for the same 
product. Since assembly tasks are not necessarily reversible, the equivalence of 
the two problems will hold only if each task used in disassembly is the reverse of 
a feasible assembly task, regardless of whether this reverse task itself is feasible 
or not. The expression disassembly task, therefore, refers to the reverse of a 
feasible assembly task. 

As mentioned in the introduction, it was assumed that exactly two parts or 
subassemblies are joined at each time. It was also assumed that whenever 
parts are joined forming a subassembly, all contacts between the parts in that 
subassembly are established. In the disassembly problem, each task splits one 
subassembly into two smaller subassemblies, maintaining all contacts between 
the parts in either of the smaller subassemblies. 
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A decomposition approach can be used to solve the disassembly problem. In 
this approach the problem of disassembling one assembly is decomposed into 
two distinct subproblems, each being to disassemble one subassembly. Every 
decomposition must correspond to a disassembly task. If solutions to both 
subproblems that result from the decompositions are found, a solution to the 
original problem can then be obtained by combining the solutions to the two 
subproblems and the task corresponding to the decomposition. For subassem­
blies that contain one part only, a trivial solution containing no assembly task 
always exists. This decomposition approach lends itself to an AND/OR graph 
representation of assembly sequences[lO]. The correspondence between the 
AND/OR graph and the directed graph representations of assembly sequences is 
discussed elsewhere[9]. 

From now on, references to products, to assemblies, or to subassemblies are 
references to their relational models, which are always assumed to be consistent 
and to satisfy the syntactic constraints of a relational model of an assembly. 
A real product will be referred to as a physical product, a real assembly as a 
physical assembly, and a real subassembly as a physical subassembly. 

A decomposition of an assembly < P, C, A, R, a-functions> is a pair of its 
subassemblies < PSI, CSI , ASI , RsI, a-functionsSI > and < PS2, CS2 , As2, Rs2, 
a-functionsS2 > such that PSI U PS2 = P and PSI n PS2 = 0. The set CSI-S2 = 
C - (CSI U CS2) is referred to as the contacts of the decomposition; they are 
the contacts that belong to C and do not belong to either CSI or CS2. The 
contacts of a decomposition of an assembly define a cut-set in that assembly's 
graph of connections. Conversely, a cut-set in the graph of connections of an 
assembly define a decomposition of that assembly. 

A decomposition of an assembly is said to be feasible if it satisfies two predi­
cates: TASK-FEASIBILITY, and SUBASSEMBLY-STABILITY. These predicates 
reflect the feasibility of joining the physical subassemblies to produce the phys­
ical assembly. 

The TASK-FEASIBILITY predicate is true if it is feasible to join the two sub­
assemblies to form the assembly. It depends on a number of conditions such 
as the existence of a collision-free path to bring the two subassemblies into 
contact, the accessibility of fasteners, and the availability of force applying de­
vices. These conditions can be subdivided into two categories: internal and 
external. The internal conditions depend exclusively on the assembly. The 
existence of a collision-free path and the accessibility of fasteners are internal 
conditions. The external conditions depend also on the devices available to 
execute the assembly. The availability of force applying devices is an external 
condition. There is some freedom in establishing the set of conditions as well 
as their precise definition. For example, it may be required that the (collision­
free) path to bring the two subassemblies into contact be a combination of a 
straight-line translation with a rotation whose axis is parallel to the straight 
line of translation. 
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The SUBASSEMBLY-STABILITY predicate is true if in the physical subassem­
bly there is a nonempty set of orientations for which there is a part p such that 
if p is fixed the other parts maintain their relative positions and do not break 
contact spontaneously. The stability of subassemblies depends on a number of 
conditions such as the gravity and the friction in the contacts. 

As discussed in section 7.1, the subassemblies of a given assembly W =< P, C, A, 
R, a-functions > can be characterized by their sets of parts. In our current 
implementation, the two predicates described above are defined as follows: 

Definition 2 The task-feasibility predicate associated to subassemblies of as­
sembly W = < P, C, A, R, a-functions> in which P = {Pl,P2 ,'" ,PN}, is the 
predicate 

gfiJt : II(P) x II(P) ~ {true, false} 

with gfiJt(fh, ()2) = true if and only if 

• there is a collision-free path that is a combination of a straight-line trans­
lation with a rotation whose axis is parallel to the straight line of trans­
lation, and that brings the two physical subassemblies of W characterized 
by ()l and ()2 into contact from a situation in which they are sufficiently 
far apart; and 

• it is feasible to establish the attachments that act on the set of contacts 
between parts in ()l and parts in ()2. 

Definition 3 The subassembly-stability predicate associated to sub­
assemblies of assembly W = < P, C, A, R, a-functions> in which P = 
{Pl , P2, ... , P N }, is the predicate 

stiJt : I1( P) ~ {true, false} 

with stiJt(()) = true if and only if saiJt(()) = true. 

The TASK-FEASIBILITY predicate is computed by first checking whether or 
not there is an incremental motion that separates the two subassemblies from 
their assembled relative position and that is a combination of a straight-line 
translation with a rotation whose axis is parallel to the straight line of trans­
lation. If no incremental motion exists, the decomposition is unfeasible. This 
predicated is called the local geometric feasibility predicate and is viewed here 
as one of a hierarchy of such predicates to be evaluated. 

For many types of contacts there are very few feasible motions between the 
parts that are feasible . For example, the only direction along which a pin in 
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a hole can translate is the direction of the axis. Similarly, the only feasible 
relative motion for two parts or subassemblies that have a threaded-cylindrical 
contact is a combination of a straight-line translation with a rotation whose 
axis is parallel to the straight line of translation. 

Whenever the part or subassembly has such a constraining contact, the feasi­
bility of local motion can be determined by checking the compatibility of the 
most restrictive contact with all other contacts. In the case of the pin in the 
hole, this consists of checking whether a translation of the pin along its axis is 
not blocked by any of the other contacts between the pin and the other part 
or subassembly. 

This analysis is more difficult when the part or subassembly to be disassembled 
is constrained by planar contacts only. Each planar contact leaves an infinite 
number of unconstrained directions along which translation is possible. All 
these directions have positive (i.e. greater than or equal to zero) projection over 
the normal to the surface of the blocking part, pointing towards the outside of 
the blocking part. 

In order to decide that a set of planar contacts does not completely constrain 
one part or subassembly, one must verify that there is a nonzero solution to 
the system of linear inequalities: 

3 

LnijXj ~ 0 
j=1 

i = 1,2,···,N 

where 11i = [nil ni2 ni3] is the normal to the surface of the ith contact. This 
system of linear inequalities defines a polyhedral convex cone. It has been 
shown[7] that such a polyhedral convex cone can be built up from its (unique) 
d-dimensional face and its (d + I)-dimensional faces (if any), where d = 3 -
rank(M), and M is the matrix of the coefficients nij' If d is greater than 
zero, then the polyhedral convex cone has a face of dimension greater than 
zero and therefore the system of inequalities has a nonzero solution. If d is 
equal to zero, then the system of inequalities has a nonzero solution only if the 
polyhedral convex cone has at least one one-dimensional face. The existence of 
a one-dimensional face can be determined by checking the N· (N -1) pairwise 
intersections of the planes corresponding to the inequalities. Each intersection 
of two distinct planes is a line. If one of the two unity vectors, 1 and -1 along 
the intersection line of two planes has positive (Le. greater than or equal to 
zero) projection over all the normal vectors !h,112, ' " ,'!lN, then the half-line 
defined by that vector (1 or -1) is a one-dimensional face of the polyhedral 
convex cone. 

If there is a nonzero solution to the system of inequalities, then the part or 
subassembly is not completely constrained. Otherwise the subassembly is com­
pletely constrained, and the decomposition is unfeasible. 

Once the feasible incremental motions are determined, their corresponding 
global motions can be tested for collisions by finding the intersection of the 
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procedure FEASIBILITY- T EST( decomposition, assembly) 
begin 
return AND( TASK-FEASIBILITY( decomposition, assembly), 

SUBASSEMBLY-STABILITY( decomposition) ) 

end 

Figure 7.4: Procedure FEASIBILITY-TEST 
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volume swept by the motion of one part and the other part. This predicate is 
referred to as global geometric feasibility and provides a second level of test in 
the hierarchy. In our current system we have not implemented this test but 
have instead used virtual contacts to describe blocking relationships equivalent 
to contacts. In the product shown in figure 7.1, for example, if the stick did not 
touch the handle, the local analysis as described above would indicate that the 
stick can translate (incrementally) along its axis. In a case like this, a virtual 
planar contact, analogous to C4 on figure 7.2, would be added to the relational 
model indicating the blocking of the stick by the handle. 

The feasibility of establishing the attachments that act on the set of contacts 
between parts in two subassemblies can be determined by inspection of the 
relational model of the assembly. Our current implementation includes routines 
that check whether the attachments acting on the contacts of the decomposition 
are not blocked in the resulting assembly, and are not present in either one of 
the subassemblies. 

For the discussion in the next section, which presents the algorithm for gener­
ating the assembly sequences, it is assumed that there exist correct algorithms 
for computing the TASK-FEASIBILITY and the SUBASSEMBLY-STABILITY 
predicates discussed above, and that they are combined into the procedure 
FEASIBILITY-TEST shown in figure 7.4. 

7.3 The Algorithm for 
Generating All Assembly Sequences 

As discussed in the previous section, a decomposition approach has been used 
to generate all assembly sequences. The basic idea underlying the approach 
is to enumerate the decompositions of the assembly and to select those that 
are feasible. The decompositions are enumerated by enumerating the cut-sets 
of the assembly's graph of connections. Knowledge of the feasible decomposi­
tions allows the construction of the AND/OR graph representation of assembly 
plans. Each feasible decomposition corresponds to a hyperarc in the AND/OR 

graph connecting the node corresponding to the assembly to the two nodes 
corresponding to the two subassemblies. The same process is repeated for the 
subassemblies and subsubassemblies until only single parts are left. 
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procedure GET-FEASIBLE-DECOMPOSITIONS( assembly) 

begin 
fsbl-dec +- NIL 

graph +- GET-GRAPH-OF-CONNECTIONS(assembly) 

cut-sets +- GET-CUT-SETS(graph) 

while cut-sets is not empty do 
begin loopl 

next-cut-set +- FIRST( cut-sets) 

cut-sets +- TAIL( cut-sets) 

next-dec +- GET-DECOMPOSITION(next-cut-set) 

if FEASIBILITY- TEST( next-dec) 
then fsbl-dec +- UNIO N(fsbl-dec, LIST( next-dec)) 

end loopl 

return fsbl-dec 

end procedure 

Figure 7.5: Procedure GET-FEASIBLE-DECOMPOSITIONS 

It has been shown[6, 12] that the set of all cut-sets of a graph < V, E > is a 
subspace of the vector space over the Galois field modulo 2 associated with the 
graph. The vectors in this vector space are the elements of lI(E), the set of all 
subsets of E. It has also been shown that the fundamental system of cut-sets 
relative to a spanning tree is a basis of the cut-set subspace. Therefore, the 
cut-sets of a graph can be enumerated by constructing a spanning tree of the 
graph, finding the fundamental system of cut-sets relative to that spanning tree, 
and computing all the combinations of fundamental cut-sets. In our current 
implementation, the cut-sets are enumerated using a more efficient approach. 
We first look at all connected subgraphs having the cardinality of their set of 
nodes smaller than or equal to half of the cardinality of the set of nodes in the 
whole graph. For each of these subgraphs, the set of edges of the whole graph 
that have only one end in the subgraph defines a cut-set if their removal leaves 
the whole graph with exactly two components. 

Figure 7.5 shows the procedure GET-FEASIBLE-DECOMPOSITIONS which 
takes as input the relational model of an assembly and returns all feasible 
decompositions of that assembly. The procedure first generates the graph 
of connections for the input assembly and computes the cut-sets of this 
graph. Each cut-set corresponds to a decomposition. The procedure GET­
DECOMPOSITIONS is used to find the decomposition that corresponds to a 
cut-set, and the procedure FEASIBILITY-TEST discussed in the previous sec­
tion is used to check whether or not that decomposition is feasible. The feasible 
decompositions are stored in the list fsbl-dec which was empty at the beginning. 
After all cut-sets have been processed, the procedure returns the list fsbl-dec. 



www.manaraa.com

177 

1 2 3 
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Figure 7.6: The cut sets of the graph of connections for the assembly shown 
in figure 7.1 

An example will illustrate the computation of the feasible decompositions of 
an assembly. When passed the relational model of the assembly in figure 7.1, 
procedure GET-FEASIBLE-DECOMPOSITIONS will compute the graph of con­
nections shown in figure 7.3, and all its cut-sets, which are indicated in figure 
7.6. The analysis of those cut-sets will indicate the feasible decompositions. 
The first cut-set yields a feasible decomposition since it is feasible to join the 
cap and the subassembly made up of the three other parts. The second cut-set 
also yields a feasible decomposition because it is feasible to join the subassem­
bly consisting of the cap plus the receptacle, and the subassembly consisting of 
the stick plus the handle. The third cut-set, however, does not yield a feasible 
decomposition, since it is not possible to join the stick and the subassembly 
made up of the three other parts. Similarly, the fourth and the sixth cut-sets 
yield feasible decompositions while the fifth cut-set does not. Therefore, proce­
dure GET-FEASIBLE-DECOMPOSITIONS will return a list containing the four 
decompositions that correspond to the first, second, fourth, and sixth cut-sets. 

Figure 7.7 shows the procedure GENERATE-AND-OR-GRAPH which takes the 
relational model of an assembly, and returns the AND/OR graph representation 
of all assembly sequences for that assembly. The nodes in the AND/OR graph 
returned are pointers to relational models of assemblies. 

Procedure GENERATE-AND-OR-GRAPH uses the lists closed and open to store 
the pointers to the relational models of the subassemblies whose decompositions 
into smaller subassemblies respectively have and have not been generated. 
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procedure GENERATE-AND-OR-GRAPH(assembly) 

begin 
open ~ LIST( GET-POINTERS(LIST(assembly))) 

closed ~ NIL 

harcs ~ NIL 

while open is not empty do 
begin loopJ 

next-sub ~ FIRST( open) 

open ~ TAIL(open) 

closed ~ UNION(closed, LIST(next-sub) ) 

dec-of-next-sub ~ GET-FEASIBLE-DECOMPOSITIONS(nerl-sub) 

while dec-of-next-sub is not empty do 
begin loop2 

next-decomposition ~ FIRST( dec-of-next-sub) 

dec-of-next-sub ~ TAIL( dec-of-next-sub) 

subs ~ GET-POINTERS(next-decomposition) 

harcs ~ UNION(harcs, LIST(LIST(next-sub, subs))) 

while subs is not empty do 
begin loop3 

next-sub ~ FIRST(subs) 

subs ~ TAIL(subs) 

if next-sub is not in open or in closed, add it to open; 
otherwise ignore it 

end loop3 

end loop2 

end loopJ 

return LIST( closed, harcs) 

end procedure 

Figure 7.7: Procedure GENERATE-AND-OR-GRAPH 
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The procedure takes one element of open at a time, moves it to closed, and uses 
procedure GET-FEASIBLE-DECOMPOSITIONS to generate all decompositions 
of the relational model pointed by that element. For each decomposition, pro­
cedure GENERATE-AND-OR-GRAPH uses the procedure GET-POINTERS to 
get the pointers to the relational models of the subassemblies. Procedure GET­
POINTERS checks whether each resulting subassembly has appeared before or 
not. If the subassembly has appeared before, its pointer is used, otherwise a 
new pointer is created. The new pointers are inserted into open. Each decom­
position yields one hyperarc of the AND/OR graph. 

Figure 7.8 shows the resulting AND/OR graph for the product shown in figure 
7.1. 

A more efficient implementation of the method for the generation of assembly 
sequences presented above will include additional tests aimed at avoiding un­
necessary computation2. One such test is to check whether the feasibility of a 
decomposition follows from the feasibility of other decompositions. For exam­
ple, the feasibility of the decomposition corresponding to hyperarc 10 in figure 
7.8 follows from the feasibility of the decompositions corresponding to hyper­
arcs 4 and 5. If it was geometrically and mechanically feasible to disassembZe 
the handle from the whole assembly (hyperarc 4), then it is geometrically and 
mechanically feasible to disassemble the handle from a subassembly. And since 
the subassembly made up of the stick and the receptacle is stable (hyperarc 5), 
it follows that the decomposition corresponding to hyperarc 10 is feasible. This 
test indicates that if the decompositions corresponding to hyperarcs 4 and 5 
have already been analyzed and found to be feasible, then it is not necessary to 
perform the computation corresponding to procedure FEASIBILITY-TEST in 
the analysis of the decomposition that corresponds to hyperarc 10. Similarly, 
another additional test would check whether the unfeasibility of a decomposi­
tion follows from the unfeasibility of other decompositions already analyzed. 
More efficient implementations that include these types of tests have been re­
ported recently[2, 8, 15]. 

7.4 Analysis of the Algorithm 

Correctness and completeness of GET-FEASIBLE-DECOMPOSITIONS 

The partial correctness of the algorithm GET-FEASIBLE-DECOMPOSITIONS 
is immediate. The list fsbZ-dec is initially empty. Only feasible decompositions 
are added to the list fsbZ-dec. Therefore, the list returned by GET-FEASIBLE­
DECOMPOSITIONS does not contain any element that is not a feasible decom­
position of the assembly input. The total correctness follows from the fact that 
there is only a finite number of cut-sets in a graph. The list cut-sets contains 
initially all cut-sets of the graph of functional connection corresponding to the 

20ur current implementation consists of the basic algorithms presented in the text and does 
not yet include these additional tests. 
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Figure 7.8: The AND/OR graph of subassemblies for the assembly shown in 
figure 7.1 

-
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assembly input. At each execution of loopJ, one element is removed from the 
list cut-sets. Therefore, after a finite number of executions of loopJ the list 
cut-sets becomes empty, and the algorithm terminates. 

There is a one-to-one correspondence between cut-sets in the graph of con­
nections of an assembly, and the decompositions of that assembly. Therefore, 
since algorithm GET-FEASIBLE-DECOMPOSITIONS goes over all cut-sets of 
the graph of connections, all feasible decompositions will be generated and the 
algorithm GET-FEASIBLE-DECOMPOSITIONS is complete. 

It was assumed that the algorithm for generating the cut-sets of a graph is 
correct and complete. The enumeration of the cut-sets of a graph is studied 
in graph theory; for example, Deo[6) and Liu[12) discuss that problem. It was 
also assumed that it is possible to decide correctly whether a decomposition is 
feasible or not, based on geometrical and physical criteria, as discussed in the 
section 7.2. 

Correctness and completeness of GENERATE-AND-OR-GRAPH 

List closed is updated at only one point, and it only gets elements that were 
previously in the open list. The open list contains initially a pointer to the 
relational model of the assembly input, which is a node of the AND/OR graph. 
List open is updated inside loop3 where it gets pointers to the relational models 
of the subassemblies that are part of a feasible decomposition, and therefore, 
are nodes of the AND/OR graph. Therefore, the elements in the open list, and 
consequently the elements in the closed list, are always pointers to relational 
models either of the original assembly, or of subassemblies that take part of a 
feasible decomposition. 

The harcs list is initially empty. It is updated only inside loop2 where it gets 
the hyperarc corresponding to a feasible decomposition. Therefore, algorithm 
GET-FEASIBLE-DECOMPOSITIONS can only return a set of nodes and a set 
of hyperarcs of the AND/OR graph. This establishes the partial correctness of 
GENERATE-AND-OR-GRAPH. 

List open gets only subassemblies and no subassembly is inserted more than 
once. Since there is a finite number of subassemblies, the algorithm terminates. 
This establishes the total correctness of GENERATE-AND-OR-GRAPH. 

Since algorithm GET-FEASIBLE-DECOMPOSITIONS is complete, all possible 
decompositions of all subassemblies that are inserted into the list open yield a 
hyperarc. Furthermore, all subassemblies that result from a decomposition are 
inserted into list open, and later are moved to list closed. Therefore, the first 
list returned contains all subassemblies that resulted from some decomposition, 
and the second list returned contains one hyperarc for each decomposition of 
each subassembly. This establishes the completeness of GENERATE-AND-OR­
GRAPH. 
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Complexity 

The amount of computation involved in the generation of the AND/OR graph for 
a given assembly depends on the number N of parts that make up the assembly, 
on how interconnected those parts are, and also on the resulting AND/OR graph. 

The number of prospective decompositions (Le. cut-sets of the graphs of nmc­
tional connections) that must be analyzed will be used in this section as a mea­
sure of the amount of computation involved in the generation of all assembly 
sequences3. Two models for how the parts in the assembly are interconnected 
are considered in order to provide bounds in the estimate of computational 
complexity: 

1. a weakly connected assembly in which there are N -1 connections between 
the N parts, with the ith connection being between the ith, and the (i+ 1 )th 

parts; 

2. a strongly connected assembly in which every part is connected to every 
other part. 

And three possibilities for the resulting AND/OR graph are considered: 

1. a balanced tree AND/OR graph in which there is at most one hyperarc leav­
ing each node and this hyperarc points to two nodes whose corresponding 
subassemblies either have the same number of parts, or their number of 

. parts differ by one; 

2. a one-part-at-a-time tree AND/OR graph in which there is at most one 
hyperarc leaving each node, and this hyperarc points to two nodes one of 
which corresponds to a one-part subassembly; and 

3. a network AND/OR graph in which there are as many hyperarcs leaving 
each node as there are cut-sets in the graph of functional connections of 
the node's corresponding subassembly. 

The resulting total number D of decompositions that must be analyzed as a 
function of the number N of parts that make up the assembly for each possible 
combination of how the parts are interconnected and the type of the resulting 
AND/OR graph is: 

1. Weakly connected assemblies: 

(a) Balanced tree AND/OR graph: the number of prospective decomposi­
tions that must be analyzed is N - 1 for the initial assembly, N - 2 
for all subassemblies, N - 4 for all subsubassemblies, and so on. 

3The overall complexity of algorithm GENERATE-AND-OR-GRAPH should take into account the 
computation involved in generating the cut-sets of the graph of functional connections. 
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D = (N -1) + (N - 2) + (N - 4) + ... + (N _ 2int(1og2 N ») 
int(1og2 N) 

= L (N _2i) = 
i=O 

= N· [int(log2 N) + 1]- 2[int(log2 N )+1] + 1 
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(b) One-part-at-a-time tree AND/OR graph: the number of prospective 
decompositions that must be analyzed is N ~ 1 for the initial assem­
bly, N -2 for the (N -2) part subassembly, N -3 for the (N -3)-part 
subassembly, and so on. Therefore, 

D = (N - 1) + (N - 2) + (N - 3) + ... + 2 + 1 

N-1 () 
= L(N-i)=N. N-l 

i=1 2 

(c) Network AND/OR graph: the number of prospective decompositions 
that must be analyzed is N - 1 for the N-part subassembly, N - 2 
for each of the two (N - I)-part subassemblies, N - 3 for each of 
the three (N - 2)-part subassemblies, and so on. Therefore, 

D = 1· (N - 1) + 2 . (N - 2) + 3 . (N - 3) + ... + (N - 1) . 1 
N-1 

= Li. (N -i) 
i=1 

(N + 1) . N . (N - 1) 
= 

6 

2. Strongly connected assemblies: 

(a) Balanced tree AND/OR graph: the number of prospective decomposi­

tions that must be analyzed is (2(N-1) - 1) for the initial assembly, 

(2int(¥) -1) + (2int(¥) -1) for all subassemblies, (2int(Nil) - 1) + 
(2int( Ni 2) -1) + (2int( Ni 3) _ 1) + (2int( Ni ') -1) for all subsubassemblies, 

and so on. Therefore, 

int(log2 N) 2i_1 
D = L L(2int(N-;{-1) - 1) 

i=O j=O 

(b) One-part-at-a-time tree AND/OR graph: the number of prospective 

decompositions that must be analyzed is (2N - 1 - 1) for the N-part 

4We use the notation int(x) to represent the largest integer that is less than or equal to x. For 
example, int(3) = 3 and int(3.5) = 3. 
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subassembly, (2N - 2 -1) for the (N -I)-part subassembly, (2N - 3 -1) 

for the (N - 2)-part subassembly, and so on. Therefore, 

D (2N- 1 - 1) + (2N- 2 - 1) + (2N- 3 - 1) + ... + (2 - 1) 

= 2N-N-I 

(c) Network AND/OR graph: the number of prospective decompositions 

that must be analyzed is (2N - 1 - 1) for the N-part subassembly, 

(2N - 2 -1) for each of the (:-1) (N -I)-part subassemblies, (2 N - 3 _ 

1) for each of the (:-2) (N - 2)-part subassemblies, and so on. 

Therefore, 

D = (Z)· (2N - 1 - 1) + (N~ 1) . (2N - 2 - 1) + ... 

... +(~).(2-1) 

For each of the three possibilities of the resulting AND/OR graph, table 7.2 shows 
the number of decompositions that must be analyzed for weakly connected 
assemblies and table 7.3 shows the number of decompositions that must be 
analyzed for strongly connected assemblies, as a function of the number of parts 
that make up the product. The figures in table 7.3 are given as a reference since 
it is very unlikely that there would be a twenty-part assembly in which every 
part is connected to every other part. 

The results above take into account the fact that the type of the resulting 
AND/OR graph is not known a priori. For example, for the weakly connected 
assembly whose AND/OR graph is a balanced tree, all the N - 1 cut-sets of the 
whole assembly were included in the number of decompositions that are tested, 
although there is only one cut-set that yields two subassemblies that have the 
same number of parts. 

As discussed in the end of section 7.3, a more efficient implementation of the 
method for the generation of assembly sequences presented in this chapter 
will include additional tests aimed at avoiding unnecessary computation. One 
such test is to check whether the feasibility of a decomposition follows from the 
feasibility of other decompositions. In the case of strongly connected assemblies 
in which all decompositions of all subassemblies are feasible, the computation 
can be significantly reduced if this test is performed before analyzing each 
decomposition. Since all decompositions of the whole assembly are feasible, all 
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Table 7.2: The number of decompositions that must be analysed for each type 
of resulting AND/OR graph, as a function of the number of parts, for weakly 
connected assemblies. 

Number Balanced One part Network 
of parts tree at a time 

2 1 1 1 

3 3 3 4 

4 5 6 10 

5 8 10 20 

6 11 15 35 

7 14 21 56 

8 17 28 84 

9 21 36 120 

10 25 45 165 

15 45 105 560 

20 69 190 1,330 

25 94 300 2,600 

30 119 435 4,495 
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Table 7.3: The number of decompositions that must be analysed for each type 
of resulting AND/OR graph, as a function of the number of parts, for strongly 
connected assemblies. 

Number Balanced One part Network 
of parts tree at a time 

2 1 1 1 

3 4 4 6 

4 9 11 25 

5 20 26 90 

6 39 57 301 

7 76 120 966 

8 145 247 3,025 

9 284 502 9,330 

10 551 1,013 28,501 

15 16,604 32,752 7,141,686 

20 525,389 1,048,555 1,742,343,625 

25 16,783,550 33,554,406 423,610,750,290 

30 536,904,119 1,073,741,793 102,944,492,305,501 
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decompositions of all subassemblies should also be feasible. Therefore, with 
a simple additional test, the total number of decompositions that must be 
analyzed is reduced from eN

2+1 - 2N) to (2N - 1 - 1). 

7.5 Conclusion 

A correct and complete algorithm for the generation of all mechanical assembly 
sequences was presented. The problem of generating assembly sequences was 
transformed into the equivalent problem of generating disassembly sequences. 
The algorithm operation consists in looking at all the decompositions of the 
assembly, that is, all the ways the assembly can be split into two subassemblies. 
This is done by generating all cut-sets of the assembly's graph of connections, 
and checking which cut-sets correspond to feasible decompositions. A decom­
position is feasible if it possible to obtain the assembly by joining the two 
subassemblies. The same process is repeated for the subassemblies, for the 
subsubassemblies, and so on, until only single parts are left. At the end, the 
AND/OR graph representation of assembly sequences is returned. 

The algorithm also lends itself to an interactive implementation in which a 
computer program generates questions that are answered by a human expert. 
Each question addresses the feasibility of a decomposition. It is also possible to 
have a computer program, instead of a human, to answer the questions directly 
from a description of the assembly. Our current implementation, which has 
the restrictions on the types of assemblies discussed in section 7.1, includes 
programs that answer the questions. 

An approach to compute the answer to the question of whether or not it is 
feasible to obtain a given assembly by joining two subassemblies was presented. 
This approach is based on the use of a relational model description of the 
assembly. The model includes three types of entities: parts, contacts, and 
attachments; it also includes a set of relationships between entities. Both 
entities and relationships can have attributes. To decide whether or not a 
given decomposition is feasible, two predicates must be computed, using the 
data in the relational model: 

• The TASK·FEASIBILITY predicate which is true if it is feasible to join 
two subassemblies . 

• The STABILITY predicate which is true if the parts in each subassembly 
maintain their relative position and do not break contact spontaneously. 

The key assumption in proving the correctness of the algorithm is that it is 
always possible to decide correctly, based on geometrical and physical criteria 
(Le. using the three predicates above), whether or not it is feasible to ob­
tain a given assembly by joining two subassemblies, and whether or not the 
subassemblies are stable. 



www.manaraa.com

188 

The amount of computation involved in generating all mechanical assembly 
sequences was assessed by determining the number of decompositions that must 
be analyzed. That amount depends not only on the number of parts and on how 
they are interconnected, but on the solution AND/OR graph as well. The least 
amount of computation occurs for weakly connected assemblies in which each 
subassembly has only one feasible decomposition and that decomposition yields 
two subassemblies whose number of parts are either equal or differ by one. The 
maximum amount of computation occurs for strongly connected assemblies in 
which all decompositions of all subassemblies are feasible. This worst case, 
however, is very unlikely to occur in practice. Furthermore, additional simple 
tests discussed in section 7.3 can reduce the amount of computation. 

In practice, an evaluation of the alternative assembly sequences generated by 
the algorithm presented in this paper is needed in order to choose the se­
quence that will be actually used in the assembly process. Different evaluation 
functions have been explored including a function based on parts entropy[13], 
a function based on the complexity of assembly tasks and the stability of 
subassemblies[10], a function based on number of different sequences in which 
the assembly tasks can be executed[ll], and a function based on the parallel 
execution of assembly tasks[ll] . 

It is also possible to implement an interactive system in which a computer 
program generates the alternative sequences, as described in this paper, and a 
human expert then selects the best one. Still another possibility would be to 
use an evaluation function for a preselection of good alternative sequences and 
then have a human expert to make the final choice. 

Whenever the amount of computation exceeds the available computational re­
sources, at least two strategies may be followed: 

1. The number of parts can be artificially reduced by treating subassemblies 
as single parts. An analysis of the graph of connections may indicate 
the clusterings of parts that yield bigger reductions in the amount of 
computation. 

2. The algorithm generates fewer, hopefully the best, sequences using some 
heuristics to guide the generation of assembly sequence. Such heuristics 
should be compatible with the evaluation function used to choose among 
the alternative assembly sequences. 

In both strategies, the computation will be reduced at the expense of the com­
pleteness, since not all possible sequences will be generated. The devolpment of 
a procedure to cluster parts into subassemblies to obtain a hierarchical model 
of the assembly, and the development of good heuristics to guide the generation 
of assembly sequences are issues for future research. 
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Chapter 8 

LEGA: a computer-aided 
generator of assembly plans 

Jean-Michel Henrioud and Alain Bourj ault 

In the field of Assembly Automation, Assembly Planning is an important problem 
which is still handled empirically in most factories. For any product there are many 
different assembly plans, and it is obvious that choosing one of them has an 
influence on the cost of the assembly system. Moreover increasing need in 
flexibility sometimes leads, for a given assembly system, to real time scheduling 
requiring local changes in the assembly plan. 

A first systematic method for the determination of all the assembly plans available 
for any given product was proposed by A. Bourjault in 1984 [1]. This method was 
focused in the liaisons between elementary parts, describing an assembly plan as a 
sequence of liaisons. An interactive software, SAGA (proprietary), was derived from 
this method ; it involved a set of questions a human expert was asked about the 
precedence constraints between the liaisons. In practice the number of questions was 
prohibitive and it was difficult for the operator to visualize the liaison concept. That 
is why we have developed a new approach, focused on the parts, presented here and 
which shares several features with the method concurrently developed by L.S. 
Romem de Mello [9]. 
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Another approach, derived from Bourjault's work has been proposed by T. De Fazio 
and D.E. Whitney [2], which used a different formalization of assembly constraints 
leading to a reduction of the dialogue size with the user. Among the related work, 
we must mention those of R. Jeannes [10] and of A.Delchambre [3] ( also 
[4],[11],[13]). 

The basic points in the present method are : 

- a product model, based on a liaison graph similar to the one used in our 
previous method ; 

- a classification and a formalization of assembly constraints 

- an algorithm allowing a systematic determination of all assembly plans, 
described by assembly trees (or part trees, according to a previous definition by 
D.E. Whitney), satisfying the assembly constraints. 

A resulting software, LEGA, has been developed in PROLOG. It has been applied to 
different industrial products, and has proved to be quite more efficient than its 
predecessor SAGA. 

8.1 Assembly system 

An Assembly System is a system having p input flows <Pi,e (i = 1, ... , p) and q 

output flows <Pj,s ( j=l, ... ,q). Each flow <Pi,e is composed of identical objects Ci 

and each flow <Pj,s is composed of identical objects Pj. Relatively to the considered 

Assembly System each Ci object is a component and each Pj object is an end­

product. The assembly of complex products is carried out through several assembly 
systems, so that a same object may be an end-product for one system and a 
component for another. 

In this chapter we shall consider assembly systems involving up to thirty 
components. Thus we assume that more complex products have already been split 
into smaller parts and we consider either the assembly of a part or the assembly of 
the end product from the preassembled parts. 

Moreover we shall only consider implicitly assembly systems having a single 
output. In fact most industrial assembly systems have several outputs. Generally 
the objects Pj are very similar, they share the same structure and differ mostly: 

- by some components, called options, which may be present or absent (e.g. an 
arithmetic processor in a computer). 
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- by different components, called variants, fulfilling the same function (e.g. 
different engines for a same car model). 

In practice the method presented in the following sections may be applied to 
multiproduct systems. There is no real difficulty with the options (provided they are 
not mutually exclusive), for it is sufficient to consider the product bearing all the 
options. As to the variants, problems may arise when their morphologies are really 
different, but we have not developed yet any general method to deal with all the 
possibilities. 

8.2 Product model 

The method proposed in this paper for the generation of assembly plans for any 
product P is based on the modelling of P by a 5- tuple <C, r, L, ~, f> where: 

* C is the set of the components of P. The concept of component refers to an 
assembly system and describes the objects entering this system, they may be 
some subassemblies produced by another assembly system. In the same way P 
may be a subassembly for another assembly system.The securing components 

like screws, bolts and nuts, rivets .... are not included in C. 

* r is the set of liaisons, between the components of P. We say that there is a 
liaison between to components x and y iff there is at least one mechanical 
liaison between x and y inside the product P for at least one orientation of P. 

It is convenient to associate to r the set {l, ... , nJ (n = card (r». [C, n defines 
a graph called liaison graph which is both simple and connected. 

* L is the set of the attachments in P. An attachment is all what contributes 
to secure at least one liaison. An attachment may be : 

- one or several securing components: screws, bolts and nuts, rivets ... 
- some matter: glue, solder 
- some energy: fitting, setting, crimping. 

* .1 is the set of the complementary features in P, they are some features 
which have to be included in P and are defined in the requirement list for P. 
They are mainly : labels, painting, machining, functional tests, tuning, 
cleaning, ... 
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Cover (co) 

Crystal (cr) 

Base(ba) 

cr I 

• 
ba 2 
• 

co 
• 

Figure 8.1: A quartz with i ts liaison graph 

* f is a function which defines, for each attachment or each complementary feature, 
the set of elements of P which are concerned: 

f: pee) xP CL u~) 

(P(E) is the set all of the subsets of E ) 

Example : A quartz is presented in figure 8.1. Its model is given by : 

* e = (cr, ba, co) 
· cr is the crystal 
· ba is the base which includes the electrodes 
· co is the cover 

*r=(1,2} 
The liaison graph [e, n is also depicted in figure 8.1 

*L =(wl' w2) 

· wI is a welding between cr and ba 

· w2 is a welding between co and ba 

* ~ = (el, la, va, sq) 
· el is an electric test 
· la a label printed on the cover which specifies the quality of the 
quartz as defined by the electric test 
· va is the vacuum created between the cover and the base 
· sq is the squeezing which shuts the tube extending the cover. 
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* f is defined as follows : 
f(wI) = ({cr, bal. <1» 

f(W2) = «(ba, co}, <1» 

f(el) = «(ba,cr), (wI}) 

f(la)=«(co}, (el}) 
f(va) = ({ba, co), (w2}) 

f(sq) = ({co), {va)) 

195 

Let's notice that in f(la) we have included co, the component which will support la, 
and also el since its result is an element of lao 

Definition 1 : A virtual subassembly (X, A) of a product P is an object 
composed of: 

- a set X of components of P 
- the set of all the liaisons which bind the components in X inside P 
- a set A of attachments and complementary features of P 

and is such that: 
- the subgraph of [e, rJ generated by X is connected 
- each element a of A is such that: 

fray C (X, A) 

We shall now refer to virtual subassemblies as VSA. 

Definition 2 : A virtual subassembly (X, A)for a product P is a subassembly 
iff there is at least one assembly process for P where the object (X, A) is produced. 

Examples: For the quartz previously described :«(cr), <1», «(cr, ha), <1», «(cr, ba), 
(WI' el}), «(cr, ba, co}, (WI' w2' el,la, va, sq}) are subassemblies. The frrst one is 

also a component (the crystal) and the last one is the end product; the second and 
third ones are subassemblies in the usual meaning. «(co, ba), (w2}) is VSA but 

obviously cannot be a subassembly in any assembly process for the quartz. 

8.3 Assembly trees 

Definition 3 : Two VSA (Xl' A 1) and (X2 , A 2 ) are said to be 

complementary VSA iff : 
Xj nX2 =4> and Aj nA2 =4> 

and there is at least one liaison between one component of X j and one component 

of X2· 
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Thus two complementary VSA are two objects which are liable to be assembled to 
produce a new object (X 1 u X2' Al u A2)' 

Definition 4 : A geometric operation is the production of a VSA (X. A) 
realized by mating two complementary VSA (Xi' Ai) and (Xj • Aj) with: 

X =X·uX· and A =A·uA· 
l J l J 

Such an operation will be noted «Xi' Ai)' (Xj' Aj))' 

Definition 5 : A non gemetric operation is the production of a VSA (X. 
A) realized by the adding of either an attachment or a complementary feature p to 
the VSA (X. A - (p}). 

Such an operation will be noted p(X, A - {p n. A non gemetric operation will be 
called securing operation or complementary operation according as p is an 
attachment or a complementary feature. 

Definition 6 : An assembly tree for a product P is a rooted tree whose: 
- root is the end product P 
- nodes are VSA of P 
- leaves are the components of P 

and such that every non terminal node may be obtained from its k successors: 
- by a geometric operation if k = 2 
- by a non geometric operation if k = 1 

Two assembly trees for the quartz presented in figure 8.1 are shown in figure 8.2. 
They are depicted horizontally and each node is represented by a label which is either 
an elementary part or what has been added to the partes) associated to its 
predecessor(s). The horizontal presentation symbolizes the underlying assembly 
system. The liaisons labelling the nodes resulting from a geometric operation may 
be omitted for they are redundant. 

From the definition of the assembly trees it follows recursively that all VSA 
associated to the nodes of any tree are subassemblies. 

Fundamental assumption: 

Each assembly plan we shall consider can be represented by an assembly tree. 

This fundamental assumption imposes two restrictions to the assembly plans: 

1 - The assembly plans cannot include geometric operations mating more than two 
parts. This is quite sufficient for most assembly processes. Nevertheless some 
special situations may require the mating of more than two parts. Such situations 
are studied in [6], where the way of incorporating them a posteriori into the 
assembly process is described. 



www.manaraa.com

0"--, 
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2-w~ va -!lJ- el-Ia 
00....----.... 1 

Figure 8.2 : Two assembly trees for the quartz given as exemple. 
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2 - Definitions I, 4 and 6 require that when two parts are put together, which is 
described as a geometric operation, aU the liaisons between their components have to 
be set. It does not matter if they are set simultaneously or sequentially, the point is 
that no other operation can take place before they are aU set. This requirement does 
not obviously make trouble for rigid products but may prove restricting for non rigid 
products. In fact, for non rigid products the liaison approach proposed by 
A.Bourjault [1] is more exhaustive. A detailed discussion of this problem is 
proposed in [6]. 

8.4 Assembly constraints 

A good assembly process has to involve easy operations (at least as easy as allowed 
by the product design) and has to follow some logic in order to avoid useless 
reorientations or useless tool changing. We say that assembly planning is subjected 
to assembly constraints. Some are local and concern the assembly operations, we 
call them operative constraints while the others are global and concern the assembly 
process, we call them strategic constraints. 

8.4.1 Operative constraints 

We have divided the operative constraints in three categories. To describe these 
constraints we shall refer to the two parts of any operation. This refers directly to the 
geometric operations which involve two parts but also, by extension, to the non 
geometric ones for which the second part may be some tool or some tool bearing 
some attachment component. 

Geometric constraint 

When mating two parts there must be at least one collision-free trajectory allowing 
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to bring the two parts in contact. The geometric constraint is absolute, intrinsic to 
the product and thus is liable to be automatically deduced from a 3D representation 
of the product. 

Stability constraint 

Each part produced in the course of the assembly process must be stable, that is all 
its components have to keep their spatial relationships. In fact stability is mostly a 
relative concept since it depends largely upon data unknown in the assembly 
planning stage : mainly the motions the part will have to do. Moreover, some loose 
components may be held by some convenient fIxture. 

We have defined three stability levels. A part is: 

- stable when all its components keep their spatial relationship for any 
orientation and any move, 

- partly stable if there is at least one orientation for which all its components 
keep their spatial relationship, possibly with help of some holding equipment, 

- unstable if neither stable nor partly stable. 

The stability constraint, which makes it necessary that no VSA of any assembly 
tree be unstable is neither absolute nor intrinsic to the product, since it refers to 
possible holding equipment 

Material constraint 

The effective realization of any geometric operation requires some equipment 
handling each involved part, with still the necessity of collision-free trajectory 
between the two objects which are the base part with its fIxture and the secondary 
part with its handling device (gripper and arm). A material constraint is so neither 
absolute nor intrinsic to the product. 

We have presented in fIgure 8.3 some illustrations of the operative constraints. 

Example A illustrates a geometric constraint, it is impossible to place the black 
component inside the closed box. 

In example B it is difficult to mate components a and c because of the tube b. The 
diffIculty may turn into an impossibility if b is too long or if c is fitted tightly in 
b . The decision whether there is or there is not a material constraint is difficult and 
belongs to the expert. 

In example C we suppose that components a and b are secured to c through other 
components (for instance leads on c). The resulting subassembly will be obviously 
very difficult to handle and may be considered unstable. There again the decision 
belongs to the expert. 
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A : Geometric constraint B : Material constraint 

C : Stability constraint 

Figure 8.3 : Illustrations of operative constraints. 

8.4.2 Strategic constraints 

According to definitions 4, 5 and 6, each assembly tree respects the operative 
constraints since all its operations are feasible. The problem is that the number of 
assembly trees available for any given product is very large (some 104 for products 
having from 15 to 20 components) and that most of these assembly trees describe 
obviously awkward assembly processes, involving too many assembly direction 
changes or tool changes. 

In order to avoid the determination of inefficient solutions a set of global constraints 
may be introduced before the process of assembly trees determination begins. These 
constraints have to express some reasonable strategies for the assembly process and 
are to be deduced from the product structure. The principal strategic constraints are 
described hereafter. 

Imposed subassemblies 

Very often it is possible to define from the end product some subassemblies which 
are to be produced in the assembly process (for storage purpose, because they are to 
be used as maintenance spare parts, for functional or stability reason). This leads to a 
strategic constraint such that only the assembly trees including these subassemblies 
are to be produced. 
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Group of components 

In a manufactured product, some components have similar shapes and similar sizes 
and are liable to be handled by the same gripper, or they have an identical securing or 
the same assembly direction. In such cases it may be advisable to group the 
operations in which they are involved. This leads to a strategic constraint which 
requires that in each assembly-tree the leaves standing for the components belonging 
to a same group be consecutive. When some subassemblies are imposed a 
subassembly may be an element of a group. This concept of group has proved very 
efficient when applied to several industrial products; it is equivalent to the concept 
of cluster developed concurrently by C.J.M. Heermskerk [5]. It should be noticed 
that it is possible to define subgroups of components inside a same group . Two 
basic structures for some groups of components, studied in [12] are presented 
hereafter, which lead to more selective constraints. 

Stacks: A stack is a group of k (k ~ 3) parts Ci (components or subassemblies) 

such that there is a liaison between Ci and Ci+1 (for i = 1, ... , k - 1) and such that a 

part Ci may be added to a part S including C1 (respectively Ck) iff S includes already 

Ci-l (respectively Ci + 1)' 

Each time a stack C1, ... , Ck is declared inside a product P a special strategic 

constraint is issued so that any resulting assembly tree must include the sub-tree 
( ... «C l , C2)' C3)" " Ck), securing and complementary operations being not 

included. 

Example: given the product P depicted in figure 8.4 if we defme the stack (A,B, 
C, D, E) there is only one resulting assembly tree T 1 presented also in figure 8.4. 

If we define the stack (B, C, D, E) there are only two resulting assembly trees: T 1 

and T2. Without any stack, we would find 14 assembly trees. 

Ordered Layers: A layer is a group of k parts C1, ... , Ck such that each part Ci 

has a liaison with a same component B. The subgraph associated to the set 
(Cl , ... , Ck) u {B} is generally star shaped but the possibility of some liaisons 

between the Ci is not excluded. When a layer is such that its assembly order is 

obviously indifferent then it is useless to provide all the possible orders (k!). In such 
a case the user may choose an arbitrary order by declaring an ordered layer. It is still 
possible to declare an ordered layer when there is some precedence constraints 
between some of the C j components if a convenient order is obvious. 
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E 

D 

C 

8 

A 

T1 = ««A,B),C),D),E) 
T2 =(A, «(B,C),D),E» 

Figure 8.4 : Example of stack strategic constraint 

T1 = «««A,B),C),D),E),F),G) 
T2 = «««A,F),G),B),C),D),E) 
T3 = «««A,D),E),B),C),F),G) 
T4 = «««A,F),G),D),E),B),C) 

Figure 8.5 : Example of layer strategic constraint 
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Each time an ordered layer (Cl , ...• Ck) is declared inside a product P, a strategic 

constraint is issued so that each resulting assembly tree must include the subtree 
( ... «X,C l ), C2)' .. . , Ck)' securing and complementary operations being not 

included. 

Example : given the product P depicted in figure 8.5, several possibilities arise for 
the introduction of strategic constraints : 

1. There are two groups of components. according to assembly directions, with 
layers structures: (B,C,D,E) and (F,G). There are 48 resulting assembly trees . 

2. If each layer is declared to be ordered then there are only 2 assembly trees (Tl and 
T2 in figure 8.5). 

3. If (B,C,D,E) is considered as including two sublayers (B,C) and (D,E) then there 
are 24 assembly trees . 

4. If each layer (B,C). (D,E) and (F.G) is declared to be ordered, then there are 4 
assembly trees (T I.T 2' T 3' T4 on figure 8.5). 

Layers (B,C,D,E), (B,C) and (D,E) may be declared ordered because their assembly 
order is indifferent. Layer (F,G) has only one assembly order. Without any strategic 
constraint the number of assembly trees would be 360 . 

Linear Assembly Trees 

An assembly tree is said to be linear when each node having two successors (the tree 
being oriented from the root to the leaves) has at least one leaf for successor. So a 
linear assembly tree describes an assembly process where one single component is 
added to the current subassembly in each geometric operation. 

From our experience of industrial products we have noticed that most of the 
assembly processes are linear. As we said before we consider assembly systems 
involving a limited number of components. An assembly process for a whole car is 
highly parallel but fortunately it is dispatched on several assembly systems which 
involve mostly linear processes. 

So. we have integrated in our method the possibility to restrict the determination of 
assembly trees to the linear ones. However this constraint is considered weaker than 
the one dealing with the imposed sub-assemblies. Thus, when some imposed sub­
assemblies have been defined and when the restriction to linear assembly trees is 
chosen, the resulting trees are linear relatively to the imposed sub-assemblies and to 
the other components. 

This concept of linear assembly tree is also proposed by 1.D.Wolter [14] inside a 
classification of assembly plans. 
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Advantages and drawbacks of strategic constraints 

Any assembly tree which satisfies the operative constraints describes a feasible 
assembly process. Let us say that such an assembly tree is valid. Practically, it turns 
out that the number of valid assembly trees increases dramatically fast with the 
number of components of the end product. The number of valid assembly trees for 

products having 20 components ranges from 104 to 106. So it is obviously 
useless to know all the valid assembly trees unless we can select the best ones. 

In order to reduce the set of resulting assembly trees to a few best ones we have 
proposed a method presented in [6] and [8]. Succinctly, we consider all the different 
operations involved in all the assembly trees (for products having 20 components 
there are hundreds of different operations). The complexity of each operation is 
evaluated, which requires the choice of the base component as well as its orientation. 
When there are several possible choices, then several different operations (which then 
are called oriented) are issued and have to be evaluated. A new set of assembly trees, 
also called oriented, is produced. For each of them an operative cost is computed 
from its operations and a logistic cost is deduced from the number of assembly 
direction changes between its operations. These two costs are then combined in a 
global cost which allows their ranking. Unfortunately this method is quite time 
consuming for the expert, who has to evaluate some hundreds of operations, and 
thus cannot be effectively applied until this evaluation process is partly automated. 

In the present state of our work the most efficient tool allowing the determination of 
a reasonable set of assembly trees (e.g. 10 to 50) is the introduction of strategic 
constraints.This tool has proved very efficient and it had been applied to different 
industrial products (14 to the present day). It requires some time to the user to study 
the product to assemble before the process of assembly tree generation begins, but it 
is quite reasonable. Moreover, this is a creative task, more rewarding than the one 
involved in the interactive determination of the assembly trees presented in the 
following section. 

Thus we may conclude that the introduction of strategic constraints is a practical and 
efficient tool for assembly planning.The only drawback is that the choice and 
definition of assembly constraints is left to the user, so that subjectivity is 
introduced inside a systematic process. The method quoted above, with a numerical 
evaluation of each resulting assembly tree would be better, but there is still a lot of 
work to be done towards a system that is adequate for practical industrial use. 

To conclude this section, we must emphazise that for a given product, the user may 
hesitate between mutually exclusive strategic constraints. Then he will have to 
define several sets of constraints, each set leading to a corresponding set of assembly 
trees. When such a situation arises, the different sets of resulting assembly processes 
will have to be kept to be compared when the resulting assembly systems are 
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sufficiently defined (equipment costs and performances) to allow a precise 
comparison. 

8.5 Generation of all Assembly Trees 

8.5.1 Basic formulation 

Informally, the approach we have developed for the systematic generation of 
assembly trees is a decomposition one. Starting from the end product P we search all 
the feasible operations having P for result. The set of these operations dermes a set 
of subassemblies. For each resulting subassemblies (X, A) we search again all the 
feasible operations having (X,A) for result. And we proceed recursively until the 
resulting subassemblies are reduced to components of P. 

This algorithm is quite similar to the one defined by L.S. Romem de Mello [9]. To 
find the geometric operations which have a subassembly (X, A) for result we search 
all the cut sets of the graph associated to (X, A) that is all the pairs X I' X2 such 

that: 

and such that the graphs associated to X 1 and X2 are connected. But, according to the 

model proposed here, we have also to search all the non geometric operations having 
(X, A) for result. So we have to look, for each p belonging to A, if the operation 
p(X, A-{p}) is feasible. 

More formally, we define now an assembly tree in the following way, where Vp is 

the set of all the VSA for a given product P. 

Definition 7: T is an assembly tree for (X, A) E V p iff: 

1. X={ci},ciEC and A=11> 

then T= ci 

or 2. 3(Xi , Ai)' (Xj , Aj)EVp such that 

- Ti is an assembly tree for (Xi' Ai) 

- Tj is an assembly treefor (Xj , A) 

- The geometric operation ((Xi' Ai)' (Xi' A) isfeasible 

then T = (Ti, Tj ) 

or 3. 3PEA 
- T' is an assembly tree for (X, A-{p}) 
- The non geometric operation p (X, A -{p} ) is feasible 

then T = peT' ). 
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Defmition 8.7 is composed of three disjunctive clauses which lead directly to three 
Prolog clauses. These clauses are the basic part of our present program for 
generating assembly tree. This prototype program, named LEGA ("Logiciel 
d'Elaboration des Gammes d' Assemblage") is written in Prolog II. Its architecture is 
depicted in figure 8.6, which includes three main modules: 

* M I describes the product model and the set of strategic constraints. All data in 
Ml are provided by the user. Ml is able to check the coherence of this data. Jl 
is the user's interface. 

* M2 provides the decomposition algorithm. It is mainly composed of the 
clauses resulting from Definition 7. M2 provides only decompositions 
consistent with the strategic constraints defined in MI. M2 provides candidate 
operations (geometric and non geometric) resulting from the product 
decomposition. 

* M3 checks all the operations issued by M2 first by searching a database B 
which contains the already known operative constraints, and then, when no 

answer is found in B, by questioning the user. The user's answer is used to 
enrich B. J2 is the user's interface. M3 includes also an optional interface J3 
with an external program, connected to a CAD software containing a 3D solid 
geometric model of the product, which allows an automatic checking of the 
geometric constraint. This connexion has been successfully tested in association 
with CAD software EUCLID. 

* Module "operations checking" includes a set of rules allowing the deduction of 
new operative constraints from the ones already registered in B and from the 
product model (see section 8.6). 

8.5.2 Modified algorithm 

The third condition given in Definition 7, which allows to check all the feasible non 
geometric operations having for result subassembly (X, A), is quite inefficient in 
practice. This condition leads to check for every p in A the feasibility of operation p 
(X, A - (p)). In fact, it appears that most of the non geometric operations have to 
take place as soon as the conditions for their realization (defined by f function in the 
product model) are fullfilled. Thus a securing operation is usually carried out as soon 
as the components to be secured are in a subassembly and this for stability purpose. 
In the same way a checking operation is carried out as soon as the components 
necessary to the function to be checked are in a subassembly. To add more 
components before the checking would lead to reject or to rework a more complex 
subassembly. That is why we have added to LEGA the following rule: 
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Role :Any subassembly (X, A) is authorized to enter a geometric operation 
«X ,A) , ( » iff: 

\I p[pE L U 61\ Pc (f(p» C XI\ PrU6 (f(p)) C A => pE A] 

where Pc and PI.U6 denote the projections respectively on C and Lu6. 

Informally, any subassembly is allowed to enter a geometric operation only once it 
has been provided with all its attachments and all its complementary features. 

Nevertheless, there are obviously a few exceptions to this rule . So when the user 
thinks that it would be interesting to delay the introduction of some attachment or 
some complementary feature p, he has to declare it in the product modelling stage. 
This leads to the issue of a formula free (P). 

8.6 Formalization of operative constraints 

8.6.1 The CG relation 

Definition 8 : the CG relation for a product P is a binary relation on Vp such 
that: 

((Xi' Ai)' (Xj , Aj)) E CG iff: 

1. (Xi' Ai) and (Xj , Aj) are two complementary VSA 

and 2. Any geometric operation ((Xp, Ap), (Xq Aci) such that: 

Xi C Xp and Xj CXq 

is unfeasible. 

Properties : 

The three properties below follow directly from definition 8 

1. \I (Xi' Ai)' (Xj' Aj)E Vp [CG «Xi' Ai)' (Xj , Aj»~ CG «Xj , Aj), (Xi' Ai»] 

2.\1 (Xi' Ai)' (Xj , A j ), (Xp, Ap), (Xq Act E Vp 

[CG«Xi' Ai)' (Xj' Aj» 1\ Xi C Xp 1\ Xj C Xq => CG «Xp, Ap), (XC}' A<i)] 

3.\1 (Xi' Ai)' (Xj , Aj), (Xp, Ap), (Xq A<i EVp 

rCG «Xi' Ai)' (Xj' Aj» 1\ Xp C Xi 1\ Xq C Xj => -, CG «Xp, Ap), (Xq A<i)] 
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Figure 8.7 : Two examples illustrating material constraint. 

In LEGA, each time a candidate geometric operation «Xi,Ai)' (Xj.Aj» issued by the 

decomposition algorithm is rejected because of the geometric constraint, then a 
clause CG «Xi' Ai)' (Xj , Aj» is created in database B. The reason is that since 

there is no free collision trajectory allowing to bring the two parts (Xi' Ai) and 

(Xj' Aj) in contact, the problem will be the same or even worse if we add more 

components to these parts. 

When a candidate geometric operation «Xi' Ai)' (Xj , Aj» satisfies the geometric 

constraint but does not satisfy the material constraint, the user is allowed, under his 
responsibility, to force in LEGA a clause CG «~, Ai)' (Xj , Aj». This may be done 

when there is obviously no room between the two parts for any possible gripper. 
Thus there is a geometric constraint between the objects constituted by the involved 
subassemblies and any possible handling device. 

This situation is illustrated by example A in figure 8.7. There is no geometric 
constraint for the operation « {a, b, d} , <1», ({ c} ,<1») but this operation may be judged 
impossible or too difficult by the user. Obviously the impossibility will stand or 
even increase if more components are added to any of the two involved parts. 

However the possibility to express a material constraint by means of relation CG 
must be used carefully, for it may lead to some mistakes as, for instance, in the 
example B in figure 8.7. Operation «{a, b}, <1», ({c}, <1») may be judged impossible 
while operation «{a,b}), <1», ({ c, d), <1») may be a rather easy one. 

8.6.2 The CS relation 

Definition 9 : the CS relation for a product P is a property (or unary relation) 
on V p such that: 

(Xi' Ai) E CS iff the subassembly (Xi' Ai) is unstable. 
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We have shown in [6] that some automatic deductions about the stability of the 
subassemblies issued by the decomposition algorithm could be derived from the 
product model and from the CS clauses already created in database B. 

8.6.3 The CM relation 

Definition 10 : the eM relation for a product P is a binary relation on Vp 

such that: 
((Xi' Ai)' (Xj , Aj)) E CM iff 

1. ((Xi' Ai)' (Xj , Aj))~ CG 

and 2. (Xi' Ai) ~ CS A (Xj , Ai ~ cs 
and 3.operation ((Xi' Ai)' (Xj , Aj )} is unfeasible 

An example of use of CM relation is given by product B in figure 8.7. If the user 
wants to reject operation «{c)), ({a, b}) we have seen that it was not correct to use 
relation CG, so we would instead create a clause: CM « (c}.cI», ({a, b}.cI») 

8.6.4 The AG relation 

Definition 11 : the AG relation for a product P is a property on (Luii) x V p 

such that: (p, (X, A)) E AG 

iff any non geometric operation p (Y, B) such that XC Y is unfeasible. 

Properties : 

1. V pe :£ u A, (Xi' Ai)eVp [AG (p, (Xi' Ai»/\ Xi C Xj => AG (p, (Xj , Aj)] 

2.V pe :£ u A, <Xi, Ai) eVp rAG (p, (Xi' ~»/\ (Xj C ~) 

=> ~G (p, (Xj' Aj)] 

In LEGA, each time a candidate non geometric operation p(Xi, Ai) issued by the 

decomposition algorithm is rejected because of a geometric constraint, then a clause 
AG (P, (Xi' Ai» is created in database B. 

An example is given in figure 8.8 where it is impossible to screw the components a 
and b when the component c is mounted on b, so we have: AG (s, ({a, b, c). cI») 
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Figure 8.8 : Geometric constraint for a securing operation. 

8.6.5 The AM relation 

Definition 12 : the AM relation for a product P is a property on (LuL1) xV p 

such that: (p, (Xi' Ai» E AM iff 

1. (p, (Xi' Ai» 6! AG 

0IUi 2. The non geometric operation p(Xi, Ai) is unfeasible. 

In practice the AM relation is not used frequently. Its main use is to correct an 
insufficient definition of the f function in the product model. For instance, consider 
the quartz presented in section 8.1. Labelling la has to be set in the cover co. If the 
user does not include the electric state in the defintion of f (la) and declares 
f(la) = ({co), <1», then the decomposition process will suggest the operation 
la ({ co), <1» which may be realized before the electric testing. This operation is 
impossible because the label cannot include the quality of the resulting quartz. In 
this case this operation may be rejected by using a clause AM (a clause CG would 
obviously eliminate every assembly process). 

8.7 User's part in assembly tree generation 

As described in section 8.5, LEGA produces a set of operations whose feasibility has 
to be checked. Whenever the feasibility of an operation cannot be decided from the 
database B and the set of rules included in LEGA, the user is questioned. According 
to the operation category (geometric or not) two different dialogues may be issued 
which are presented in figure 8.9. 

The first one, issued for a geometric operation decides its feasibility and, when the 
operation is unfeasible, the nature of the operative constraint involved.The operation 
is noted (S,T) where S and T are the two involved subassemblies. Moreover, when 
there is a stability problem, the unstable part is defined. 

The second one, issued for a non geometric operation is quite similar but, since there 
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is only one subassembly involved, when there is a stability problem there is not 
need to ask which part is unstable.The operation is noted p(S). 

In both dialogues we have presented the clauses deducible from the user's answers. In 
fact, the work in LEGA is more complex than the simple creation of these clauses. 
Properties of CG and CS relations are used to eliminate redundant clauses in B. 

Also the knowledge included in B allows LEGA, sometimes, to skip some 
questions in the dialogue. Thus when at least one part (Xi' Ai) or (Xj' Aj) is known 

to be stable (because one is reduced to a component or because all its components 
are secured), no question is asked about the unstable part. Moreover, if the two parts 
are known to be stable and if there is a clause: 

with 

then the answer that the operation «Xi' Ai)' (Xj , Aj» is unfeasible implies that a 

material constraint is involved, a geometric constraint being excluded. 

In practice. the number of dialogues issued in the assembly tree generation of a 
product or subassembly having 20 components, without any strategic constraint, is 
of some hundreds. Moreover the waiting time between two dialogues increases as the 
data that is added to database B ( which is empty at the beginning) enables LEGA to 
do more and more automatic deductions without the user's help. Thus, the generation 
of all valid trees with LEGA is not interesting in practice because it requires too 
much time from the user and produces too many assembly trees. 

The connection to a CAD software reduces substantially the number of questions but 
increases the computing time. Thus the good use of a CAD software is to have 
LEGA working in two stages. A first stage completely automatic which defines the 
whole set of geometric constraints in B, and a second stage which starts again the 
whole process interactively with the user. 

However LEGA is most efficient when supplied with strategic constraints.Typically 
only a few of them are needed to reduce considerably both the number of questions 
and the number of resulting assembly trees. In the next section we shall present a 
simplified version of LEGA which has proved to be very effective for most of the 
products we have studied, and has been considered more practical by engineers 
working on assembly. 
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8.8 Simplified version of LEGA 

As we have stated in section 8.5, when two parts are assembled, if they are to be 
secured, usually they are secured immediately. That is why we have added a 
corresponding general rule in LEGA. Thus, let P be an attachment securing two 
subassemblies (Xi' Ai) and (Xj' Aj)' that means, with f(P) = (X, <1» : 

and X C X·uX· 
I J 

LEGA will produce successively the two following operations: 

1. is P(Xi u Xj' Ai u Aj) feasible? 

2. is «(Xi' Ai)' (Xj ' Aj» feasible? 

In fact it is far better for the user to consider globally these two questions and to find 
out at the same time whether it is possible to mate and to secure these two 
subassemblies. So we have introduced a new kind of operation. 

Definition 13 : An assembly operation is the production of a VSA (X. A) 
realized by mating and securing two complementary VSA (Xi' Ai) and (Xi' Ai) 

with.' X =Xi uXi and A =AiuAiu a 
where a = [pIp E I: .' Pc (j(p)) C X APe (j(p)) fL Xi A P c(j(p)) fL Xl 

Accordingly we have developed a simplified version of LEGA which deals mainly 
with assembly and complementary operations. Nevertheless, it is still possible to 
declare that some attachment may be delayed by means of predicate free. For such 
attachments the concept of assembly operation will only appear in the trees where 
their setting follows immediately the mating of two corresponding parts. In other 
trees the user will still have to deal separately with the geometric operation and the 
securing operation. 

To close this section it is important to state that for many products having few 
complementary features and when their placing in the assembly process appears to 
be easy, it is more convenient for the user not to include them in the product model. 
They will be introduced later in the definition of the assembly system. Such a way 
to deal with complementary features may not be satisfactory from a theoretical point 
of view but it greatly simplifies the user's work. Thus, ultimately LEGA may be 
simplified to the point where the only operations involved are the assembly ones as 
defined above. This implies the merging of relation CG and AG on the one hand and 
relations CM and AM on the other hand, and a slight change in the dialogue between 
LEGA and the user. This simplified version of LEGA has been presented in [7] 
while a complete description of the full version was given in [6]. 



www.manaraa.com

214 

8.9 Conclusion 

The method proposed in this paper allows to fmd all the valid assembly sequences 
for any product to assemble. The resulting assembly sequences, represented by 
assembly trees, include not only the assembly operations (mating and securing of 
parts), but also every complementary operation imposed by product defmition.The 
resulting program, LEGA, which is still a prototype, has been written in Prolog 
which proved quite suitable to the formalization we have chosen both for the 
decomposition algorithm and for the assembly constraints. 

The current version of LEGA is still quite prohibitive for products having more than 
ten components, both because it requires too much time from the user and produces 
too many valid assembly trees. We are studying a partially automatized evaluation of 
the operations involved in the different resulting trees allowing to rank them, but 
obviously there is still a lot of work to be done. 

The key to tum LEGA into an efficient generator of assembly plans was to define 
some strategic constraints which may be introduced by the user in the product 
modelling stage. These constraints allow, for most products, a considerable reduction 
of the number of resulting assembly trees and of the user's work. The drawback is 
that their choice depends upon the user's expertise and that there is no proof that they 
select the best trees. Anyway this impoverishment in the theoretical aspect is 
compensated by a real increase in efficiency. It is now possible to generate assembly 
trees for products having about twenty components in reasonable time, and even to 
deal with more complex products by splitting them into subassemblies. It is 
important to emphasize that only a few strategic constraints are needed and, however 
subjective they are, they are registered so that the user's decision may be easily 
discussed. 
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Chapter 9 

Maintaining geometric 
dependencies in assembly 
planning 

Randall H. Wilson and Jean-Fran~ois Rit 

Used as a tool to get manufacturability feedback in early design stages, an 
assembly sequence planner would be a boon to designers. By pressing a button, 
an engineer could receive an assembly plan or set of plans for the product being 
designed, along with estimates of production time and cost. The design could 
then be adjusted to make it easier to build. But to be most useful, such a 
tool must be both autonomous and fast. If the designer has to do a great deal 
of geometric reasoning for the planner or wait days for the system to do it 
automatically, the assembly planner will be used infrequently, and the impact 
on the design will be minimal. 

In this chapter we describe GRASP, an assembly planner designed for use in 
a concurrent design environment. GRASP generates assembly sequences di­
rectly from a geometric model of the target assembly, and includes a method 
that makes assembly planning more efficient by establishing a tight connection 
between physical reasoning and sequence planning. In our approach, the geo­
metric reasoner constructs an expression describing the conditions under which 
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the result of a geometric calculation will still be valid. These expressions are 
then evaluated at later steps, often avoiding costly geometric computation. In 
our experiments the method has caused large speed increases when planning 
for real assemblies. 

In our treatment of assembly sequence planning, we make some simplifying 
definitions. First, parts are placed directly into their final positions relative 
to each other, and no connection between two parts is ever changed after it 
is established. No assembly operation mates more than two subassemblies. In 
addition, each intermediate subassembly must be connected. 

We also make assumptions about the geometry of the parts in the assembly: 
the parts are rigid, they have exact geometry, and their positions have no tol­
erances. This has the disadvantage that the planner cannot accurately reason 
about springs, snap-fit connections, or other flexible parts, but it allows the 
planner, with a geometric model of the final assembly, to describe any partial 
assembly with just a list of the parts contained therein. Although the methods 
we discuss could be generalized further, the solid modeler we use reasons about 
3D polyhedral objects, with a limited added ability to reason with cylindri­
cal, conical, and spherical surfaces. Moreover, our planner can only mate two 
subassemblies with a single translation. 

Finally, in this chapter we only allow assembly operations that mate a single 
part with a subassembly; Woo [21] and Wolter [20] call this the linear case, 
while De Fazio and Whitney [7] call it "precluding a plurality of unconnected 
subassemblies." Chapter 10 examines the general case, when two subassemblies 
can be placed together in an assembly operation. 

9.1 GRASP 

We have implemented an assembly sequence planner called GRASPl. GRASP 
takes as input just the 3D geometric models of a set of parts comprising a 
target assembly, automatically builds a model of the assembly including the 
parts and contact relations between them, and finally generates an AND/OR 
graph representing a set of possible assembly sequences. 

9.1.1 Building the Assembly Model 

Most of the geometric information in GRASP is contained in the description 
of the goal assembly, which is built and maintained using Vantage [1], a 3D 
polyhedral modeling system. A user defines the geometry and position of each 
part using constructive solid geometry, then the modeler creates a boundary 

1 GRASP stands for "Geometric Reasoning Assembly Sequence Planner." It has nothing 
to do with grasp planning. 
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representation from the eSG tree. The boundary representations for the parts 
of the target assembly are the only input to GRASP. 

From the part models, the procedure COMPLETE-ASSEMBLY deduces all the 
contacts between faces of parts and records the contact information in a con­
nection graph, where each node corresponds to a part and each edge is a contact 
between two parts. The connection graph, much like Homem de Mello's rela­
tional model [8], forms the basis of the planning process. In a real model of an 
assembly, contact information could be ambiguous due to tolerances or small 
distances between parts, requiring explicit human clarification. However, since 
we assume no tolerances on our parts, GRASP constructs its relational model 
of the assembly autonomously. 

To find contacts between parts, GRASP checks each pair of surfaces from 
different parts for a possible contact. For every pair of surface types, a special­
purpose routine determines whether there is contact between an instance of 
each; for example, two planar faces are in contact if they are coplanar, have 
opposing normals, and intersect in their common plane. Routines have been 
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Figure 9.2: A crate assembly and its AND/OR graph 

written to check for face-face, face-cylinder, and cylinder-cylinder contacts. 
Although Vantage approximates curved surfaces with faces, it remembers the 
parameters of the real surfaces, allowing accurate detection of curved contacts. 

The contacts for each part and parameters describing each contact-the inward­
pointing normal for a planar contact, the direction and position of the axis for a 
cylindrical contact-are stored in the connection graph of the assembly. Figure 
9.1 shows the Vantage drawing of a three-part assembly and the representa­
tion of one part and its connections. Once the connection graph has been 
constructed, sequence planning can begin. 

9.1.2 Building the AND/OR Graph 

GRASP adopts Romem de Mello and Sanderson's AND/OR graph represen­
tation of the space of possible assembly sequences (Chapter 6). Associated 
with each node in the graph is a partial assembly that might be reached in the 
process of building the final product. An AND-arc represents the operation of 
putting two child assemblies together to make the parent, while OR-arcs give 
different ways of creating the same parent assembly. Thus each AND-subtree 
of a full AND/OR graph represents a partial assembly order for the product. 
Figure 9.2 shows a simple assembly and the AND/OR graph GRASP generated 
for it. 

Figure 9.3 gives the main algorithm of GRASP, which follows loosely the one 
given by Romem de Mello and Sanderson in Chapter 7. It builds the AND/OR 
graph from the top down, beginning at the goal assembly. This corresponds 
to the disassembly heuristic of taking the assembly apart, then reversing the 
order to find an assembly plan. Since GRASP only models free flying rigid 
parts with no uncertainty, removing a part is exactly the reverse of placing it. 

Before expanding a node in the AND/OR graph, GRASP checks for instability 
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Procedure GENERATE-AND/OR-GRAPH(goal-assembly) 
open +- {goal-assembly} 
until empty(open) 

S +- pop( open) 
If STABLE(S) 

For each part pES 
If CONNECTED(S - p) and MOVABLE(p, S) 

expand(S,p, S - p) 
unless expanded(S - p) 

push(S - p, open) 

Figure 9.3: Main algorithm of GRASP 
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of the corresponding assembly using techniques described below. If it is stable, 
the planner considers removing each part in the assembly. GRASP verifies that 
removing the part will leave the rest of the assembly connected, then calls the 
procedure MOVABLE to determine whether a geometrically feasible path exists 
to remove the part from the assembly. 

9.1.3 Local Motion 

MOVABLE performs two types of geometric calculations to find a path to re­
move a part. The first is a local-motion check based on computing the part's 
local translational freedom. If a part can be removed, it can be moved a very 
small distance; conversely, if no small motion is allowed by the part's contacts, 
it cannot be removed. 

A part's local translational freedom is the set of directions in which the part can 
translate an infinitesimal distance from its current position, given the geometry 
of the rest of the assembly considered as a solid. We can compute the local 
translational freedom of a part p by analyzing p's contacts with other parts 
(figure 9.4). Each planar face in contact restricts the translational freedom of 
p to a half-space on one side of that plane; each cylindrical contact restricts p 
to translate along the axis of the cylinders. The intersection of all the spaces of 
freedom is the part's local freedom. In general, the local translational freedom 
of a part in three dimensions takes the form of a convex cone as in figure 9.5. 
If the cone is not nuli, then we say that the part is locally free in that assembly. 

9.1.4 Global Motion 

If a part is not fully constrained by its contacts with the rest of the assembly, 
GRASP tries to sweep the part in some of the legal directions from its current 
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Figure 9.4: Local freedom computation 

x 

Figure 9.5: A 3D convex cone of removal directions 
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position to infinity. The directions to sweep are chosen heuristically based on 
the shape of the local freedom cone. For instance, for a half space, the normal 
of the plane facing into the half-space and four perpendicular directions in the 
bounding plane of the half space are chosen as sweeping directions. For a cone 
such as the one in figure 9.5, GRASP sweeps along vectors parallel to the edges 
of the cone. 

To sweep a part, the faces of each possible interfering part are compared pair­
wise with the faces of the translating part to check for collision. If the two 
faces intersect when projected into the plane perpendicular to the vector of 
translation, and the face being swept is "behind" the interfering face at one 
of the points of intersection, then a collision exists. This sweeping check is 
quite expensive to calculate, but it is necessary to ensure the global validity of 
assembly operations. 

If one of the chosen directions is free from collision with all other parts present 
in the assembly, it constitutes a valid insertion path for the part. Note that even 
when all sweeping directions result in collision, a straight path along another 
vector or a bent path might exist. To find such insertion paths, a more sophis­
ticated motion planner [12, 18] could be called as discussed in Section 9.5 .2, 
but this could be expensive. In Chapter 7, Romem de Mello and Sanderson 
mention the creation of virtual contacts to express global constraints between 
two parts in the assembly model. Since such constraints must come from ei­
ther human input or a calculation similar to sweeping, we chose sweeping as a 
simple solution. 

To minimize sweeping computations, GRASP saves the result of each sweep 
for later retrieval. Previous-sweeps[pl, P2] is a two-dimensional array holding a 
list of pairs (d, collides). When a part Pl needs to be swept against part P2 in 
direction d1 , previous-sweeps[pl, P2] is searched for a pair whose first element 
is d1 • If one exists, collides is true if Pl hits P2 in direction d1 , and false if 
not. If no pair (d1 , collides) is found, Pl is swept against P2 as above, and the 
result is stored in the table. We call this method sweep caching, and in our 
experiments it has accelerated planning considerably. 

9.1.5 Stability 

GRASP has a limited ability to reason about the environment in which assem­
bly will happen. The user can describe fixed objects that are not part of the 
target assembly, for instance a table and fixtures. A node in the AND/OR 
graph is then considered an undecomposable subassembly if it consists of only 
one part or only fixed objects. In this mode GRASP also does a fast stabil­
ity check on each assembly. If the local translational freedom of anyone part 
includes a downward component, the part is free to slide (figure 9.6). This 
algorithm is not exact; figure 9.6c shows a simple unstable assembly that the 
method does not identify because two parts will slide together. The general 
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a: Unstable Assembly 

Local Freedom Unstable Cone 

V t 
\ I 

I 
Part will slide 

b: Slability Computation c: Undetected Unstable Assembly 

Figure 9.6: Single-part stability computation 

stability problem is very difficult [5], but in practice the local stability check 
has proved to be quite valuable, pruning much of the search space and leaving 
few unstable assemblies. 

Figure 9.7 shows GRASP planning for the assembly of an electric bell, discussed 
further in Section 9.4.2. It has generated the partial AND/OR graph seen in 
the upper left, and the graphics window shows the current operation it is adding 
to the graph: placement of the battery into its case. 

9.2 Maintaining Movability Dependencies 

The obvious algorithm given above for generating the AND/OR graph just 
checks the movability of each part at each node in the AND/OR graph. How­
ever, this repeats a great deal of computation about the geometry of the as­
semblies. Because there is little change in geometry between assemblies and 
their children in the AND/OR graph, most of the geometric reasoning about 
the movability of parts in the parent assembly should still be valid for the same 
parts in each child subassembly. For instance in the assembly of figure 9.2, 
screw2 is movable whether screwl is present or not, while the cargo is not mov­
able as long as the box and the lid are there, independent of screw! and screw2. 
Essentially, we would like to exploit regularities in the geometry of assemblies 
and their subassemblies to reduce the geometric computation necessary to plan 
assembly sequences. 

9.2.1 Principles of Dependency Maintenance 

In the algorithm above there is a very weak link between the geometric rea­
soning modules and the symbolic reasoner constructing the AND/OR graph. 
For each query about the movability of a part in an assembly, the geometric 
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Figure 9.7: GRASP in operation 

reasoner only answers that yes, the part is movable, or no, it is not. GRASP 
significantly reduces the number of geometric reasoning steps by having the 
geometric module return an expression stating the conditions under which the 
given part would be movable. When this precedence expression is still valid in 
descendants of the current assembly, evaluating it is usually much faster than 
performing a full geometric check. 

In general, a precedence expression cannot fully describe the conditions ofmov­
ability for a part. It only gives some sufficient and some necessary conditions. 
In order to manage this easily, we use a direct extension of the classical propo­
sitional calculus where each expression can take the value true, false, or maybe. 
The truth tables of this calculus are given in figure 9.8. The main property 
that we use is the following: given a proposition M (for movability) that has 
(Ni)iEI as necessary conditions and (Sj )jEJ as sufficient conditions, then the 
expressIOn 

(maybe 1\ /\ Ni) V V Sj (9.1) 
I J 
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OR T ? F AND T ? F NOT 
T T T T T T ? F T F 
? T ? ? ? ? ? F ? ? 
F T ? F F F F F F T 

Figure 9.8: Truth tables for GRASP's three-valued propositional calculus 

T T 
T F 
F T 
F F 

(? AN) V S 

aln GRASP, conditions are always Tor F. When no necessary or sufficient conditions are 
present,./If and S are set respectively to T and F. 

bin GRASP, only proven necessary or sufficient conditions are used. Thus this case -
which should return a contradiction - does not appear. 

Figure 9.9: Necessary and sufficient conditions represented in a single formula. 

will be true whenever one of the Sj is true, false whenever one of the Ni 
is false, and maybe in all other cases (figure 9.9). Therefore, expression 9.1 
embodies conditions on M, the movability of a part. This is the general form 
of a precedence expression. In the following, we will use the notation M(p, A) 
to represent the movability of a part p from an assembly A. 

Passing down movability properties from an assembly to its subassemblies can 
be implemented by passing down precedence expressions. To prove that the 
precedence expression M(p, S), inherited by a subassembly S of A, still denotes 
movability in S, we only need to have implications of the form: 

'VS ~ A, 'Vp E S, S:::} M(p, S) 
-,N:::} -,M(p, S) (9.2) 

where Nand S are necessary and sufficient conditions on the movability of p 
in A. Several types of expressions of this form are given in Section 9.3. 

We thus replace the MOVABLE procedure, called in the main algorithm, by a 
more sophisticated version given in figure 9.10. MOVABLE must return true 
if a part p is removable from an assembly S and false if it is not. It also has 
the side effect of setting the precedence expression of a part, which is maybe 
by default. Real geometric computation only occurs in the PRECEDENCE 
procedure, which is called when the movability of the part cannot be deduced 
symbolically from the inherited precedence expression. 

Notice that in general, each node in the AND/OR graph has many parents, 
and so the choice of parent assembly from which to inherit is arbitrary. It 
would be possible to combine the precedence expressions from the different 
parents for the child node's expression , sometimes saving more geometric com-
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Procedure MOVABLE(p,S) 
A +- A.PARENT.OF(S) 
M(p, S) +- M(p, A) 
If M(p, S) evaluates to 

False: return False 
True: return True 
Maybe: M(p, S) +- PRECEDENCE(p, S) 

If M(p, S) evaluates to True 
return True 

Else return False 
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Figure 9.10: Procedure MOVABLE, taking advantage of precedence expressions 

putation than with the single·inheritance method. However, it is not clear that 
the savings would outweigh the extra overhead and complexity of combining 
precedence expressions. 

9.3 Precedence Expressions 

We tested three kinds of precedence expressions, called simple, contact, and 
local precedence expressions. They are increasingly complex and accurate in 
describing symbolically when a part is movable. They are all built from atomic 
propositions Pi, each of which represents the assertion that part i is present in 
the assembly under consideration. 

9.3.1 A Simple Sufficient Condition 

When parts are removed from an assembly A, the free space for the remaining 
parts is broadened. Thus if a part is movable in A it is guaranteed to be 
movable in any subassembly S of A: 

VS ~ A, Vp E S, M(p, A) ~ M(p, S) (9.3) 

The simple type of precedence expression takes advantage of this. Homem de 
Mello [8, page 168] mentions the possibility of performing a check similar to 
the one that simple precedence expressions achieve, but does not elaborate. 

From equation 9.3, whenever a part p is movable in an assembly A, true is a 
sufficient condition for M(p, S). Therefore, from expression 9.1, the precedence 
expression is set trivially to true. When subassemblies inherit their precedence 
expressions from A, geometric computation will not have to be done for parts 
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that were movable in A. On the other hand, the movability computation will 
need to be redone in subassemblies of A for each unmovable part. For instance, 
after expanding the root node in the crate assembly in figure 9.2, the simple 
precedence expression for screw2 will be true, and will not need to be re­
computed in the subassembly with screwl removed. 

9.3.2 A Necessary Condition on the Parts In Contact 

In the next version, contact precedence expressions, the geometric module sup­
plies the planner with a list of parts that constrain a part p in the assembly A. 
This is a list of all parts pi in A such that either pi is in contact with p or in at 
least one chosen direction of sweeping, p collides with p' . In subassemblies of 
A, movability does not need to be recomputed when all of these parts are still 
in the subassembly: 

'VS ~ A, 'Vp E S, -,M(p, A) /\ 1\ q E S :::} -,M(p, S) (9.4) 
qEC(p,A) 

where C(p, A) is the set of parts in A in contact with or swept into by p. 

From equations 9.2 and 9.4, we can infer that when p is not movable in A, 
PRECEDENCE(p, A) must return an expression 

M(p, A) = maybe /\ -, 1\ Pq 

qEC(p,A) 

In subassemblies S this expression will evaluate to false as long as all of the 
original contacting parts C(p, A) are present. When one of them is removed, 
the truth value of a Pq will become false, causing M(p, S) to evaluate to maybe. 
Geometric computation will then have to be done for p. 

In addition, PRECEDENCE(p, A) returns true when p is movable, so the simple 
sufficient condition of the previous section is maintained. 

For instance, after expanding the root node A in the crate assembly, the contact 
precedence expression for the cargo in A will be 

M(cargo, A) = maybe /\ -,(Pbox /\ PUd) 

because the cargo is constrained to move left by the box, and sweeps into the 
lid in that direction. In subassemblies resulting from removing one screw, the 
cargo will still be unmovable but no geometric calculation will be done. 

9.3.3 Necessary and Sufficient Conditions 

In the final and most complicated version, called local precedence expressions, 
the geometric reasoner returns a precedence expression more closely stating 
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the conditions under which a part might be movable. The parts in contact 
with a part p in A are grouped such that all the parts in a group constrain 
the freedom of p in the same way, either along the same plane or in parallel 
cylindrical contacts. Moreover, the parts swept into along one direction are 
also grouped together. In subassemblies of A, p will not be movable unless all 
of the parts in one such group are missing. Furthermore, if all swept-into parts 
along a vector are missing, a sweep in that direction must be valid, and so p is 
guaranteed to be movable: 

'VS ~ A, 'Vp E s, 
....,M(p, A) 1\ [A/EF(P,A) V qE/ q E S] 

1\ [AdEV(P,A) Vq/Ed q' E S] => ....,M(p, S) 

....,M(p,A) 1\...., [AdEV(P,A) VrEd r E S] => M(p,S) 

(9.5) 

(9.6) 

:F(p, A) is a set indexed by facets of the freedom cone of p in A, where f is 
the set of parts constraining a given facet, and 'D(p, A) is a set indexed by 
directions of sweep, d being the set of parts swept into when p moves along one 
given direction. 

Thus when a part is not movable, we have one necessary (9.5) and one suffi­
cient (9.6) condition, so the full expression 9.1 applies and PRECEDENCE(p, A) 
returns an expression 

M(p,A) = [maYbe 1\...., 1\ V pq] v...., 1\ V Pr 

/E:F(p,A) qE/ dEV(p,A) rEd 

For example, the local precedence expression for the cargo after the expansion 
of the root node A will be2 

and the local precedence expression for the lid after expanding S will be 

M(lid,A) = maybe 1\ ....,[(P.crewl V Pscrew2) 1\ (Pbo.,)] 

Since the lid is completely constrained by contacts, no sweep term is included in 
the local precedence expression. Notice that using contact precedence, GRASP 
would recompute the movability for the lid after removing one screw. 

Local precedence expressions subsume contact ones. To see this, consider that 
the contact expression C for a part p lists the Pi that are ground propositions 

2 Actually, G RASP does not simplify its precedence expressions, and so Pbo:r is listed three 
times because the box contributes three facets to the local freedom cone of the lid. 
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a: A stack of plates b: A stack in a box c: A trivial assembly 

Figure 9.11: Three simple types of assemblies 

in the local precedence expression L for p. The truth value of L can only change 
when the truth value of a Pi changes to false, which would change C to maybe. 
As a result, L will be recalculated the same or fewer times than C would have 
been. 

9.4 Evaluation 

We introduced precedence expressions in order to accelerate the process of 
assembly sequence planning. We have evaluated the three types of precedence 
expressions theoretically and experimentally and found that they shortened 
planning time considerably. 

9.4.1 Theoretical Complexity 

Because of the complex ways in which the geometry of an assembly can affect 
the size of its AND/OR graph, it is difficult to find meaningful bounds on 
the computation required to build it. For instance, given an assembly with 
N parts, the number of nodes in the AND/OR graph can range from 2N - 1 
when there is only one legal sequence, to 2N - 1 when all sequences are legal. 
Below we analyze the complexity for three types of assemblies and for each 
type of precedence expressions. We assume that the number of calls GC to 
the geometric reasoner is the overriding factor for the total running time of the 
algorithm to generate the AND/OR graph. 

Consider the situation in which all parts are free to move in the initial assembly, 
but only one sequence satisfies stability considerations, as in Figure 9.11a. With 
N parts, the AND/OR graph has N -1 non-terminal nodes. The time required 
to generate the graph using each type of precedence expression is: 

None At each step in the generation of the AND/OR graph, all of the parts in 
the subassembly being considered must be checked for movability. There-
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fore, without precedence expressions GC = 2:f:~1 N - i = N(~+1) = 
O(N2) 

Simple Using simple precedence expressions, the accessibility will be com­
puted for the original N parts, finding each expression to be true. These 
expressions will be inherited downward, and no more geometric reasoning 
will be necessary. Thus GC = O(N). 

Contact and Local The complexity is the same as in the simple case. 

In assemblies like the one in Figure 9.Ub with N - 1 plates inside a box, only 
one sequence is valid because just one part is removable in each subassembly. 
Again the complexity depends on the type of precedence used: 

None The obvious algorithm will again require GC = O(N2) calls to the 
geometric reasoner. 

Simple In this case simple precedence gains us nothing. In each node, only 
one part is movable, so no true precedence expressions will be inherited. 
As a result, GC = O(N2). 

Contact Since each plate Pi is constrained by the box and parts Pi -1 and Pi+1, 
when we remove part Pi+l only the contact precedence expressions of the 
box and part Pi will evaluate to maybe, forcing a geometric call. Thus 
the number of calls will be 2 at each step except the last where only the 
box remains, so GC = N + 2N - 1 = O(N). 

Local The local precedence expressions for the plates will result in the same 
behavior as in the contact case. However, since the last plate PN-I con­
tributes to each of the constraints on the box, the box's precedence ex­
pression will not evaluate to maybe until PN-I is removed, so GC = 
N+N-l=O(N) . 

Finally, consider an assembly in which all sequences of assembly are valid, such 
as in Figure 9.Uc. Without precedence expressions, the accessibility of every 
part in each of the 2N - 1 nodes would be computed. Using simple (or any 
other) precedence expressions, the accessibility would be found to be true for 
each part in the final assembly. This information would be inherited down 
the tree, making the total number of geometric calls N, even though there are 
2N - 1 nodes in the AND/OR graph. 

9.4.2 Experimentation 

GRASP is implemented in Common Lisp, and runs on a DECstation 5000 
under Allegro Common Lisp. We have planned the construction of about 10 
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Precedence Geometric Time in 
Type Calls Sweeps Seconds 
none 14 11 9.0 

simple 12 9 8.8 
contact 9 6 8.5 

local 6 5 8.9 

Table 9.1: Planning times for the crate assembly 

assemblies with GRASP, including two-dimensional assemblies using the pro­
totype previously written [19]. Table 9.1 shows the number of geometric calls 
required for the prototype to generate the full AND/OR graph for the crate 
assembly in figure 9.2 using each kind of precedence expression. The coura­
geous reader can check it by hand to help understand the method. Note that 
the time to generate the graph was greater using local precedence expressions 
than with contact expressions; the geometry is so simple that the time required 
to create complex precedence expressions outweighs the savings. 

A more interesting example is the assembly from industry (figure 9.12) with 
which De Fazio and Whitney [7] illustrate their method for generating assem­
bly sequences. Figure 9.13 shows the assembly's liaison diagram as given there. 
It is a model of a transmission with 11 parts, 21 when the geometry of the bolts 
is explicitly represented. It is symmetric around an axis of revolution, and as 
such its geometry can be fully modeled in the two dimensions of the GRASP 
prototype. Figure 9.14 shows the assembly sequences for the transmission with­
out bolts in De Fazio and Whitney's graphical representation of all valid liaison 
sequences. Single-part assemblies are not included in the diagram, and assem­
blies are shown by filling the box corresponding to each liaison that has been 
established in that assembly (liaisons 1-6 in the first row, etc.). For example, 
the leftmost assembly in the third row down has all connections established 
except for 4, 5,16,17, and 18; this corresponds to the assembly with all parts 
except K and L. 

The set of sequences shown in figure 9.14 is not quite the same as the ones given 
in [7]. These differences are a result of GRASP generating its AND/OR graph 
from geometry alone, while De Fazio and Whitney compute their sequences 
from precedence constraints incorporating human geometric and mechanical 
insight. For example, De Fazio and Whitney find six possible ways to start 
the assembly process; GRASP finds eight (the bottom row of figure 9.14). One 
of these, the assembly consisting of parts C and D, cannot result in a finished 
assembly because the bolts connecting C to A are not accessible when C and 
D are connected. Because the bolts are not represented explicitly, GRASP 
cannot take this into account. However, when GRASP is run on the full model 
including bolts, it does not find any sequences using the assembly of only C 
and D. 
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Figure 9.12: De Fazio and Whitney's transmission 

Figure 9.13: Liaison diagram for the transmission 

Precedence Geometric Time in 
Type Calls Sweeps Seconds 
none 2508 26343 1151 

simple 2035 20526 943 
contact 669 6645 445 

local 121 1193 99 

Table 9.2: Planning times for the transmission, with bolts 
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Figure 9.14: Assembly sequences for the transmission 

Precedence Geometric Time in 
Type Calls Sweeps Seconds 
none 11125 581 578 

simple 6377 559 325 
contact 1369 559 113 

local 638 559 60 

Table 9.3: Planning times for the electric bell 

The number of geometric calls and the time required for GRASP to generate 
the AND/OR graph for the transmission, with bolts as separate parts, is shown 
in table 9.2. Sweep caching is not used in the 2D prototype, and consequently 
the number of sweeps and total planning time is quite large. The resulting 
AND/OR graph has 295 subassembly nodes and 668 AND-arcs. 

Figure 9.15 shows an assembly with which we have tested the full three­
dimensional version of GRASP. It is an electric bell kit with 22 parts, not 
including the flexible wires that GRASP cannot reason about. Two contacts 
in the real bell are threaded, but for these experiments GRASP models them 
as pegs. The AND/OR graph representing all the linear sequences of assembly 
for the bell has 1389 nodes and 5486 AND-arcs. Table 9.3 shows the number 
of geometric calls and the time required to generate the AND/OR graph for 
the bell assembly. 
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Figure 9.15: The electric bell 

9.5 Possible Extensions 

We have used precedence expressions to encode the conditions under which a 
single part will have the same local freedom or set of swept-into parts. However, 
precedence expressions are general enough to encode other geometric results, 
and with some modifications could be used in planners that have significant 
differences from GRASP. 

9.5.1 Non-linear Sequence Planning 

All the algorithms we have given are easily extensible to the non-linear case, 
where two subassemblies can be mated in the same operation. A quick justi­
fication is that a subassembly can be considered as a part for the purpose of 
movability, as long as it remains stable throughout the removal motion. 

As far as dependency maintenance is concerned, the general mechanism and 
the MOVABLE procedure are identical. Furthermore, all the necessary and 
sufficient conditions (equations 9.3, 9.4, 9.5 and 9.6) are valid for a subassembly 
S just as for a part p. The important thing to note is that they still depend on 
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block3 

plate 
block2 blockl 

- r--

I bolt 1 bolt 2 I 
- '--

bracket 

Figure 9.16: A bracket assembly 

the presence of parts in contact or being swept. In other words, the precedence 
expressions are identical, with each atom denoting the presence of a part. Thus, 
after expanding the root node in the crate example of figure 9.2, the local 
precedence expression for the subassembly {box, cargo,screwl} would be: 

M( {box, cargo, screwl}, A) = maybe /I. -,[(PUd V P. crew2) /I. (Plid)] 

However, the theoretical validity of maintaining dependencies for subassem­
blies does not mean that the method is practical. Managing and evaluating 
precedence expressions is notably more costly in the non-linear case because 
the number of precedence expressions is larger. A node with n parts can have 
as many as 2n -2 expressions in the non-linear case (one for each subassembly) 
compared to at most n in the linear case. Chapter 10 describes a more practical 
approach to speeding up non-linear sequence planning. 

9.5.2 General Path Planning 

A part's movability could be computed in other ways than contact analysis and 
sweeping. For example, a part may not be fully constrained by its contacts with 
other parts, yet the planner can find no straight path to disassemble it, as is 
the case with the bolts in figure 9.16. We might then call a more powerful path 
planner [3, 18] to try to find a curved path for the part. 

In a sequence planner using a global path planner, precedence expressions could 
be incorporated by adding some functionality to the path planner. Checking 



www.manaraa.com

237 

for the movability of a part p in assembly A under this scheme, there are three 
cases to express: 

• Contacting parts fully constrain the part. In this case local precedence 
expressions can be used. 

• The global path planner finds a (possibly curved) path. We then set 
M(p, A)' = true. 

• The path planner cannot find a path. To construct the precedence ex­
pression for this case, the motion planner used must be modified to find 
a set of parts that together constrain p. The changes to the path planner 
will depend heavily on the planning technique employed. 

For instance, if the planner builds an adjacency graph based on a cell 
decomposition of the configuration space of p [13, chapters 5-6], it may 
return a list of the parts contributing boundaries to the connected com­
ponent that contains the starting position of p. If the motion planner is 
based on a local exploration of the configuration space [3] it may return 
the list of parts with which p collided during the search process. 

A motion planner with such abilities would allow us to construct a contact 
precedence expression 

M(p, A) = maybe 1\..., /\ Pc 

cEC(p,A) 

where C(p, A) is the set of parts the motion planner returns as constrain­
ing p in A. Furthermore, if we use sweeping as a first check for global 
motion, or our motion planner is able to find sets of parts whose removal 
would allow a path for p, we can build an expression 

M(p, A) = [maYbe 1\..., /\ Pc] Y..., /\ V P r 

cEC(p,A) dEV(p,A) rEd 

where V(p, A) is a set indexed by possible paths or directions of sweep 
and d is the set of parts p collides with along one blocked path. In 
subassemblies, if all of the blocking parts d are missing in one direction 
then that path is valid, while if any of the parts directly blocking a curved 
path are missing, then such a path might exist. 

For example, bolt 1 in figure 9.16 would be given a precedence expression 
like 

M(boltl, A) = [maybe 1\ ",,(Pblockl 1\ Pbolt2 1\ Pplate 1\ Pbracket)] 

Y",,(Pbolt2 Y Pbracket Y PblQck2) 
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9.6 Relation to Other Work 

The assembly planning problem has been addressed by several authors. This 
paper builds upon the work of some of them, while the techniques found here 
may coordinate well with the ideas of others. 

Bourjault [6] proposes a procedure to enumerate all the sequences of assembly 
for a product through a series of structured questions to a human. He uses a 
subset rule, somewhat like simple precedence expressions, and its contrapositive 
the superset rule to reduce the number of questions to the human. De Fazio 
and Whitney [7] drastically reduce the number of questions asked of the human 
by requiring each answer to state the situations in which one connection can be 
established. Baldwin [2] implements and compares these and other methods. 
Because a human is an integral part of these approaches, the emphasis has been 
on reducing the number of questions to the user and increasing the utility of 
each answer. It would be possible to have the human enter a reason for each 
decision, and use this somewhat like a precedence expression; however, it is not 
clear that doing so would be a more efficient method of entering constraints on 
assembly sequences. 

Homem de Mello and Sanderson [9] introduce the AND/OR graph represen­
tation of the space of assembly sequences. Homem de Mello [8] also gives a 
rigorous method for local motion analysis in three dimensions. GRASP is built 
upon their framework and basic techniques of assembly planning. However, 
Homem de Mello and Sanderson do not concentrate on questions of speed and 
reducing computation. In this chapter we demonstrate that maintaining geo­
metric results can improve the efficiency of their methods considerably. 

The problem of finding assembly sequences has been addressed by other au­
thors, but few attempt to completely automate geometric reasoning. Wolter 
[20] assumes that geometric reasoning has already resulted in a list of directions 
in which each part might move, along with lists of other parts that interfere 
with those motions. Ko and Lee [11] present a method for assembly planning 
but give no experimental results. Miller and Hoffman [15] use ray casting tech­
niques much like GRASP's sweeping to derive assembly sequences, reasoning 
especially about fasteners. Their system finds one sequence of assembly for a 
mechanical mouse in 6-9 minutes, which it appears could be shortened using 
techniques such as precedence expressions. 

A great deal of research has been conducted into the physical reasoning needed 
to accomplish single steps in an assembly plan. Motion planning to assemble 
single parts or subassemblies has been studied by a number of authors [12, 
14, 16,18]. Palmer [17] showed that in general deciding whether an assembly 
is stable is an NP-complete problem. Grasp [10] and fixture planning [4] will 
also be crucial to the development of competent assembly planners. Since 
these authors generally consider one step in the planning process, they do not 
address the issue of saving computation between steps. However, we believe 
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precedence expressions are general enough that they can be applied to many 
different geometric reasoning methods. 

Conclusion 

The task of assembly planning is very dependent on geometry. As a result, 
capable automatic assembly planners will need to incorporate powerful yet fast 
geometric reasoning methods. In addition, the assembly planning problem 
imposes special requirements on the algorithms used. In this work we have ex­
plored the close links between assembly planning and geometric reasoning and 
proposed a compromise solution that allows a computer to generate assembly 
sequences strictly from the geometry of the target assembly, with no human 
input. 

This compromise includes checking the movability of each part in a target as­
sembly by analyzing the part's contacts to find its local translational freedom, 
then sweeping the part along chosen directions in the resulting cone to ensure 
global validity of the paths found. Though not as expensive as calling a motion 
planner, these computations are numerous and costly. However, it is possible 
to exploit the similarity between the geometry of an assembly and that of its 
subassemblies to replace, in many cases, a geometric calculation by a symbolic 
one, using previously computed results. Encoding results in precedence expres­
sions for later use yields large improvements in running times and the number 
of calls to the geometric reasoner in our experiments on real assemblies. 

While our experimental results can only justify the use of precedence expres­
sions with the current geometric reasoning techniques, the method is much 
more general. It could be used to save computation when assembly operations 
are not limited to single-part insertions, or when it is necessary to call a more 
time-consuming motion planning algorithm. Furthermore, precedence expres­
sions pinpoint the kinds of information that are both obtainable with existing 
geometric reasoning methods and profitable once put in symbolic form. As a 
link between the two levels, precedence expressions are a prototype of the richer 
forms of communication between geometric and symbolic reasoning methods 
that will be necessary to solve real-world planning problems efficiently. 
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Chapter 10 

Efficiently partitioning an 
assembly 

Randall H. Wilson 

The previous chapter introduces the assembly planner GRASP and describes a 
method to efficiently build an AND/OR graph representing the linear assembly 
plans for a product. However, the best assembly sequence might not be linear, 
and indeed some assemblies cannot be built one part at a time. This chapter 
introduces an algorithm to facilitate generating non-linear assembly sequences 
quickly. 

Specifically, I present an algorithm that efficiently solves the physical partition­
ing problem. Physically partitioning an assembly consists of finding all ways to 
divide the parts of an assembly into two subassemblies, such that the operation 
of bringing them together is physically feasible. In Chapter 9 the partitioning 
problem is simplified to the question of whether anyone part can be placed in 
the assembly; here the general case of placing a subassembly is considered. 

Other researchers [2, 3] have described complete algorithms based on a 
generate-and-test approach that can be very slow for many assemblies. Here 
I introduce a new algorithm to partition assemblies, prove its correctness and 
completeness, and show a worst-case time bound that is polynomial in the 
number of features in the assembly and the number offeasible decompositions. 
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GRASP, the assembly planner described in Chapter 9, has been extended to 
include the new partitioning algorithm, and experimental results are shown for 
real assemblies. 

As in the previous chapter, the following presentation assumes that all parts 
have a rigid, exact, certain geometry; that all parts are assembled along a single 
translation directly to their final relative positions and not moved later; and 
that no assembly operation mates more than two subassemblies. 

10.1 Get-Feasible-Decompositions 

An obvious method to physically partition an assembly is to generate all divi­
sions of the parts of the assembly into two sets, then test the assembly operation 
bringing each pair of subassemblies together according to a set of constraints. 
If the assembly has n parts, there are 2n partitionings to test, making this ap­
proach prohibitive. However, the efficiency of the algorithm can be improved 
by integrating feasibility considerations into the generating stage, so that many 
infeasible decompositions are never generated . 

In Chapter 7, Homem de Mello and Sanderson present an algorithm to physi­
cally partition assemblies, GET-FEASIBLE-DECOMPOSITIONS, that generates 
all cut-sets of the assembly 's connection graph, then tests the assembly opera­
tion corresponding to each cut-set for physical realizability using the predicate 
FEASIBILITY-TEST. Since by definition a cut-set divides a graph into two 
connected components, the procedure only explicitly generates those partition­
ings that have two connected subassemblies. In other words, GET-FEASIBLE­
DECOMPOSITIONS requires both subassemblies to be connected and includes 
this constraint in the generation process. Other criteria, including geomet­
ric interference, stability of the two partitions, and mechanical feasibility, are 
checked in FEASIBILITY- TEST. 

Specifically, Homem de Mello and Sanderson show how to compute the local 
translational freedom of one subassembly with respect to the other. Recall from 
Chapter 9 that for a part with planar contacts, the set of possible infinitesimal 
translations forms a convex cone in three dimensions (figure 10.1), and if the 
cone is empty the part cannot be removed. To calculate the range of motion 
for a subassembly, we can consider it as a single part and calculate its cone 
of removal directions in the same way. Each small motion inside the cone is a 
removal trajectory, and if at least one exists, we say the two subassemblies are 
locally free from each other. 

Although GET-FEASIBLE-DECOMPOSITIONS is more efficient than the obvi­
ous approach, many assemblies have a large number of cut-sets, and as a result 
it can still be very slow. When automating the method, Baldwin could not plan 
for assemblies with more than 11 parts because of this fact [2, page 96]. Wolter 
[8] limited assembly plans to single-part insertions because of the complexity 
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x 

Figure 10.1: A 3D convex cone of removal directions 

of generating decompositions, and GRASP originally focused on linear plans 
(as in Chapter 9) for the same reason . A faster method of physically partition­
ing an assembly will make non-linear assembly sequence planning feasible for 
much more complex assemblies. The algorithm presented in the next section 
integrates geometric interference constraints as well as connectedness criteria 
into the generation process, thereby achieving greater efficiency. 

10.2 Partitioning Assemblies 

For simplicity in the following description, assume that all parts meet only in 
planar contacts and that only translations are allowed to separate subassem­
blies. Section 10.6 shows how the method can be generalized to correctly and 
efficiently reason about cylindrical and threaded contacts, and motions includ­
ing rotation. 

The new algorithm to physically partition an assembly, PARTITION, gains effi­
ciency by incorporating two necessary constraints on assembly decompositions 
into the generation process: 

Connectedness The two subassemblies to be separated must each constitute 
a connected subassembly. 

Local freedom A removable subassembly must be free to move a small dis­
tance with respect to the rest of the assembly. 

These two constraints are encoded in the procedure GROW-SUBASSEMBLY, 
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described below, which takes a small subassembly as input and adds to it all the 
parts that must be removed with it from the full assembly. Since PARTITION 
includes these necessary constraints in the generation process, it generates only 
the partitionings in which one subassembly is locally free from the rest of the 
assembly. As a result, far fewer decompositions must be tested against the 
predicate FEASIBILITY- TEST. 

To accomplish this , PARTITION divides the physical partitioning problem into 
three parts: 

• find a set of critical directions that is sufficient to allow all the locally free 
decompositions of the assembly to be disassembled 

• for each critical direction, use GROW-SUBASSEMBLYto find all the sub­
assemblies that are locally free from the rest of the assembly in that 
direction 

• test each locally free decomposition with FEASIBILITY- TEST. 

10.2.1 Finding Critical Directions 

The procedure CRITICAL-DIRECTIONS takes an assembly A as input and re­
turns a list of possible removal trajectories T such that for every decomposition 
of A into S and A - S where S is locally free from A - S, at least one of the tra­
jectories in T is included in the local freedom cone of S with respect to A - S. 
In other words, if an assembly can be partitioned into two subassemblies that 
are locally free from each other, then one of the directions in T will allow the 
subassemblies to be separated. 

Computing this set of critical directions T is quite simple. Any two subassem­
blies that meet in planar contacts will be separable, if at all, in a set of transla­
tions given by a 3D convex cone, as in figure 10.1. Since each face on a convex 
cone results from one or more planar constraints, every edge of a cone is at the 
intersection of two planes. Thus the set of critical directions T includes two 
trajectories (a vector and its inverse) parallel to the intersection of each pair 
of planar contacts that exists in the assembly; duplicate vectors are removed. 
In the special case where all the contacts in an assembly are in parallel planes, 
CRITICAL-DIRECTIONS returns a s ingle vector parallel to the plane, allowing 
the parts to slide in that plane. As a result, for every cone that could result 
from the planar contacts in the assembly, there exists a trajectory in T that is 
a translation along one of its edges. Therefore the set T is sufficient to allow 
removal of all locally free subassemblies of the assembly. 

In general, with n planar contacts in an assembly there are O(n2 ) removal 
directions in T . However, in practice many of these turn out to be parallel, 
and in most of our experiments CRITICAL-DIRECTIONS returns only a small 
number of trajectories. In fact, many assemblies can be built using only motions 
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parallel to the major axes, and the step of generating critical directions might 
be skipped if it is known a priori that the target is such an assembly. 

10.2.2 Generating Decompositions 

The procedure PARTITION proceeds as follows. First, it calls CRIT/cAL­
DIRECTIONS to enumerate a sufficient set of trajectories to remove all sub­
assemblies from the assembly A. For each trajectory t, it starts one seed par­
tition S for each part in A, and calls GROW-SUBASSEMBLY(S, t). GROW­
SUBASSEMBLY adds to the subassembly S all the parts that must be removed 
with S if it is to be moved a small distance along trajectory t away from a 
connected complementA-S. Thus when GROW-SUBASSEMBLYreturns, one 
of two conditions must be true: (1) S contains over half the parts in A, in 
which case PARTITION goes on to another seed partition (the smaller half will 
be found as a free subassembly in the reverse direction if it exists), or (2) S 
is a subassembly that is locally free from A. If the latter is true and S hasn't 
already been found in direction t, S is put on the list of free subassemblies 
and new seed partitions are generated, each consisting of S and one other part 
in contact with S. Then the procedure chooses another seed partition, and 
the process repeats . After generating all the subassemblies that are locally 
free from the rest of the assembly, the decomposition corresponding to each 
subassembly is checked against FEASIBILITY- TEST for global validity. Figure 
10.2 gives a more precise description of PARTITION. 

GROW-SUBASSEMBLY uses two functions to compute the generating con­
straints that add parts to a partial subassembly. The first, LOCALLY­
COMPATIBLE, allows generation with regard to the local freedom constraint. 
If the current subassembly includes a part PI and a contact between PI and 
another part P2 keeps Pl from moving along the selected trajectory, then P2 
must be added to the subassembly to allow it to move. Therefore LOCALLY­
COMPATIBLE(PI, P2, t) returns true if and only if the local freedom of part P2 
with respect to Pl includes trajectory t. It simply finds the contacts between PI 
and P2 and returns true if all of them are compatible with the motion of Pl in di­
rection t. A planar contact interferes with a translation t when the dot-product 
of t with the outward normal of the contacted face of P2 is negative. 

The second function, OTHER-PARTITIONS, allows the use of connectedness 
as a generating constraint. OTHER-PARTITIONS(S, A) returns a list of the 
connected components Ci of the connection graph of assembly A once the 
current subassembly S has been removed. If A - S is not connected, then 
there will be more than one Ci. It is clear that no superset S' of S will have a 
connected complement unless S' contains all but one of the Ci. Furthermore, 
for S' to encompass half of the parts of A or less, the one Ci not included in S' 
must have half or more of the parts in A. If A has n parts, there can only be 
one connected component C i with at least n/2 parts. If each of the Ci contains 
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Procedure PARTITION(full-assembly) 
feasible-decompositions ;- {} 
all-directions ;- CRITICAL-DIRECTIONS(full-assembly) 

(1) for each dir E all-directions 
d-locally-free ;- {} 
seed-stack ;- {} 

(2) for each part E full-assembly 
push( {part}, seed-stack) 

(3) until empty(seed-stack) 
subassembly ;- pop(seed-stack) 

(4) subassembly +-

GROW-SUBASSEMBLY(subassembly, dir, full-assembly) 
(5) if length(subassembly) ~ length(full-assembly) j 2 and 

subassembly (j. d-locally-free 
push(subassembly, d-locally-free) 
for each part2 E full-assembly - subassembly 

if part2 contacts subassembly 
push(subassembly U {part2}, seed-stack) 

(6) for each SEd-locally-free 
if {S, full-assembly - S} (j. feasible-decompositions and 

FEASIBILITY- TEST(S, full-assembly) 
push( {S, full-assembly - S}, feasible-decompositions) 

return feasible-decompositions 

Figure 10.2: Procedure PARTITION 

fewer than nj2 parts, then for no superset 5' of 5 will A - 5' contain over half 
the parts of A. Thus, whenever A - S has several connected components Gi, 
GROW-SUBASSEMBLY adds all the C except the one with the most parts to 
S. In the case where the largest Gi has fewer than nj2 parts, the resulting 
subassembly will be rejected after GROW-SUBASSEMBLY returns. 

Note that because only parts in contact with S are ever added to it, S is 
always a connected partition and does not need to be checked. In addition, 
because the connected components Gi only contact parts that are already in 5, 
they cannot have any contacts with other parts that need to be checked with 
LOCALLY-COMPATIBLE. Figure 10.3 gives a more formal description of the 
procedure GROW-SUBASSEMBLY. 

10.2.3 Checking Global Interference 

Once locally free connected subassemblies are identified, each decomposition 
must be checked using the predicate FEASIBILITY- TEST. The global feasibility 
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Procedure GROW-SUBASSEMBLY(subassembly, dir, full-assembly) 
part-stack - subassembly 
until empty(part-stack) 

partl - pop(part-stack) 
for each part2 contacting partI 

if part2 ~ subassembly and 
..., LOCALLY-COMPATIBLE(partl, part2, dir) 

push(part2, subassembly) 
push(part2, part-stack) 

others - OTHER-PARTITIONS(subassembly, full-assembly) 
others - others - largest( others) 
for each partition E others 

subassembly - subassembly U partition 
return subassembly 

Figure 10.3: Procedure GROW-SUBASSEMBLY 
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of motions in GRASP is computed by heuristically choosing a set of directions 
in the local freedom cone of the subassembly, and sweeping the subassembly 
against the rest of the assembly. One way to do this would be to construct a 
solid model of the subassembly and sweep it against the rest of the parts. In 
experiments, building this model turns out to be more expensive than sweeping 
all the individual parts. Chapter 9 explains GRASP's sweeping algorithms in 
more detail. 

10.3 An Example 

Figure 10.4 shows the crate assembly from Chapter 9 during various stages of 
the procedure PARTITION. The three dimensional assembly is shown in figure 
lO.4a, and a side view in lO.4b. For this example we will consider the "screws" 
as square pegs. 

Each planar contact in the crate assembly is parallel to either the XV-plane, the 
YZ-plane, or the XZ-plane. The pairwise intersections between these planes 
yield vectors parallel to each of the major axes. Figure lOAa shows the six 
vectors returned by CRITICAL-DIRECTIONS. 

Starting with the trajectory +z, each part of the crate forms a seed subassem­
bly. Consider the seed subassembly S consisting of just the lid (figure lOAc). 
GROW-SUBASSEMBLY now finds the parts in contact with the lid, which are 
screw I , screw2, and the box. LOCALLY-COMPATIBLE(lid , box, +z) returns 
true, since the dot-product of +z with +x, the normal of the planar contact, 
is 0; thus the box is not added to S . However, the bottom planar contact of 
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Figure 10.4: The crate during procedure PARTITION 
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the lid with screw1 prevents the lid from moving in the +z direction, and so 
LOCALLY-COMPATIBLE(lid, screw1, +z) returns false and screw1 is added to 
S, as is screw2 (10.4d) . 

Since screw1 has been added to S, its contacts with other parts are now exam­
ined. The box prevents screw1 from moving along the +z trajectory, so the box 
is added to S. Screw2 is considered, but all of its contacted parts are now in S 
already. Finally, the bottom planar contact between the box and the cargo pre­
vents the box from moving upward, and so the cargo is added to S (10.4e) . Since 
S now contains the whole crate assembly, there are no connected components 
returned by OTHER-PARTITIONS(S, Crate), and GROW-SUBASSEMBLYre­
turns. 

At this point S contains more than half of the parts in the crate, so it is not 
entered in d-Iocally-free as a removable subassembly, and no seed subassemblies 
are generated from it. A similar process will happen with the seed subassem­
blies starting from each of the other parts of the crate: each will be grown to 
include the whole assembly. Thus no locally-free subassembly can be removed 
in the +z direction from the crate, and the same is found for the -z, +y, and 
-y trajectories. 

Now consider the +x trajectory and the seed subassembly consisting of just 
the box (figure 10.4f). No contacts constrain the box in the +x direction, so 
o THER-PARTITIONS ( {lid, box}, Crate) is called, and returns the connected 
components {lid, screw1, screw2} and {cargo} (lO.4g). The component with 
fewer parts is added to S (lO.4h), and then S={box, cargo} is entered as a 
locally-free subassembly. The resulting seed partitions {box, cargo, lid}, {box, 
cargo, screw1}, and {box, cargo, screw2} each constitute over halfthe assembly, 
so they are eventually eliminated. 

The last three decompositions of the crate result from the -x direction, since 
the seed partitions {screw I}, {screw2}, and {cargo} are all locally-free along the 
-x trajectory. However, when FEASIBILITY-TEST tries to find a global path 
to remove {cargo}, it finds that the cargo collides with the lid (lO.4i). There­
fore the three globally removable connected subassemblies found are {screw1}, 
{screw2}, and {box, cargo}. 

10.4 Soundness and Completeness 

The soundness of PARTITION follows immediately. Feasible-decompositions 
starts out empty, and only partitionings that satisfy FEASIBILITY-TEST are 
added to it. Therefore, as long as FEASIBILITY-TESTis accurate, PARTITION 
will only return decompositions that are physically feasible. 

The partial completeness of PARTITION is also easy to show. The only loop 
that might not have finite iterations is that on line (3) , which loops until the 
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seed-stack is empty. The list of seeds starts with a finite number of assemblies, 
and each time through the loop, one is removed from it. Each seed added to 
the stack has more parts than the one removed. But since a subassembly is 
limited to one-half the number of parts in the full assembly, this process must 
end. Therefore PARTITION will terminate. 

For PARTITION to be complete, the function LOCALLY-COMPATIBLE must 
have the locality property: 

'it'VS1VS2 LC(S1,S2,t) <==> (10.1) 

VS3VS4 (S3 ~ S1 1\ S4 ~ S2 => LC(S3, S4, t)) 

Equation 10.1 states that a subassembly can be removed along a trajectory 
from a set of parts if and only if that trajectory allows removal from any subset 
of those parts. This property is true, specifically, for interference checking 
between rigid parts. If subassembly S1 can be removed from S2 using a certain 
path, then taking parts from S2 will never cause an interference to appear, 
since the free space of S1 will monotonically increase; furthermore, if all the 
individual parts do not interfere with S1 's path, their sum will not either. 

Note that the locality property does not hold true for many constraints on 
assembly sequences. For instance it very often happens that an assembly is 
stable but removing a part will leave it unstable. Fine motion planning and 
flexible parts also violate the locality property. 

A special case of equation 10.1 is the fact that if a part p interferes with the 
motion of a subassembly S in a direction, then any set of parts including p will 
also interfere with the motion of S: 

(10.2) 

Therefore, when any part p interferes with the removal of a subassembly S 
along a trajectory, then any removable superset of S must include p. 

To show completeness of PARTITION, first remove the call to GROW­
SUBASSEMBLY in line (4), and add a connectedness check to FEASIBILITY­
TEST. The procedure that remains generates all possible decompositions of 
an assembly and checks each against FEASIBILITY-TEST, once for each crit­
ical direction of assembly. Each part in the assembly is a seed assembly, and 
every connecting part is added to each of these, and so on, thus generating 
every connected set of parts in the assembly. Each subassembly is checked for 
removal from the rest of the assembly using FEASIBILITY- TEST. Subassem­
blies for which the rest of the assembly is not connected will be caught by 
FEASIBILITY-TEST. This is equivalent to generating all cut-sets of the con­
nection graph and testing them, so this modified algorithm is complete. 

When line (4) is placed back in PARTITION, some of the subassemblies above 
are no longer generated . Take any subassembly S that was generated by the 
modified algorithm and passed FEASIBILITY- TEST. At least one trajectory 
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Figure 10.5: An assembly with 2 feasible decompositions 

t in the set of critical directions allows separation of S from A - S (Section 
10.2.1). Along trajectory t, S is locally-compatible with A - S, so by equation 
10.2, all of the subassemblies of S are locally-compatible with the parts of 
A - S. As a result, GROW-SUBASSEMBLY will never insist on adding parts 
from A - S to the seed subassembly that built into S, and so this cut-set is not 
removed from the ones generated. Furthermore, because A - S is connected 
and includes at least half the parts in A, A - S will always be in the largest 
connected partition found by OTHER-PARTITIONS, and none of its parts will 
be added to S for that reason. Therefore no parts of A - S are added to S by 
GROW-SUBASSEMBLY, and the decomposition into Sand A-S is not removed 
from the ones generated. Since S was taken to be any feasible decomposition 
of A, the procedure generates the same list of decompositions as the modified 
version above. PARTITION is therefore complete. 

10.5 Complexity 

Because in general the connection graph for an assembly with n parts can have 
O(2n) cut-sets, the worst-case time complexity of GET-FEASIBLE-DECOM­
POSITIONS is O(2n). For instance, the sandwich assembly in figure 10.5 has 
an exponential number of cut-sets, but only two feasible decompositions. 

The geometry of assemblies with the same number of parts can vary a great 
deal, so another measure of assembly complexity is the number of mating fea­
tures m in the assembly. Since each center part in the sandwich assembly 
has a constant number of contacts with other parts, the number of parts is 
n = em for some constant e ::; 1. Therefore the worst-case time complexity of 
GET-FEASIBLE-DECOMPOSITIONS is at least O(2cm). 

Now consider PARTITION. Assume that there are m mating features in the 
assembly, n ::; m parts, and the assembly has s decompositions that both 
satisfy LOCALLY-COMPATIBLE in at least one direction and have internally 
connected subassemblies. CRITICAL-DIRECTIONS will find one direction for 
every pair of planar contacts in the assembly, or O(m2) total directions in the 
worst case. Loop (1) will be executed once for each direction. Line (3) will 
loop once for each subassembly on the seed stack; since each seed is put on the 
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stack either by line (2) or as the sum of a locally-free decomposition and one 
connecting part, loop (3) will execute at most n + sn times for each direction. 
Checking each contact takes constant time, and each contact includes exactly 
two parts, so LOCALLY-COMPATIBLE will be called at most 2m times in one 
call to GROW-SUBASSEMBLY. Using a depth-first marking algorithm, OTHER­
PARTITIONS also takes O(m) time, so GROW-SUBASSEMBLY is O(m). Line 
(5) requires looking through a list of up to s subassemblies. In total, each time 
through loop (3) will take O(m + s) time. Finally, loop (6) might take s2 time 
to make sure duplicate decompositions are not in the final list. Combining 
these nested loops, PARTITION could take time 

in the worst case, plus the time to evaluate FEA SIBIL IT Y- TEST on s decom­
positions. In fact, in practice the time to compute the global constraints in 
FEASIBILITY-TEST become the dominant factor in running time (see Section 
10.7). 

In our implementation, d-Iocally-free and feasible-decompositions are kept as 
hash tables, making lookup times essentially constant. The effective complexity 
then becomes 

and if we assume that the number of mating features is proportional to the 
number of parts (which is not always the case), then PARTITION has time 
complexity O(sn4 ). 

Note that if the target assembly has an exponential number s of locally free 
subassemblies, PARTITION takes exponential time. For instance, if the cen­
ter parts in the sandwich assembly (figure 10.5) were not interlocking, there 
would be O(2n) locally-free decompositions to test. Both GET-FEASIBLE­
DECOMPOSITIONS and PARTITION must test all the partitionings they gen­
erate; the former generates all cut-sets and the latter all locally free decom­
positions. Because every locally free decomposition corresponds to a cut-set, 
PARTITION will always test the same number or fewer decompositions than 
GET-FEASIBLE-DECOMPOSITIONS. In our experiments, local freedom has 
proven a very strong constraint on decompositions, and as a result PARTITION 
generates a short list of partitionings to test. 

10.6 Extensions to the Basic Algorithm 

The version of PARTITION described above only considers parts that meet each 
other in planar contacts, and only uses those contacts and connectedness as gen­
erating constraints. The description has been limited to these simple assembly 
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geometries partly to make the discussion more understandable to the reader. 
However, it is possible to include other types of assemblies and constraints in 
the algorithm without much modification. I have analyzed and implemented 
several extensions to PARTITION, allowing GRASP to handle cylindrical con­
tacts, no connectedness constraint, and helical motions, while global sweeping 
constraints and general rotational motions have been investigated. 

10.6.1 Cylindrical Contacts 

To extend PARTITION to handle full cylindrical contacts such as a peg in a 
hole, the two geometric procedures CRITICAL-DIRECTIONS and LOCALLY­
COMPATIBLE must be modified. CRITICAL-DIRECTIONS adds a trajectory 
parallel to the axis of the cylinder, and its inverse, to the list of translations, 
since any decomposition breaking the peg-in-hole contact will need to move 
along the axis of the cylinder. In LOCALLY-COMPATIBLE if a contact c is a 
cylindrical contact, c interferes with translation t unless the axis of the cylinder 
is parallel to t. Cylinder-face contacts are much like planar contacts. With 
these changes, PARTITION finds all translational partitionings of assemblies 
with both planar and cylindrical contacts. 

10.6.2 Unconnected Subassemblies 

PARTITION need not include the connectedness of subassemblies as a generat­
ing constraint. Although assembly planners usually assume subassemblies are 
connected, the constraint forbids some valid assembly sequences. For instance, 
one might want to connect two subassemblies by a fixture, mate them with 
another subassembly, and then remove the fixture: imagine putting together 
the wheels and axles of a wagon, then lowering the body onto the two axles 
simultaneously. Without the connectedness constraint, however, there may 
be a much larger number of feasible decompositions. This change has been 
implemented in GRASP, but few experiments have been done. 

10.6.3 Threaded Contacts 

PARTITION as given above cannot easily be applied to most mechanical prod­
ucts, since it only allows translational motions to separate parts . Many assem­
blies have threaded connections, where the two parts to be mated must follow 
a helical trajectory relative to each other, and thus cannot be assembled with 
translations only. A simple example consists of a nut and a bolt. However, 
PARTITION can be extended to handle screw contacts, and any other type of 
connection that allows only a finite set of mating trajectories to assemble the 
two connected parts. 
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To correctly partition assemblies with threaded contacts, the trajectories con­
sidered by the algorithm must be extended to encompass both translations and 
motions with an element of rotation about an axis parallel to the translation. 
LOCALLY-COMPATIBLE thus must be able to discern whether another con­
tact will prevent such helical motions. This is more complicated when screwing 
motions are allowed. In addition, a threaded contact is incompatible with any 
motion between the two parts except for a helical motion with the same axis 
and pitch as the contact. 

Furthermore, CRITICAL-DIRECTIONS must add the finite set of removal tra­
jectories associated with each such contact to the list of those considered. Since 
any feasible partitioning of an assembly that breaks a screw contact s must fol­
low one of the feasible trajectories allowed by s, this augmented list will be 
sufficient to find all partitionings of the assembly using these new trajectories. 

Once a locally-free subassembly is generated along a helical motion, the global 
validity of the operation must be checked. This requires that a part be swept 
along a curved path, which is more difficult than sweeping along a translation. 
GRASP conservatively approximates this calculation by rotating the subassem­
bly around the axis of the helical motion to compute an object that is then 
translated along the axis to check for collisions. 

Note that in certain cases rotational motions might allow additional partition­
ings of an assembly that has only planar contacts, and these decompositions will 
not be found by the augmented PARTITION (see figure 10.7). Instead, in cases 
of rotational motions separating partitions with planar contacts, PARTITION 
will find the same set of decompositions as GET-FEASIBLE-DECOMPOSITIONS 
does. Section 10.6.5 discusses how both algorithms can be extended to handle 
infinitesimal rotational motions in a complete way. 

10.6.4 Global Constraints 

Since the basic partitioning algorithm only considers contacts, it may return 
a large number of decompositions that do not satisfy global constraints. In 
particular, FEASIBILITY-TEST sweeps parts to check for the existence of a 
straight motion to remove each locally-free subassembly; however, the require­
ment of a single translation to separate subassemblies can be included as a 
generating constraint in the procedure. PARTITION can be modified to find 
all the pairs of subassemblies that can be completely separated by a single 
translation, in polynomial time on the number of such decompositions and the 
number of features in the assembly. In fact, because GRASP currently only 
sweeps a subassembly along a few heuristically-chosen directions, the extended 
procedure would find decompositions that are missed by the current geometric 
reasoner. 

In an assembly A, the set of directions an subassembly S can translate with 
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x 

Figure 10.6: A non-convex cone of removal translations 

respect to its complement A - S an infinitesimal distance is always included 
within a convex cone, as in figure 10.1. To find the set of directions that S 
can translate indefinitely, we can project the obstacles corresponding to the 
parts of A - S back onto the unit sphere to obtain a cone of straight removal 
directions, which is in general not convex (figure 10.6). Each face of this cone 
that is not in common with the local translational freedom cone will arise 
either from a vertex of S and an edge of A - S, or from an edge of S and a 
vertex of A - S. Each vertex-edge pair defines a plane constraint, and all non­
convex cones arising from partitionings of A will be made up of these planes. 
Thus we can find a set of global critical directions that includes the edges of 
all non-convex cones arising from an assembly. If there are m features, there 
are m2 planar constraints, and m4 global critical directions. When generating 
assemblies, the function LOCALLY-COMPATIBLE is replaced by GLOBALLY­
COMPATIBLE, which sweeps parts as well as checking contacts. As a result, 
the modified procedure will generate all globally feasible decompositions of the 
target assembly, and no more. 

Arkin et al [1] present a procedure to find globally valid separation transla­
tions for polygons in the plane using the notion of a monotone path between 
obstacles, and show how to use this to physically partition two-dimensional 
assemblies of polygons. Their method has since been extended to three dimen­
sions in a way very similar to the above [5]; however, it is unclear how easily 
their algorithm could be extended in other ways, such as using a connected­
ness generating constraint, cylindrical contacts, or motions with a rotational 
component. 
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Figure 10.7: A rotation to remove a part that cannot translate 

10.6.5 General Rotations 

That a subassembly have local translational freedom is a necessary constraint 
on assembly decompositions only when the global motions for assembling parts 
are limited to translations. Consider for instance the planar assembly in figure 
10.7. Because no translations exist for the inside part, its local translational 
freedom cone is null . However, a rotation around the point shown can free the 
part. PARTITION will not generate this decomposition, even when augmented 
with the methods of Section 10.6.3, because this rotation is not included in 
the list of removal directions for anyone contact. It is possible to extend the 
procedure to find all such decompositions while preserving the polynomial time 
bound. This method is preliminary and not implemented, and it will only be 
sketched here. 

The positions of a rigid part p translating and rotating in three dimensions can 
be represented as points in a configuration space C = R3 x 50(3). A motion 
direction at a position q E C is a tangent at q to a trajectory going through 
q. A direction can be represented by a 6D vector of the tangent space [4] . 
Moreover, a set of contacts constrains the set of motion directions into a 6D 
local freedom cone which is linear and convex for planar contacts [6]. 

This formalism can be immediately included in GET-FEASiBLE-DECOM­
POSITIONS. The 6D local freedom cone for the contacts of the decomposition 
corresponding to each cut-set of the connection graph is calculated, and if it 
is null the decomposition is not feasible. This version of the cut-set method 
is truly complete for rigid parts: it will find all possible decompositions of the 
target assembly. 

PARTITION can also be extended to use 6D cones. Each cone is defined as 
the intersection of several half-spaces delimited by hyperplanes corresponding 
to well chosen contact points. It can be shown that the lines generated by 
combining all groups of five hyperplanes form a set of critical directions. Thus 
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with m contact points, there are O(m5 ) directions in which to partition the 
assembly. The function LOCALLY-COMPATIBLE tests whether any such rota­
tion and translation is incompatible with a single contact, although this will 
be a much more complicated calculation. 

With the extension to 6D freedom cones, PARTITION operates in the worst 
case in polynomial time on the number of point-plane contacts and feasible 
decompositions. However, note that the degree of the polynomial and the 
complexity of the geometric reasoning involved would make it advantageous to 
use this method only when the number of parts is quite large. In addition, the 
combination of 6D freedom cones with the global sweeping constraints of the 
previous section would not be straightforward, since non-instantaneous motions 
cannot be embedded in a vector space and the freedom cones will no longer 
have planar sides. Indeed, checking for collisions along a helicoidal path is 
already much harder than the translational case. 

10.6.6 Maintaining Geometric Dependencies 

As discussed in Chapter 9, the direct extension of precedence expressions to 
GET-FEASIBLE-DECOMPOSITIONS is straightforward yet not very useful in 
practice. A large number of cut-sets might be generated , few of which corre­
spond to feasible decompositions, and a precedence expression must be main­
tained and evaluated for each one. On the other hand, because PARTITION 
does not explicitly build the local freedom cone for each decomposition, depen­
dency maintenance cannot be applied to this aspect of the partitioning process 
easily. 

However, PARTITION still calls FEASIBILITY-TEST to assess the constraints 
on assembly operations that are not used as generating constraints in the al­
gorithm. Precedence expressions could be used to hold the results of other 
expensive calculations in FEASIBILITY- TEST and the conditions under which 
they will still be valid. These precedence expressions would only be stored or 
evaluated once a subassembly is found to be locally free , thus keeping the num­
ber of expressions manageable. Such a capability has not been implemented 
in the current version of the planner; as a result, GRASP finds either linear 
assembly sequences using precedence expressions, or non-linear assembly se­
quences using PARTITION. Further investigation should investigate combining 
the two techniques. 

10.7 Experimentation 

The algorithm PARTITION has been implemented in the assembly sequence 
planner GRASP, which is described in Chapter 9. The experiments described 
here were performed using a version of the algorithm extended to include the 
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Figure 10.8: The electric bell 

methods of Sections 10.6.1 and 10.6.3. There are a number of cylinder-cylinder 
and cylinder-plane contacts in the 22-part electric bell (figure 10.8), as well as 
two threaded contacts. 

Table 10.1 compares the running times of GET-FEASIBLE-DECOMPOSITIONS 
and PARTITION when run on the electric bell . It gives the time required to 
partition the bell according to local motion and connectedness constraints only, 
to partition including global motion checking, and to build the full AND/OR 
graph. With non-linear assembly sequences allowed, the AND/OR graph for 
the bell has 1,710 nodes and 12,447 AND-arcs. Note that the total AND/OR 
graph generation time is comparable for the two algorithms. This results from 
PARTITION being slower than the cut-set method when partitioning the many 
small assemblies close to the leaves of the graph. 

With larger assemblies the cut-set algorithm quickly becomes intractable. For 
instance, GRASP has planned for the assembly of a skin-machine product 
composed of 36 parts. Using PARTITION, GRASP finds one assembly plan for 
the skin-machine in about a minute. Planning for the same assembly, GET­
FEASIBLE-DECOMPOSITIONS was stopped after two days without partition­
ing the root node of the AND/OR graph. 
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Decomposition First Swept First AND/OR 
Algorithm Partitioning Partitioning Graph 

GET-FEASIBLE 54 62 3894 
PARTITION 1.1 9.1 1032 

Table 10.1: Time to plan for the electric bell, in seconds 

Conclusion 

The problem of automatic assembly sequence planning requires two relatively 
distinct types of reasoning: largely symbolic reasoning about sets of assembly 
sequences and more physical methods to evaluate the geometric and mechanical 
feasibility of individual assembly operations. This dichotomy leads naturally 
to a generate-and-test methodology for solving the assembly planning problem, 
in which assembly operations and sequences are proposed and then critiqued 
by the geometric reasoning module. 

The physical partitioning problem-finding all ways to divide an assembly into 
two subassemblies that can be mated obeying physical constraints-lies on the 
boundary between the symbolic and geometric sides of assembly planning. A 
generate-and-test approach can end up evaluating a large number of infeasible 
decompositions for some assemblies; PARTITION addresses this problem by 
including the geometric constraint of local motion freedom in the generation 
process. By tightly merging the symbolic and geometric reasoning required 
in physical partitioning, the algorithm achieves much greater efficiency. As a 
result, it will prove an invaluable technique to help make automatic assembly 
sequence planning practical for real world assemblies with many parts. 
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Chapter 11 

On the automatic 
generation of assembly 
plans 

Jan D. Wolter 

One of the primary goals of robotics research has been the development of flexi­
ble manufacturing systems that allow a manufacturer to bring new product de­
signs into production rapidly. This has led to the development of programmable 
machine tools, manipulators, and workholding systems that can be adapted to 
new manufacturing tasks simply by loading new software. However the full 
benefits of such tools can only be attained if reliable software can be rapidly 
generated. The ideal system would be one which could automatically program 
itself to produce a new product given only a description of the product. It is 
in the pursuit of this goal that the assembly planning problem arises. 

Assembling a mechanical structure is typically seen as being performed by a 
series of operations, such as the insertion of a peg into a hole. Under this 
model, the first stage in programming an assembly system must be to identify 
the operations necessary to manufacture the given assembly, and to specify the 
sequence in which they are to be performed. The selection of such a sequence 
of operations is called the assembly planning problem. 



www.manaraa.com

264 

This paper describes the XAP /1 assembly planning system. It will begin by 
describing in detail the problem solved by XAP /1. Although several assembly 
planning systems have been developed, each has been based on a slightly dif­
ferent definition of the assembly planning problem. To clarify the relationship 
between XAP /1 and other planners, four key questions will be discussed in 
section 11.1: 

• What kinds of operations are allowed? 

• How much detail is included in the plans generated? 

• How is the input assembly described? 

• How much optimization is done on the plans generated? 

It will be seen that it is XAP /1 's strong orientation toward optimization that 
distinguishes it from other assembly planners, and to a large extent determines 
the design of the planner. 

Section 11.2 will describe some theoretical bounds on the computational com­
plexity of the assembly planning problem. Although finding a solution to an 
assembly planning problem can be quite difficult in general, polynomial algo­
rithms exist for many special cases. In particular, given the inputs used by 
XAP /1, it is possible to find some valid plan in polynomial time. However, the 
problem solved by XAP /1, that of finding an optimal plan, is NP-hard. 

Section 11.3 will describe the operation of the XAP /1 planner. Most assembly 
planners plan sequentially, starting with the finished product and removing 
parts until it is completely decomposed. XAP /1 , on the other hand, plans by 
posting constraints and is able to make decisions in any order. This allows it 
to plan opportunistically, making obvious decisions first and rapidly narrowing 
the search space. Its search is guided by advice from a collection of plug-in 
criterion modules. 

Section 11.4 presents some example results and studies the performance of the 
planner experimentally. XAP /1 generates plans for reasonably sized assemblies 
very quickly, but its time complexity does grow exponentially with the number 
of parts. This section will conclude by describing work in progress on the 
XAP /1 planner . 

11.1 Problem Definition 

This section will describe the assembly planning problem in terms of its inputs 
and outputs. Some of the important differences between the problem definition 
used here and those used in other assembly planners will be detailed. 
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(a) (b) 

(c) (d) 

Figure 11.1: Two dimensional assemblies which cannot be built by (a) a se­
quential plan, (b) a monotone plan, (c) a contact-coherent plan, and (d) a 
linear plan. 

11.1.1 Legal Operations 

All assembly planning systems place some constraints on the types of opera­
tions that may be used. The most common is the sequentiality assumption. 
A plan is sequential if it can be decomposed into a sequence of operations 
such that each operation involves moving one set of parts along one common 
trajectory. Thus, a sequential plan is any plan that could, in theory, be ex­
ecuted by a one-handed robot. Each operation would consist of grasping a 
set of parts, moving them, and then releasing them. Sequential plans are not 
sufficient for the construction of all assemblies. The two-dimensional assembly 
in figure ILIa, for example, requires that part A and part B be simultane­
ously inserted along distinct trajectories, and so would require a two-handed 
robot. All assembly planners developed to date produce sequential plans. This 
is because finding mating trajectories that involve the coordinated motion of 
many parts is difficult, and because such mating operations are rarely needed 
in practice. 

Another common assumption is monotonicity. A plan is monotone if no oper­
ation ever separates any pair of parts that were already in their goal positions 
relative to each other, and every operation leaves all moved parts in their goal 
positions relative to some unmoved part. The monotonicity restriction excludes 
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operations which place parts in temporary positions. For example, the assem­
bly in figure ll.lb could only be built if part C was first temporarily inserted 
fully into part B, and then slid to its goal position only after part A had been 
installed. Such a plan would not be monotone because it leaves C in a tempo­
rary position while A is inserted. Generating non-monotone plans is challenging 
because of the difficulty of finding appropriate temporary positions for parts. 
Only Hoffman's assembly planning system has significant capabilities in this 
respect[lO,9]. In practice, non-monotone plans are most commonly needed for 
assemblies with moving parts, which may be moved to different positions for 
different assembly operations. 

We call the set of parts which are placed in their final relative positions by 
an operation a partial assembly. Many planners restrict the kinds of partial 
assemblies which may be produced through a coherence restriction. Given any 
connected graph G whose vertices correspond one-to-one with the parts of the 
assembly, a plan is coherent for G if every partial assembly that occurs in the 
plan forms a connected subgraph in G. 

One commonly used form of coherence graph is a contact graph. A contact 
graph has an edge connecting the nodes for any two parts that touch each 
other in the goal assembly. Plans which are coherent for a contact graph only 
allow operations which place the moved parts into contact with some other part . 
Not all assemblies can be built by contact-coherent plans. Figure ll.lc is an 
example of assembly which cannot. There is only one way to split the complete 
assembly into two sets of parts and that is by removing part A from the rest. 
But doing so leaves an unconnected partial assembly, {B,Bl,C,Cl,C2} , so 
the plan is not contact-coherent. In practice, non-coherent plans are often used 
when fixtures are available that can accurately position parts not in contact[15]. 

Contact graphs were first used by Jentsch and Kaden[13]. Homem de Mello 
and Sanderson's "relational model graphs" can be viewed as augmented contact 
graphs[ll]. The "liaison graphs" used by Bourjault[l] and by De Fazio and 
Whitney[4,5] are similar to contact graphs, but are more loosely defined. All 
these systems generate only coherent plans. Of course, this restriction can be 
eliminated by using a complete graph as the coherence graph, however this 
would entail a significant performance penalty for most systems. 

This paper considers the generation of plans which are sequential and mono­
tone, but without coherence constraints. In the generation of optimal plans, 
the XAP /1 planner applies an additional constraint , that of linearity. A plan 
is linear if no more than one part is moved at a time. Such plans will contain 
no subassemblies and will be constructed entirely in a single fixture. There are 
many common assemblies in which the use of subassemblies is necessary (as in 
figure ll.ld) or desirable. To plan such systems with XAP/l, the user would 
have to supply a breakdown of the parts into subassemblies. The system could 
then generate a separate linear plan for each subassembly. 
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Assembly So: 
(1) Insert part P1 with trajectory (3. 
(2) Insert part P2 with trajectory /. 
(3) Insert subassembly Sl with trajectory (3. 
(4) Insert part P5 with trajectory (3. 

Subassembly Sl: 
(1) Insert part P4 with trajectory a. 

(2) Insert part P3 with trajectory a. 
(3) Insert part P6 with trajectory a . 

(a) 

(b) 

Figure 11.2: A plan to build a six part assembly using one subassembly. This 
can be represented as (a) a sequence of insertions for each subassembly or (b) 
a subassembly tree diagram. 

11.1.2 Level of Detail 

Assembly planning is the first step toward producing a complete production 
plan for the product. This complete plan might include executable robot pro­
grams, workcell layouts, and fixture designs. Normally the assembly planner 
will not decide on all these details. Instead it will make only high-level deci­
sions, and leave the lower-level details to be determined by lower-level planners. 

The amount and type of detail to be included in the plans produced by an 
assembly planner is a critical design issue. The planning problem becomes 
more difficult as plans become more detailed, and the number of different kinds 
of decisions the planner must be able to make increases. However, to have any 
value, a planner must produce plans which are detailed enough so they can be 
meaningfully evaluated. A planner cannot find "good" plans, unless it knows 
enough about those plans to be able to judge them. 
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The planners described by Homem de Mello and Sanderson and by De Fazio 
and Whitney produce plans composed of assembly operations which combine 
two sets of parts. Though neither system stores mating trajectories for these 
operations, both check if a feasible one exists. They do not, however , decide 
which of the two sets of parts is to be held by a fixture. Homem de Mello and 
Sanderson produce a partially-ordered tree of assembly operations, while De 
Fazio and Whitney produce a totally-ordered linear sequence. These models 
of a plan include all the detail necessary to allow the geometric feasibility of a 
plan to be determined. 

The XAP /1 planner is based on slightly lower-level operations, called insertion 
operations. An insertion operation consists of inserting a part or subassembly 
into a fixture. A plan consisting of insertion operations may be drawn as a 
subassembly tree, as shown in figure 1l. 2. Each internal node corresponds to a 
subassembly, where a subassembly is defined as a set of parts that is assembled 
in one fixture, and then inserted as a unit into a larger assembly. The children 
of a subassembly are the ordered sequence of parts and subassemblies that are 
inserted to create it. Thus, for the example in figure 11.2b, subassembly So is 
built by inserting first part Pi, followed by part P2 , subassembly 51 and part 
h so these are the children of node So . 

Subassembly t rees contain considerably more detail than the plans produced 
by Homem de Mello and Sanderson and De Fazio and Whitney. For an n­

part assembly, each of the plans produced by those systems will correspond 
to between ~(2y'2)n and 2(311 ) different subassembly trees. The subassembly 
tree representation makes it possible to uniquely determine such facts as the 
number of subassemblies used, and the order in which the parts are inserted into 
a fixture. It is possible to extract a fixture specification from a subassembly tree 
plan- one that tells for each fixture what parts it must hold, what directions 
those parts will be inserted from, and what assembly forces it must restrain 
those parts against once they are placed. Since plans described in terms of 
assembly operations do not distinguish between held and moved parts, this 
kind of information cannot be extracted from them. 

Of course, since the XAP /1 planner is currently limited to the generation of lin­
ear plans, it produces trees of only one level. Thus it is restricted to producing 
plans which are simply totally-ordered sequences of insertion operations. 

11.1.3 System Inputs 

Ultimately, an assembly planner should be able to generate plans directly from 
a CAD model of the goal assembly. Several systems already support such 
interfaces, including those described by Hoffman and by Homem de Mello and 
Sanderson. Both of these systems query the geometric models directly during 
the planning process. 
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XAP /1, like De Fazio and Whitney's system, does its planning based entirely 
on a symbolic description of the problem. All the information that makes up 
this description is to be computed before the actual planning begins, and the 
geometric model is not accessed during planning. This is in contrast to the 
planners described by Hoffman and by Homem de Mello and Sanderson, which 
make geometric queries during the plan generation. 

The XAP /1 planner represents the problem with two kinds of information. 
First, a set 0p of insertion trajectories are proposed for each part P. Second, 
sequencing constraints are generated by checking which parts would block the 
insertion of a given part by a given trajectory. If moving part P along trajectory 
(J E 0p causes P to collide with another part Q then we have a constraint of 
the form: 

if P is inserted along (J, then it must precede Q. 

All constraints in XAP /1 take this form. 

These trajectory proposals and sequencing constraints are generated manually 
and input to the current system. However, insertion trajectories could be 
proposed automatically by recognizing common relationships between nearby 
parts in a CAD model. Some might be generated based on the geometry of 
the assembly, while others might be found using some higher-level knowledge 
about the assembly. Generally the number of trajectories proposed for each 
part can be quite small-perhaps between two and a dozen. 

Geometrically, trajectories perpendicular to planar contact surfaces or parallel 
to the axis of cylindrical contact surfaces might be proposed. These will often 
work well where the parts do not interlock in complex ways. More sophisticated 
geometrical techniques are known that can be used to find straight-line trajec­
tories to separate pairs of adjacent parts in two or three dimensions[19,16]. 
In the relatively rare cases where two parts interlock in very complex ways, a 
general geometric path planner could be applied to separate them. 

Perhaps more promising than purely geometrical techniques for proposing tra­
jectories are techniques which use higher-level knowledge about common struc­
tures in assemblies. Knowledge about fasteners is especially useful. For ex­
ample, if a structure where a nut and bolt hold together a set of parts can be 
recognized, then we can propose spiral trajectories for the threaded parts, and 
straight trajectories parallel to the axis of the bolt for both the threaded parts 
and all the parts they hold together. Similarly other types of fasteners suggest 
certain trajectories might be used both for the fasteners and the parts they 
fasten. This would allow us to find trajectories for many common deformable 
parts, such as C-rings, cotter pins and rivets. 

Knowledge about other types of part features, such as tabs, slots and holes 
can also be used to guess mating trajectories. Some research has been done 
on methods to identify such features from geometric models[2,8,14] . It seems 
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likely, however , that identifying such features in assemblies would be easier 
than identifying them on individual parts. For example, for a depression in 
the surface of a part to be classified as a slot , there should be another part 
which has a tab that fits into it . There is also research in progress aimed at 
the development of functional CAD systems which would make this kind of 
feature-based planning much easier[20]. 

11.1.4 Optimization 

All plans must be geometrically feasible, in the sense that it must be possible to 
perform the operations without causing any intersection between parts. How­
ever there are usually many feasible plans, so the planner must use some other 
basis to choose the best of them. Ideally it would always choose a plan with 
minimal set-up and production costs , but in practice this is difficult to achieve 
because the actual costs can only be computed if the plan is very detailed. 
Since assembly planners produce only high-level plans, we must be content to 
evaluate those plans on the basis of some estimate of how likely they are to 
have an inexpensive implementation. 

Homem de Mello and Sanderson evaluate their plans for flexibility and paral­
lelism. A flexible plan is simply one that has many possible implementations . 
Such a plan is certainly more likely to have a good implementation. Highly par­
allel plans can reduce production time when multiple manipulators are present . 
It is worth noting, however, that plans with high parallelism will also tend to 
use large numbers of subassemblies. In a single manipulator environment this is 
a disadvantage because each additional subassembly will require one additional 
insertion operation. This situation is typical of nearly all evaluation criteria in 
all assembly planners: different criteria must be applied in generating plans for 
different manufacturing environments. 

The XAP /1 planner addresses this by implementing criteria as independent 
"plug-in" modules that can be installed as needed and that can be given dif­
ferent weights for different applications. Because the XAP /1 planner generates 
more detailed plans than most other planners, it is also able to evaluate plans 
with respect to a wider range of more realistic criteria than other planners. 
Currently criterion modules have been implemented for the following three 
criteria: 

1. Directionality. We would prefer to insert all parts, as much as possi­
ble, from a single direction. This simplifies the fixtures , requires a less 
dexterous robot, and avoids extra operations to reorient the work piece. 

2. Fixture Complexity. We would like to sequence the operations so 
that the partially built assemblies hold themselves together as much as 
possible. For example, if we wish to place ten washers on a peg, it is 
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better to place the washers on the peg one by one than to hold the ten 
washers in place while inserting the peg. 

3. Manipulability . We would like to perform the more difficult operations 
with the more easily handled parts. For example, if we wish to attach a 
bolt to an engine block, we would prefer to fixture the engine block while 
screwing in the bolt, rather than fixture the bolt while screwing on the 
engine block. 

Note that none of these criteria could easily be implemented in a planner that 
describes the plan only in terms of assembly operations, because they cannot 
be assessed without knowledge of the fixturing and manipulation'requirements 
of the plan. 

In practice, the number of different criteria which are relevant to a particular 
planning problem may be large. It is the need to be able to plan efficiently 
with a large and variable set of conflicting criteria that drove the design of the 
XAP/1 planner. 

11.2 Computational Complexity 

In this section we will discuss the computational complexity of the assembly 
planning problem. In certain special cases, it has been shown that an assem­
bly plan can be found rapidly, if we do not require optimality. Dawson [3] 
has shown that for any set of star-shaped parts in k-dimensional space there 
exists a non-sequential assembly plan which can be generated in linear time. 
Guibas and Yao[7] give an O(n log n) time algorithm to find a linear, monotone, 
mono directional plan for any two-dimensional assembly of convex parts of total 
complexity n. For three dimensions, however, Dawson[3] has shown that there 
are assemblies of convex parts which cannot be built by any sequential plan 
(i.e ., no set of parts can be moved without disturbing some others). 

On the other hand, it can be shown that finding a non-monotone assembly 
plan is PSPACE-hard even in two-dimensions. Only exponential algorithms 
are known for PSPACE-hard problems. Hopcroft, Schwartz and Sharir have 
shown that moving a set of parts from a given starting position to a given 
goal position is PSPACE-hard[12] . Though no initial position is specified in 
assembly planning problems, it is possible to design assemblies which must 
pass through a specific intermediate position, and moving from that interme­
diate position to the final position requires the solution of a problem of this 
type. Using this observation, it is possible to modify Hopcroft, Schwartz and 
Sharir's proof to produce a proof that finding a non-monotone assembly plan 
is PSPACE-hard[21]. 

As described in section 11.1.3, the XAP /1 planner is given planning problems 
described by sets ' of proposed trajectories for each part and a set of constraints 
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(a) (b) 

(c) (d) 

Figure 11.3: Assembly decomposition: (a) is the assembly; (b) is the prece­
dence graph for insertion of parts from below; (c) is the precedence graph after 
collapsing strongly connected components; (d) is the subassembly tree showing 
the resulting decomposition of the assembly. 

on each trajectory. Given this information, it is possible to find a monotone 
solution, if one exists, quite quickly. The algorithm can be described quite 
easily, since it is based on well-known graph algorithms. For simplicity, we 
will assume that the same set of trajectories is proposed for every part. Then 
we can draw a different precedence graph for each proposed trajectory. The 
graph for the trajectory () would have one node for each part, and would have 
an edge directed from part p's node to part q's node if there is a constraint 
that says that part p must be inserted before q when trajectory () is used. For 
example, the precedence graph for insertion from below in the assembly shown 
in figure 11.3a is shown in figure 11.3b. If part C were inserted from below, 
it would collide with parts B, F and G, so there are arrows pointing to those 
parts from part C. Clearly these precedence graphs can be constructed for a 
set of n parts, with t trajectories and c constraints in O( nt + c) time. 

The algorithm will construct a subassembly tree from the root downward, by di-
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vi ding each subassembly into an ordered sequence of parts and subassemblies. 
To test if a trajectory can be used to decompose an assembly, we first find 
the strongly connected components of its precedence graph in O(n + c) time 
using Tarjan's algorithm[18]. These components are the sets of parts which 
form cycles and thus cannot be separated from each other with the trajectory 
(). Thus, the strongly connected components of the graph in figure 11.3b are 
{A,B,C},{D} , {E},{F,G}. If the entire graph forms a single strongly con­
nected component, then the trajectory () cannot be used, and we try the next 
trajectory. Otherwise, we collapse each strongly connected component into a 
single node labeled by the set of parts in the subassembly it represents . This re­
sults in an acyclic graph like the one in figure 11.3c. This graph is topologically 
sorted in O( n + c) time[17] to give an ordered list of parts and subassemblies 
which can be combined to build the assembly, all using trajectory (). This 
leads to a decomposition of the assembly such as the one described by the 
subassembly tree in figure 1l.3d. Thus we can decompose any internal node in 
the subassembly tree in O(tn + c) time. Since the subassembly tree can have 
at most n - 1 internal nodes, the total time to build a tree will be bounded by 
O(n2t + nc). This algorithm will always find a plan if one exists. 

Thus, a polynomial algorithm exists to find monotone plans for the problems 
solved by XAP /1. However, the goal in XAP /1 is to find an optimal plan, and 
this is a much harder problem. We will see in section 11.3.3 that optimizing the 
directionality criterion alone is an NP-hard problem. It is thus to be expected 
that any system to solve such problems will require exponential time. 

11.3 The XAP /1 Planner 

This section will begin by briefly describing the method used by the XAP /1 
planner to generate plans, and will then describe the operation of each of 
XAP /1 's major modules. 

XAP /1 represents plans by collections of assertions and constraints. Two types 
of assertions are supported. A sequencing assertion, written P -< Q, indicates 
that part P must be inserted before part Q. A trajectory assertion, written 
P: e, indicates that part P must be inserted using some trajectory in the set 
e. Both kinds of assertions have the property that they are easily negatable. 
The negation of P -< Q is Q -< P, and the negation of P: e is P : e p - e where 
e p is the set of trajectories originally proposed for part P. 

XAP /1 uses assertion sets to represent sets of plans. Specifically, an assertion 
set is used to represent the set of all plans which satisfy all the assertions in 
the set. Initially the set of possible plans would be represented by the set of 
assertions {(P: ep) I PEP}, where P is the set of all parts and ep is the 
set of trajectories initially proposed for part P. Such an initial assertion set is 
shown as the root of the tree in figure 11.4c. Every plan that can possibly be 
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generated using the proposed trajectories satisfies this assertion set . 

Constraints are relations among assertions that must be obeyed by all legal 
assertion sets. Two kinds of constraints are used in XAP /1. First, assertion 
sets must obey certain logical constraints. If an assertion set contains assertion 
a, then it may not contain the negation of a, and at least one trajectory must 
be allowed for each part. The sequencing assertions in the set must form a 
transitive relation. That is , they must obey the rule 

\lP, Q, REP (P-<Q 1\ Q-<R :::} P-<R). 

The assertions in the set must also obey the geometrical constraints generated 
during the constraint generation stage of the preprocessing stage. All of these 
geometrical constraints take the same form. If moving part P along each tra­
jectory in the set e causes it to collide with part Q, then we have the following 
constraint: 

p:e :::} P-<Q. 

Thus, for the assembly in figure l1.4a, there would be two geometrical con­
straints: if part A is inserted from below, it will hit B ; and if part B is inserted 
from above, it will hit A. These two constraints are shown in figure 11.4b. 

XAP /1 generates plans by starting with the initial assertion set, which rep­
resents all possible plans, and iteratively subdividing it into subsets until an 
assertion set that describes just one plan is found. The subdivision is done by 
selecting any assertion a which has not already been determined to be either 
true or false and adding a to one child of the set and -'a to the other. When 
an assertion is added to a set , any other assertions which are implied by the 
constraints are also added. 

For example, in figure 11.4c, we started by refining the initial assertion set with 
the assertion A: {j}. Note that the assertion A : {n may be applied because 
it is not known to be either true or false. It is known that part A uses either 
trajectory i or L but which has not been determined. This implies by the 
first constraint that A-<B must be true for all plans in this set. This, in turn, 
implies by the second constraint that B:! must be false for all plans in this 
set . The other child of the initial assertion set is produced by applying the 
negation of the assertion in the same manner. As shown, this procedure could 
be repeated until all assertion sets are complete, that is , they propose only 
one trajectory per part, and they totally order the insertion sequence. This 
will give a complete enumeration of all plans. Note that different trees can 
be generated by applying the assertions in different orders, for example as in 
figure l1.4d, but the same set of plans would always be produced in the leaves. 

In normal operation, however, the XAP /1 planner would not expand out the 
entire tree. Our objective is not to enumerate every possible plan, but to 
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Trajectory Proposals: 
Part A: 1 (from above) or i (from below). 
Part B: 1 (from above) or i (from below). 

Geometric Constraints: 
A :{i} => A-<B 
B:{l} => B-<A 
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A :{!}, BU}, 
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AU}' B:{T}, 
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A{f}, B:{f} , 
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Figure 11.4: The two part assembly (a) might be described by the trajectory 
proposals and constraints shown in (b). Two possible search trees producing 
all plans for this assembly are shown in (c) and (d). 
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identify an optimal plan. XAP /1 uses search heuristics to guide its refinement 
of sets of plans in two ways: to select which incomplete plan-set to refine next, 
and to select which assertion to use to refine it. If these decisions are made 
well, it should be necessary to construct only a small section of the tree. 

Note that no possible plan is ever eliminated during the search process. Every 
plan that was described by the assertion set of a parent node, is described 
by one of its two children. Because of this, we can guarantee that if there is 
any possible linear, monotone plan to build the assembly using the proposed 
trajectories, then XAP /1 will be able to find it. 

The XAP /1 system is actually implemented as a collection of distinct mod­
ules. The search executive drives the search for an optimal plan by using a 
heuristic search approach. It is supported by the consequence generator, which 
applies assertions to assertion sets and finds which other assertions arise as 

consequences, and the criteria arbitrator, which collects advice from lower­
level criterion modules to guide the search. Each criterion is also implemented 
as a separate module. We will describe the operation of each of these modules 
in turn. 

11.3.1 Search Methodology 

The goal of the XAP /1 system is not to enumerate all possible plans, as was 
done in figure 11.4, but to generate one optimal plan. To do this, we must first 
have a definition of optimality. The system assumes the existence of a rating 
fUllction f(P) which returns a numeric rating for a plan P. Normally this will 
be a weighted combination of a number of different heuristic evaluation func­
tions such as the directionality, fixture complexity and manipulability criteria 
functions. All those possible plans for which f(P) takes a minimal value a.rp. 
optimal plans. It is one of these that the system is designed to find. 

The function f(P) can be computed only for complete plans. To be able 
search effectively, we must be able to estimate ratings for plan-sets that ha· 
not been completely refined . This will allow us to decide if they are worthy 
further refinement. For this purpose we use a heuristic function h(S) that giv 
an estimate of the rating of the best plan in the set S . We will normally requi 
that this function be strictly optimistic-that is , for all complete plans P in 
the plan-set S, we must have f(P) 2: h(S). This is similar to the admissibility 
criterion for heuristic functions in the A * search. 

The XAP /1 planner selects nodes for refinement in a best-first manner based 
on the nodes' h( S) values. That is, it maintains a list of all leaves of the current 
search tree on an open list, and in each iteration selects the one with the best 
rating for further refinement. If there is more than one equally good choice, 
it prefers assertion sets which are more nearly complete. If the h function is 
strictly optimistic, this procedure will guarantee that the first complete plan P 
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selected will be an optimal plan. This is because at that time no other leaf of 
the search tree may have better h value than P (otherwise it would have been 
selected instead of P) so no descendent of another leaf could be better than P, 
since none of them can have ratings better than their ancestors already in the 
tree. 

After an assertion set is selected for refinement the system must choose an 
assertion to use to split it. This can be any assertion such that neither it nor 
its negation is already known to be true. The choice of an assertion is a simple 
type of meta-planning decision- that is , a decision about which decision should 
be made next. The strategy used by XAP /1 to select assertions is to choose ones 
that appear likely to lead to two children with very different ratings. If this is 
done then the child with the worse rating may very well never need to be refined. 
This should lead to a narrowly directed search which goes quickly to a solution 
without refining too many alternatives. By doing this the planner is effectively 
making "obvious" decisions first, an opportunistic strategy commonly used by 
human planners. Note that XAP /1 would be able to find an optimal plan if 
one exists even if these decisions were selected at random. However , if they are 
made well, the time required to find that plan will be greatly reduced. 

More details on how assertions are selected are given in the sections on the cri­
terion modules, and some evidence on the effectiveness of this search technique 
is given in section 11.4. 

11.3.2 Consequence Generation 

Consider the two assertion sets {A -< B , B -< C} and {A -< B, B -< C , A -< C}. 
These are equivalent because the third assertion in the second set is implied 
by the other two, so any plan for which the first set is true must also satisfy 
the second set. Clearly there are two different strategies that might be used in 
representing assertion sets. Either we could maintain a minimal set of assertions 
that describes the desired set of plans, or we could maintain a complete list of 
all assertions which are true for the plans in the set. 

XAP /1 uses the second approach, because it is easier to find new assertions to 
apply to fully-specified assertion sets, and because it is easier to detect when 
such a set is complete. In order to maintain this representation, it must be 
able to find all new assertions which arise as consequences when an assertion 
is added to an assertion set . 

We define a part P to be unconstrained relative to a set of parts S if it has 
a proposed trajectory (J allowed by the assertion set that would let it be re­
moved from S without violating any sequencing assertion in the assertion set, 
or any geometric constraint on (J. Using this definition, the following two rules 
determine if an assertion is a consequence of a set of assertions S: 

The sequencing assertion Q -< P is a consequence of S if and only 



www.manaraa.com

278 

if there is a set of parts S containing both P and Q such that Q is 
the only part in S that is unconstrained relative to S. 

The trajectory assertion P: 0 is a consequence of S if and only if 
there is a set of parts S containing P such that P is the only part 
in S that is unconstrained relative to Sand P is constrained to 
precede some part in S for every allowed trajectory not in 0. 

Proofs of these theorems are given in [21]. 

Unfortunately, these tests are computationally expensive to perform. In prac­
tice most (but not all) consequences can be found by simple applications of 
the transitive property and the geometric constraint rules. If a sequencing as­
sertion P -< Q is applied, we look for assertions of the form R -< P or Q -< R 
and apply the transitive property if any are found. If we have a constraint 
p:e :::} P-<Q then P-<Q is a consequence of any assertion P:cf> where cf> ~ 0 
and P: (e p - e) is a consequence of any assertion Q -< P. 

This method of consequence generation is relatively efficient, but it does not 
guarantee that all consequences will be found. If some consequence is over­
looked, then it is possible that the negation of that assertion will be applied 
to the plan later. This will result eventually in the generation of consequences 
whose negations are already in the assertion set . If this kind of contradiction 
occurs, the assertion set represents an empty set of plans, so it is simply dis­
carded from the search tree. Fortunately, this happens only occasionally, so 
the time lost is less than what would be spent in generating all consequences 
directly. 

11.3.3 Criterion Modules 

The criterion modules provide two services to the XAP /1 planner. First, they 
provide ratings of plan-sets, which are used by the search executive to select one 
to refine. Second, they select the assertions to apply to those plan-sets in order 
to refine them. Each of the modules is a specialist in a different criterion. In the 
current implementation, one module is designed to minimize fixture complexity, 
another minimizes the number of different insertion directions used, and a third 
avoids performing difficult operations with parts that are hard to manipulate. 
A single arbitration module combines the ratings generated by these criterion 
modules and selects among the assertions they propose. 

The criterion modules have only limited information about the rest of the sys­
tem. Though they function much like the knowledge sources in a blackboard 
system, there is no shared, global blackboard in XAP /1. Instead, each crite­
rion module maintains its own representations of all the plan-sets on the tree . 
Whenever an assertion is applied to a plan-set, each criterion module is in­
formed of the fact, and updates its own data structures appropriately. This 
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leads to some redundancy in information storage, but allows each module to 
arrange its data structures optimally for its own purposes. 

It should be noted that only the arbitration module knows what constraint 
modules are installed. The individual criterion modules do not intercommuni­
cate directly. Similarly, only the consequence generator has any understanding 
of geometric and logical constraints. When the criterion modules propose as­
sertions, they consider only the assertion itself, not any assertions which might 
arise as consequences. The exploration of the actual consequences of decisions 
is the job of the system as a whole. 

The following sections will describe each of the modules. First the arbitration 
module will be briefly described. For the three criterion modules, we will 
begin by defining the evaluation function f(P) that the criterion attempts to 
minimize. Then the algorithms used to generate h(S), the optimistic estimate 
ofthe rating ofthe best plan in S, and to propose assertions will be summarized. 
More detailed descriptions of these criterion modules are given in [21]. 

Arbitration Module 

The arbitration module is initialized with the list of criterion modules to be 
used, and a weight for each. Whenever an assertion set has been updated 
through the consequence generator, the arbitration module is called to compute 
a new rating for it. It does this by asking each installed criterion module to 
rate it , and computing the weighted sum of their ratings. 

The arbitration module is also called when an assertion needs to be selected to 
refine an assertion set. To do this, it calls each installed criterion module and 
asks it to propose an assertion and give a rating for that assertion. The rating 
of the assertion estimates the difference in the ratings of the two plans that 
would be produced by applying the assertion and its negation. The arbitration 
module multiplies the ratings by the weights of the different criterion modules, 
and uses a simple voting technique to choose the one which seems likely to 
make the biggest difference. 

Note that as the plans near completion, some or all of the criterion modules 
may make no proposals. This occurs when all the possible plans that satisfy the 
assertion set appear to be equally good. If no other criterion has any proposal 
to make, the arbitrator calls a default criterion, which selects assertions that 
seem likely to have many consequences, and thus will lead rapidly to a complete 
plan. 

Fixture Complexity Criterion 

Fixture complexity measures the number of things which must be held in 
place during the execution of the assembly plan. Generally insertion opera-
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tions should be sequenced so that the assembly holds itself together as well as 
possible during all stages of the assembly process. This is, of course, not the 
only criterion that effects the cost of fixtures . Directionality, for example, is 
relevant too. 

Different types of fixtures would require different definitions of fixture complex­
ity. For example, fixtures that can dynamically reconfigure themselves during 
the assembly process have different requirements than stat.ic fixtures which 
cannot. We will consider rigid, static fixtures , which must be able to fully re­
strain each part. at the instant when it is least restrained by other parts of the 
assembly. For monotone plans, this will always be the moment immediately 
after insertion . Thus we will define the static fixture complexity of a plan as 
the sums of the degrees of freedom of the parts immediately after insertion. 

To compute st.atic fixture complexity, each part is first classified according 
to how well it is held in place immediately after insertion. It may be either 
"attached" such as a nut that has just been placed on a bolt; "lift-only" such 
as a square peg inserted into a square hole; or "lift-rotate" such as a washer 
just placed on a cylindrical peg. All other parts are considered to be "free." 
Parts are classified by using a set of rules which describe for each part what 
combinations of previously placed parts would put it in each group. These 
rules would have to be extracted from the CAD model in much the same way 
that the geometric constraints are. The f(P) function is, thus, computed by 
classifying each part, counting the remaining degrees of freedom (0, 1, 2, or 6 
for attached, lift-only, lift-rotate, and free parts respectively), and adding them 
up. 

Optimistic estimates of the static fixture complexity rating of plan sets are 
produced by assuming that every part which could have been inserted before a 
part, is inserted before that part. Thus, in the initial plan, where no sequencing 
assertions have been made , it assumes that every part is inserted before every 
other part. Various techniques can be used to tighten up this estimate. For 
example, every plan must have a first part, which must be free, so XAP /1 
always places at least one part into the free class. 

To propose assertions with which to refine a plan, we look for an assertion that 
will harm the estimated rating. In particular, we look for a part P that would 
be moved to a lower attachment class than we had optimistically placed it in, 
if we assert that some part Q does not precede it. Then the assertion P -< Q 
would be proposed, because it hurts the plan's rating though its negation does 
not. The change in the part's rating which would be caused is returned as the 
rating of the proposed assertion. 

Directionality Criterion 

The directionality criterion measures the number of different directions from 
which operations are performed. Generally, plans that work from a single 
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direction are better than plans that require operations to be performed from 
all sides. They require a less dexterous robot, a simpler fixture, and fewer 
reorientations of the workpiece. 

The directionality criterion counts how many different insertion directions are 
used in the plan. Sometimes different trajectories may be performed from the 
same direction. For example, spiraling a screw in from above and inserted 
a peg straight from above are different trajectories performed from the same 
direction. The directionality criterion is given a classification of trajectories into 
directions. The f(P) function it computes is simply the number of directions 
that are used by at least one part in the plan P. 

A good optimistic estimate of f(P) could be produced by finding the smallest 
set of directions such that every part has at least one proposed trajectory using 
that direction. However this is the NP-complete HITTING SET problem[6], 
and solving it for every node in the tree is impractical. Instead, XAP /1 finds 
all parts with only one direction proposed, and defines U as the set of directions 
used by those. If every other part has a proposed direction in that set, then the 
plan-set's rating is lUI. Otherwise, if the intersection of the direction sets of the 
parts with no directions in U is non-empty, the rating is IU 1+ 1. Otherwise, the 
rating is I U 1+ 2 is used. This gives a rating that is sometimes overly optimistic, 
but is still a good guide, especially later in the planning process. 

To generate an assertion, the directionality criterion looks for a trajectory pro­
posal which would move us from the lUI case to the lUI + 1 case, or from the 
lUI + 1 case to the lUI + 2 case. For example, in the first case, we propose that 
a part that has some trajectories with directions in U and some with direc­
tions not in U use one of the latter trajectories. The rating of the trajectory 
proposed will always be 1, since that is the largest difference a single proposal 
can make in the plan-sets estimated rating. 

Manipulability Criterion 

The manipulability criterion favors doing difficult operations with parts that are 
easy to handle. For example, when attaching a spark plug to an automobile, it 
is the spark plug, and not the automobile, that should be rotated. To generate 
a manipulability rating for a plan, each part is given a manipulability rating, 
and each trajectory is given a difficulty rating. The product of these gives the 
rating for an operation. The manipulability of a plan is the sum of the ratings 
for all the operations. 

The manipulability rating of a part tells how hard the part is to handle with 
a robot relative to how hard it is to hold with a fixture. The mass of a part 
is a reasonable estimate of this , since heavy parts are much harder to handle 
than to fixture. Very small parts are hard to handle, but they are also hard 
to fixture. The difficulty of a trajectory depends on the complexity of the 
motions and the amount of fine motion control involved. This would be based 
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Figure 11.5: Example assembly consisting of 3 bolts holding together 2 plates. 

on a classification of trajectories into types. For example, screwing trajectories, 
and trajectories to insert snap-together parts would be types of trajectories that 
are more difficult than simple insertions. 

XAP /1 estimates manipulability ratings in a manner similar to that used with 
the static fixture complexity criterion. Each part is evaluated separately, as­
suming that it uses the simplest trajectory proposed for it. To propose asser­
tions, it looks for a part with trajectories with different difficulties proposed for 
it. It then proposes the deletion of all but the most difficult trajectories, rating 
that proposal with the difference in the difficulties times the manipulability. 

11.4 Performance 

The performance of the XAP /1 system varies widely according to the relative 
weights of the criteria, and the particular characteristics of the plan. Pre­
dictably, it works best when one criterion dominates the others, or when the 
proposed trajectories have a large number of constraints. 

As an example, we will consider a class of assemblies similar to the one shown 
in figure 11.5. These contain two plates which are held together by a set 
of b nut/bolt pairs. This is a fairly unconstrained assembly, so that, even 
without subassemblies, there are 4b+1 possible plans to build an assembly with 
b bolts. We will use all three criteria, choosing weights that leave them fairly 
evenly balanced, with a slight edge being given to the static fixture complexity 
criterion. 

Figure 11.7 shows the search tree generated by XAP /1 in the course of finding a 
plan for an assembly with three bolts. This tree clearly shows how the XAP /1 
system makes obvious decisions first. Note that the upper portion of the tree 
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number nodes CPU tree 
of bolts expanded time memory 

1 4 0.3 sec 8K 
2 9 0.4 sec 17K 
3 31 0.7 sec 64K 
4 65 1.3 sec 159K 
5 122 2.4 sec 336K 
6 206 4.6 sec 492K 
7 329 8.0 sec 493K 
8 496 13.6 sec 494K 
9 730 22.0 sec 495K 

10 1046 36.0 sec 502K 
11 1462 57.3 sec 504K 
12 2298 125.9 sec 506K 

Figure 11.6: Performance of XAP /1 with a 488K soft memory limit on assem­
blies consisting of b bolts holding together 2 plates. 

is very narrow, with very little expansion of side branches, while near the end 
it bells out into a nearly exhaustive search. In the upper part of the tree, 
one alternative is usually far superior to the other , so only that one need be 
explored much further. In the lower part of the search, the system is primarily 
attempting to decide in which order the bolts and the plates are to be inserted. 
Since this actually makes little difference to the quality of the plan, the system 
must inspect many nearly equal alternatives. The search tree would have been 
much larger if these comparatively trivial decisions had not been deferred to 
the end . If we had started with one of these decisions, the size of the tree would 
likely have been nearly doubled, since both subtrees would require almost as 
much exploration as the entire tree in this example. This demonstrates the 
importance of being able to make decisions in an opportunistic fashion. 

Running XAP /1 on a number of such assemblies with varying numbers of 
bolts gives rise to the table in figure 11.6. The CPU times here are based on an 
implementation in C on a Sun 3/50 workstation. As expected, the time grows 
exponentially with the size of the assembly, approximately doubling with each 
additional bolt. This kind of behavior is not really satisfactory. Generating 
a plan for four bolts shouldn't be much harder than generating one for three 
bolts. This arises largely because the planner currently must consider every 
possible sequence in which the screws can be inserted separately. Given any 
valid plan for this assembly, we can generate n! other valid plans by rearranging 
the labels of the n nut/bolt pairs. All these plans are equivalent as far as the 
three installed criteria are concerned. Yet the planner must partially generate 
many of these n! plans to make sure none is better than the other. 
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Types of Proposals 

o SFC (Plates & Bolts) 

o SFC (Nuts & Bolts) 

\l Directionality 

<> Manipulability 

D Default 

Figure 11.7: Search tree generated in solving the problem in figure 11.5 showing 
internal nodes numbered in the order in which they were refined and identifying 
the criterion module that proposed the assertion used in its refinement. 

This kind of situation, where there are several similar structures in an assembly, 
arises very commonly in actual assembly problems. It is clear that future 
assembly planners should be able to deal more effectively with such cases. 
A form of internal learning could be used to recognize when an incomplete 
assertion set is similar to one previously generated . However detecting similar 
sets can be computationally quite expensive. An alternative approach would 
be to use unquantified part variables to make plans of the form "insert one 
screw from above and two from below" . 

The memory usage in the table includes only the data structures, not the 
program text. Note that the memory usage grows exponentially until it passes a 
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user-defined limit of 488K. At that point, the XAP /1 system begins discarding 
the data structures describing poorly rated plan-sets to recover the memory 
devoted to them. Only the set of assertions that was used to generate the plan­
set is kept, so that the other data structures can be rebuilt if necessary. This 
strategy proves very effective- it is possible to collapse a very large fraction 
of the nodes without needing to rebuild any- so that even for fairly large 
problems the increase in memory usage is slight. This is possible because 
only half of all leaves produced will ever be expanded, and the opportunistic 
planning methodology ensures that many of those produced will be very poorly 
rated. Of course, even using this trick, the growth in memory will continue to 
be exponential, but the constant is small enough to allow large problems to be 
solved. 

The values given in the table in figure 1l.6 cannot be taken as typical. The 
assemblies used are unusually unconstrained and the criteria are more evenly 
weighted than they would be in realistic applications. Figure 11.8 shows a more 
realistic assembly which contains 34 parts and for which 26 trajectories were 
proposed. The 26 trajectories include 6 straight-line insertion trajectories (from 
above , below, left , right, front and back), 16 spiralling insertion trajectories 
(two for each screw attachment: one for the male part, one for the female), 
and a rivet insertion trajectory. Generating the plan shown required about 
5.6 seconds of CPU time and 563K of memory (for both program and data 
structures) on the Sun 3/50. Depending on the weights chosen, the CPU usage 
may rise to nearly 15 seconds. 

Since the set of criteria used is quite small, the plan suffers from a few defects. 
The insertion of the tray being done in the midst of the foot insertions might 
require an extra tool change, for example. However , no tool change criterion 
was installed and it is a good plan under the criteria used. For example, the 
directionality criterion causes it to avoid doing any operations from below and 
the manipulability criterion causes it to avoid turning the base onto any of the 
screws. 

It should also be noted that the CPU times reported here do not include the 
time to generate trajectory proposals, geometric constraints, and similar infor­
mation from a CAD model. This information is currently generated manually, 
but work is also in progress on the development of an interface to a geometric 
modeling system for the XAP /1 system. 

The XAP /1 planner, thus, is able to generate reasonable plans for realistic as­
semblies very quickly. Its major failing is that it cannot produce plans which 
use subassemblies. The speed with which XAP /1 generates linear plans, how­
ever, makes it a promising base for a system to solve more general assembly 
planning problems. Some initial work has been done in describing an expanded 
set of three types of assertions that would support the opportunistic genera­
tion of plans with subassemblies[23,22]. With these assertions the system can 
intermix decisions about the sequencing, trajectory assignment, and subassem-
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(1) insert FOOT _B from above (18) insert PLATE from above 
(2) insert FOOT _D from above (19) rivet in RIVET_D 
(3) insert TRAY from above (20) rivet in RIVET_F 
(4) insert FOOT _A from above (21) rivet in RIVET_B 
(5) insert FOOT _C from above (22) rivet in RIVET_C 
(6) snap in BASE from above (23) rivet in RIVET_E 
(7) insert STOP _A from above (24) rivet in RIVET_A 
(8) insert STOP _B from above (25) insert PAPER_GUIDE from left 
(9) insert SOCKET _C from above (26) insert GUIDE_SCREW from above 

(10) insert PLUNGER_C from above (27) insert BAR from right 
(11) insert SOCKET _A from above (28) screw STOP _SCREW _B from above 
(12) insert PLUNGER-A from above (29) screw SET_SCREW_C from behind 
(13) insert SOCKET _B from above (30) screw SET _SCREW_E from behind 
(14) insert PLUNGER_B from above (31) screw SET _SCREW _A from behind 
(15) insert HANDLE from right (32) screw STOP _SCREW _A from above 
(16) insert HOOK from left (33) screw SET _SCREW _B from behind 
(17) screw HOOK_SCREW from left (34) screw SET _SCREW _D from behind 

Figure 11.8: Plan produced by XAP /1 for a 34-part hole punch assembly. 
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bly structure of the plan arbitrarily, leaving it free to make the most obvious 
decisions first throughout the planning process. 
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Chapter 12 

A common sense approach 
to assembly sequence 
planning 

Richard Hoffman 

Humans are adept at solving assembly and disassembly problems due to the 
versatility of the hands, sophisticated sensing feedback, and common sense 
reasoning. Common sense reasoning is most important since it allows educated 
guesses to be made about reasonable operations to make, and visualization of 
operations and their consequences. In this chapter, an operation is a translation 
or rotation of a component or multicomponent subassembly. Educated guesses 
are a result of taking advantage of previous experience. 

Despite this, manual generation of detailed assembly plans can be tedious and 
time consuming, particularly in environments prone to frequent design changes. 
Small batch environments typically produce only units or tens of a given prod­
uct so that the manual assembly plan generation is a substantial portion of the 
total product cost. Therefore, with a vision of delegating the assembly plan 
generation to computers, automated assembly planning has become an area of 
intense research. 

In implementing an assembly planner, one could begin with individual compo-
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nents of the assembly and search for a sequence of operations that puts them 
together. Nevertheless, the correct order in which individual pieces must be 
merged into the intermediate assembly is not easy to deduce a priori, result­
ing in a large amount of false starts and, hence, backtracking. On the other 
hand, the number of movable subassemblies is more tractable if one begins with 
the assembled product and searches for a sequence of reversible operations that 
will disassemble the product. Hence the assembly planning problem is normally 
solved as a disassembly problem. 

Automated assembly sequence planners can predict movability of subassem­
blies in two ways. The first assumes that enough high-level information is 
included in the problem statement to provide an insertion direction. For ex­
ample, component liaisons [11 represent contacts and types of contact between 
components. Systematically breaking these liaisons corresponds to disassembly 
of the product. Some systems require human interaction to verify directions of 
insertion [2]. Such approaches only deal with assemblies involving single move 
insertions of components and subassemblies, because multiple move insertions 
would require supplying liaison information for intermediate stages of assembly. 

The second way to predict subassembly movability is to use geometric data 
supplied by CAD models of objects. The complexity of this task depends on 
the complexity of the models and their representations. The simplest case is 
with polyhedral objects [3,8]. A more complex class of models involves objects 
produced by combining "nameable" surfaces such as planes and cylindrical sur­
faces, and solid shape primitives such as boxes, cylinders, and spheres [4,5,101. 
The most complex case addressed to date involves objects with parameterized 
sudace patches expressed as bicubic equations [6]. Such models are called 
boundary representation (B-rep) models. 

Bicubic surfaces are common in industrial applications where objects need to 
have specific aerodynamic properties or for aesthetic reasons. Such sudaces 
are useful for the design of components that must satify design criteria such as 
stiffness, mass, strength, moments of inertia, and tools and materials that are 
available to manufacture components. Therefore it is important that assembly 
planners be capable of dealing with products with sophisticated representations 
in order to be useful to industry. 

Unfortunately, the computational costs associated with deriving freedom of 
motion increases with increased model complexity. This cost makes finding 
shortcuts to freedom determination derivation very attractive. Fortunately, a 
few simple common sense rules provide substantial computational savings. 

This chapter presents the B-rep Assembly Engine (BRAEN), a system that 
generates disassembly sequences of products whose components are represented 
as B-rep objects with bicubic surfaces. Static workcell objects such as tabletop 
and walls are also included in the solution process as environment components. 
Both translational and rotational operations may be involved in the assembly 
sequence. Also, subassemblies do not need to be removed in a single operation. 
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We demonstrate how a few common sense rules can be used to reduce the cost 
of automated assembly sequence planning. For example, rules are presented 
that allow previous calculations of freedom of motion to be reused for other 
spatial configurations of components. Also, we demonstrate heuristics to gen­
erate promising operations when no moves that break an assembly into two 
subassemblies are available, and reason about the effect of gravity and stability 
on assembly to help ensure that disassembly operations are reversible. These 
results extend previous work reported in [6] and [7]. 

Section 12.1 presents the overall procedure of BRAEN, Section 12.2 discusses 
specific applications of common sense knowledge in BRAEN, with experimental 
results presented in Section 12.3. Section 12.4 discusses the performance and 
future extensions of the system. 

12.1 Approach 

BRAEN derives an assembly sequence for a product sitting on the flat work 
area of a workcell such as a tabletop. When an assembly is broken into two 
subassemblies (namely, the parts that are moved and the parts that do not move 
during the operation), the system places single components resulting from this 
operation by the edge of the work area. Multicomponent subassemblies are 
kept in the central work area. 

The system assumes a single robot. Therefore, if an operation results in a 
subassembly that is suspended in midair - held by the robot - then that 
subassembly must continue to be moved until it is set down. Only then can an 
operation can be performed on other components. 

The system distinguishes between two classes of components: environment and 
product. Product components are part of the product to be disassembled, 
whereas environment components are fixed (immovable) elements of the work­
cell environment, such as tabletop or wall. The role of environment components 
is to act as a support for the assembly (in the presence of gravity) and to define 
the boundaries of the workcell. 

BRAEN assumes that components are rigid. For example, this means that 
there are no elastic or plastic interactions involved in assembly that could 
create irreversible operations. 

The overall procedure of BRAEN is illustrated in Figure 12.1. An assembly is 
selected from the center area of the table. If there is more than one assembly 
to pick from, the selection method is important because it is best to find out as 
early as possible if a product cannot be disassembled. Therefore, the selected 
assembly should be more complex than other assemblies. BRAEN uses the 
number of components in an assembly as a heuristic measure for complexity. 

The Disassembly Module generates a sequence of operations that break the 
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Are there assemblies in 
center area of table? 

Yes 

Choose assembly A, and 
use the Disassembly Module 

to break A into subassemblies 

Place single components at 
edge of table 

No 
DISASSEMBLY 

COMPLETE 

Figure 12.1: Operation of BRAEN 

selected assembly into two subassemblies. Each operation is a translation or 
rotation of a component or multicomponent subassembly. The final operation 
of the sequence must be a move that physically separates the assembly into 
two disjoint pieces, called a separating motle. 

The operation of the Disassembly Module is shown in Figure 12.2. There are 
two fundamental processes in this module, freedom determination and search 
strategy. Information obtained from these two processes is used to construct a 
search graph, whose nodes correspond to potential operations on subassemblies. 

The function of each process is summarized as follows: 

Freedom determination. Given a spatial configuration (set of positions) of 
the components in an assembly, the freedom determination routine pro­
vides information about which subassemblies can move, directions they 
can move, and how far they can move before colliding with other compo­
nents. 

Search strategy. Given the information provided by freedom determination, 
it is necessary to generate sequences of subassembly motions that will 
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FREEDOM DETERMINATION II'-__ N_e_w_c_o_n_fi,.=:g_ur_a_tio_n_s_--, 
For each configuration: 

Identify movable subassemblies 

Identify the "most promising" 
disassembly operation of 

some movable subassembly S 

Test for separating move 

Satisfied 

SEARCH STRATEGY 
Generate feasible operations 

on S via heuristics 

Figure 12.2: BRAEN Disassembly Module 

provide disassembly. Since a disassembly sequence will not, in general, 
consist only of moves that result in collision, it is necessary to determine: 

o Which of a number of feasible subassembly moves seems to be the 
most promising; 

o At which of the uncountably many positions along one movement 
trajectory the motion should be stopped to allow moving a different 
subassembly or changing the trajectory of movement. 

12.1.1 Component Representation 

All components are represented in BRAEN as sets of oriented bicubic surface 
patches. The orientation of a patch indicates that side of the patch facing 
outward from the interior of the component. 

In addition, mass, center of mass, and sets of component features are supplied 
for each component. Component features may be derived by feature extraction 
routines or supplied explicitly by a feature-based modeler. For each component, 
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there are three types of features: 

Direction features indicate major axes of the component. For example, "box" 
structures on a component supply six directions (e.g., ±x, ±y, ±z direc­
tions), and "cylindrical" or "conical" structures supply two directions, 
along the axis of symmetry. Direction features are unit vectors with tails 
at the origin. 

Center features indicate centers of "protrusions" or "holes" of the component. 
These are useful for postulating moves that line up features of different 
components. Center features are 3D points. 

Axis features indicate rotational axes of a component. For example, "cylindri­
cal" or "conical" structures each provide one axis feature. If a component 
displays rotational symmetry about an axis, then that axis is not an axis 
feature. Axis features are unit vectors. 

Figure 12.3 shows the representation for the key object shown in Figure 12.4. 
This object belongs to the capsule assembly shown in Figure 12.5, along with 
a roof component which has tabs that slide in tracks in the base component. 
The first part of the representation gives 40 bicubic surface patches; the second 
part supplies the component features, mass, and center of mass (COM). 

12.1.2 Freedom of Motion Determination 

We call the set of positions of all components the spatial configuration, denoted 
by II. The position of each component is given by a 4 X 4 transformation matrix 
and reports the results of any translational and rotational operations performed 
on the component. The freedom of motion of a subassembly depends on the 
relative positions of other components, that is, on II. 

Two types of freedom of motion are obtained, translational and rotational. 
Given an assembly A (in configuration II) to be decomposed by the Disassem­
bly Module into two subassemblies, the possible directions of translation are 
supplied by the direction features of components in A, and the possible axes 
of rotation are supplied by the axis features of components in A. These direc­
tion and axis features are, of course, modified to reflect the current position of 
A. 

To determine the translational freedom of a subassembly S in a direction d, 
all patches of components of S are translated in direction d until they collide 
with patches not in S. The smallest motion of any patch in S indicates the 
maximal collision-free translation of subassembly S in direction d, denoted as 
~d(II, S). To illustrate, Figure 12.6 shows a 2D example of this process. Here, 
"patches" are 2D curves. The freedom of translation of subassembly S is being 
evaluated for the direction d (translation to the right in the figure). There 
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;;; Bezier patch definitions 
; ; ; X, Y, and Z matrices of control points 

«( 0.6000000 0.6000000 0 . 6000000 0 .6000000 ) 

( 0.6000000 0.6000000 0.6000000 0 .6000000 ) 

( 0.6000000 0.6000000 0.6000000 0.6000000 ) 

( 0.6000000 0.6000000 0.5000000 0.6000000 » 
« -0.2000000 -0.0666667 0.0666667 0.2000000 ) 

( -0.2000000 - 0.0666667 0 .0666667 0 .2000000 ) 
( -0.2000000 -0.0666667 0.0666667 0 .2000000 ) 

( -0.2000000 -0.0666667 0.0666667 0 .2000000 » 
« 0.0000000 0 .0000000 0.0000000 0.0000000 ) 

( 0.7600000 0.7500000 0.7600000 0.7500000 ) 

( 1.6000000 1.6000000 1.6000000 1.6000000 ) 

( 2.2600000 2.2600000 2.2600000 2.2600000 ») 

plus 39 other patches not shown 

) ;;; end of patch definitions 

;;; component features 
(:DIRECTION (0 .0 0.0 1 .0) (0 .0 0.0 - 1.0» 
(:CENTER (PROTRUSION (0.00.0 1.126») 
(:AXIS «0.0 0.0 0.0) (0.0 0.0 1.0») 

; axis from cylindrical bottom of key 
;rotational axis passes through (0,0,0) 
;in z (0,0,1) direction. 

( :MASS 1.3062) 
(:COM (0 .01376 6.8e-4 0.3309» 
) ;;; end of component features 

Figure 12.3: Key object representation 

295 
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Figure 12.4: Key object 

Figure 12.5: Capsule assembly 
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d 
13-----IEl 2D patch 

Interpatch distance 

Figure 12.6: Derivation of ~d(II, S) 

are three interpatch distances involved in this evaluation; the linear patches of 
S are either parallel to d or face away from the direction d and thus do not 
contribute to the result. The shortest interpatch distance shown indicates the 
value ~d(II, S). 

The distance that a patch P1 may translate in direction d before colliding 
with a patch P2 , denoted by t5d (pl, P2 ), is computed recursively. Patches P1 

and P2 are each subdivided into subpatches, and an approximate distance 
of translatability in direction d is derived of every subpatch of P1 to every 
subpatch of P2 • A polyhedral approximation of each subpatch reduces these 
calculations to distances between triangular facets. The distance is evaluated 
for those pairs of subpatches with smaller distances, until the desired level of 
accuracy is attained. 

To determine the rotational freedom of a subassembly S about an axis a, all 
patches of components of S are rotated about axis a until they collide with 
patches not in S. As with translation, the smallest motion of any patch in S 
indicates the maximal collision-free rotation of S about axis a. This is denoted 
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as ea(II, S), and reports the angle of rotation available in both clockwise and 
counterclockwise directions about axis a. The angle through which patch PI 
may rotate about axis a before colliding with patch P2 , denoted by ea(P1 , P2 ), 

is computed analogously to ad. 
From a given spatial configuration II and assembly A, the freedom determina­
tion module determines a set of potential operation triples M(II, A), 

where 

Si specifies the subassembly to be moved in the ith potential operation; 

ti indicates the trajectory of the ith potential operation, either a direction 
of translation or an axis of rotation of Si; 

Ii is the freedom of motion of Si for trajectory ti: if ti is a translational 
direction d, then h = b.d(II, Si), and if ti is a rotational axis a, then 
h = ea(II, Silo 

Generation of M (II, A) is accomplished as follows: 

Identify translatable components 

For each component C in A, evaluate the freedom of translational motion of 
C along directions indicated by the direction features of components in A. 
A potential operation triple (C, d, f) is supplied when a component C can 
translate a non-zero distance f in a direction d. 

Identify movable subassemblies 

For each component C and direction d (from the set of directions indicated 
by the direction features of components in A) for which b.d(II, C) = 0, de­
termine the subassembly S containing C which must move when C moves an 
incremental distance in direction d. A potential operation triple 

(S, d, b. d(II, S)) 

is supplied if S is a proper subset of A. This disallows operations that move 
all of A or move any environment components. 

Identify rotatable components 

For each component C in A, evaluate the freedom of rotational motion of C 
about those axes indicated by the axis features of C. A potential operation 
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triple is supplied when a component can rotate through a clockwise or coun­
terclockwise non-zero angle about an axis. 

The current implementation only considers rotations of single components, pri­
marily because applying a torque to one component C of a subassembly does 
not necessarily lead to rotation about the same axis of other components that 
are pushed by C as a result of the rotation. If C sufficiently constrains the 
freedom of the other components then they will rotate as a unit; we need 
to determine these conditions of sufficient constraint before allowing rotating 
subassemblies. 

As an example, let A be the capsule assembly, with its initial configuration 
IIo as shown in Figure 12.5, then M{IIo, A) contains two potential operation 
triples: 

o 81 = key, t1 = translation +z direction, and It = 0.832 units. 

o 82 = base fJ roof, t2 = translation +z direction, and h = 0.1 units. 

12.1.3 Search Strategy 

The function of the Disassembly Module is to search for a sequence of operations 
that will break an assembly A into two subassemblies. The A* algorithm sans 
heuristic estimator [11] is used for a best-first search over a graph whose nodes 
correspond to feasible operations on specific configurations. 

Given a potential operation triple (8, t, f), the operation (8, t, f*) is an (8, t, f)­
feasible operation if f* does not exceed the freedom of motion indicated by f. 
For example, if a subassembly 8 can translate at most 2 units in the t direction, 
then translations of 8 from 0 to 2 units in the t direction are (8, t, 2)-feasible. 
The techniques used to identify a finite number of (8, t, I)-feasible operations 
from a potential operation (8, t, f) are discussed in Section 12.2.2. 

When the Disassembly Module begins, the freedom of motion of an assembly 
A within an initial configuration IIo is evaluated to obtain the set of potential 
operations M(IIo, A). For each potential operation triple (8, t, f) in M(IIo, A), 
a number of (8, t, f)-feasible operations (8, t, f*) are identified, each of which 
is paired with the configuration IIo to form a node (ITo, (8, t, f*»). 

A node is a goal node if its operation is a separating move. At any stage of 
search in which no goal node is found, it is necessary to expand the node having 
maximal merit. A node (II, (8, t, f)) is expanded as follows: 

o Apply the operation (8, t, I) to configuration II, obtaining a new con­
figuration II'. If there already exists nodes with configuration II', then 
the new configuration has already been encountered, so no new nodes are 
generated. 
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o Otherwise, derive the set of potential operation triples M (II' , A). 

o For each potential operation (8',t' , !') in M(II', A), identify (8',t',!')­
feasible operations; for each feasible operation (8' , t', f*) create a new 
node (II', (8', t', f*}). 

The merit of a node (IT, (8, t, f}) is based on favoring the following node char­
acteristics: 

o Large magnitude of motion. 

o Large 181; that is, a large number of parts. 

o Trajectories that involve robot approach from above the assembly, and 
therefore provide easier (uncluttered) access to the assembly. This is 
indicated by a large z-component to the trajectory. 

o Small total path length to get to configuration IT from the initial config­
uration IIo. 

In particular, the associated merit value is infinite if and only if the potential 
operation provides a separating move, guaranteeing that if a separating move 
is available the search will terminate. 

To illustrate, Figure 12.7 shows the search graph generated by the Disassem­
bly Module to break the capsule assembly in its initial configuration into two 
subassemblies. All operations are translations for this example, therefore each 
node specifies a configuration, subassembly, translation trajectory, and trans­
lation magnitude. Configuration ITo is the initial configuration (Figure 12.5), 
and in general the configuration of a node corresponds to application of the 
operations specified by the node's ancestors. The shaded node indicates the 
separating move for the assembly. 

12.2 Common Sense 

Brute force manipulation of geometric data can require prodigious amounts of 
computation. Computation of freedom of translational and rotational motion 
is expensive because the number of evaluations of 6 and () is on the order of 
the square of the number of patches in all components. The search strategy 
is problematic because, given a potential operation of magnitude m along a 
trajectory t, it is impossible to examine all feasible operations along the trajec­
tory. This section examines the intuitively simple techniques used by BRAEN 
for freedom of motion determination and search strategy. 

In addition, some operations that are geometrically feasible cannot be per­
formed with physical objects. For example, if one subassembly is sitting on 
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Figure 12.7: Search graph for capsule breakup 

top of another subassembly, then moving the bottom subassembly will cause 
the top subassembly to move as well. We show how simple physics is used to 
model gravity and stability issues in planning the assembly sequence. 

12.2.1 Freedom of Motion 

There are situations in which the freedom of S in configuration TI can be used to 
obtain the freedom of a subassembly S' in a configuration TI'. These situations 
- essentially indicated by common sense rules on how S' may differ from Sand 
how TI' may differ from TI and still allow the same freedom result (or a slight 
variant) to hold - allow significant reductions in the number of evaluations of 
I1 and e. 
The rules for translational freedom are best visualized by considering a train 
on an infinitely long straight rail. Without loss of generality, assume the track 
runs east-west. The train on the track may be impeded to the east by an east 
barricade and to the west by a west barricade. The track accessible to the 
train is the swept area of the train as it passes from its west-most position to 
its east-most position. 

Three observations may be made: 
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1. Objects that do not intersect the accessible track may be moved anywhere 
except on the accessible track and still not modify the freedom of the 
train. 

2. If there is an east barricade, then at the train's extreme east-most po­
sition some components of the train will collide with components of the 
barricade. As long as at least one pair of colliding components remains, 
other components of the train and east barricade can be moved off the 
track without modifying the train's eastward freedom. The same argu­
ment holds for other freedoms. 

3. Moving the train (legitimately) r units to the east reduces its eastward 
freedom by r and increases its westward freedom by r. Moving the east 
barricade due west by r units decreases the train's eastward freedom by 
r but leaves its westward freedom unchanged. 

To map back to the disassembly problem, let the train be a subassembly 8. 
The accessible track corresponds to the volume swept out by 8 as it passes be­
tween the extreme points of its motion along a translational trajectory. Then 
the observations above indicate how to recognize new situations with the sub­
assembly 8 in altered configurations for which the freedom of motion is easily 
deduced. 

12.2.2 Search Strategy 

Given a potential operation (8, t, I), heuristics are needed to identify a finite 
number of (8, t, f}-feasible operations that are likely to be useful for discovering 
a successful disassembly sequence. We use two heuristics, a collision heuristic 
and a line-up heuristic. 

For the collision heuristic, the largest possible motion is made, subject to the 
freedom. Mattikalli and Khosla [9] only use this heuristic in their search strat­
egy for disassembly. When finding a disassembly sequence using this heuristic 
alone, a sequence of operations is obtained for disassembling a product that 
can be guided by force sensing conditions. That is, a trajectory, once initiated, 
is maintained until a collision occurs as flagged by a sensed force condition. 
Nevertheless, the reverse of the disassembly sequence will not necessarily have 
the same property. 

The line-up heuristic uses the idea that moving a subassembly 8 until a com­
ponent feature of 8 lines up with a component feature of A - 8 can provide 
a useful alignment of components. For example, lining up a tab on 8 with a 
slot on A - 8 may allow the tab to pass through the slot in a future operation. 
Center and direction features are useful to this heuristic. This is a powerful 
heuristic that is not used in any other known assembly sequence planners. 
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Figure 12.8: Translational Line-Up 

An example of lining up center features is shown in Figure 12.8. The "L"­
shaped component labeled Ell has been found to be able to translate in the 
slot of the component labeled Base, in direction indicated by line 1. Translating 
center feature p of Ell to point q lines up Ell with the notch feature in the 
Base having center feature p', allowing vertical translation of Ell in the next 
move. 

Figure 12.9 illustrates how direction features may be useful for alignment. 
Vectors tlO and til correspond to direction features of the components labeled 
Ell and Base, respectively. The angle f3 between tlO and v1 is the angle of 
rotation of Ell about axis a that will line up the lower arm of Ell with the slot 
in Base, allowing vertical translation of Ell in the next move. 

12.2.3 Simple Physics 

Given a potential operation triple (8, t, f), gravity and stability effects are 
used to either modify the operation or reject it. Gravity effects may cause 
some components in A - S to move when S moves. Stability effects may cause 
subassemblies S or A - 8 to topple over if S is removed from A. By detecting 
and accounting for the side effects of moving a subassembly S, irreversible 
disassembly operations are avoided. 

Detecting gravitational effects involves determining if any components in A - S 
are sitting on top of subassembly S. Components sitting on S should move 
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Figure 12.9: Rotational Line-Up 

when S is moved. The union of S and components sitting on S form an 
augmented subassembly sg. Components sitting on S are identified by (hy­
pothetically) removing S from A and observing whether any subassembly of 
A - S can then translate in the - z direction. H sg is equal to A, then an oper­
ation on sg is meaningless and the potential operation is rejected. Otherwise, 
the augmented subassembly sg may have a different freedom of motion along 
trajectory t, say f g. H f g is non-zero, then (sg, t, f g) replaces (S, t, f). 

Instability of a subassembly S is determined as follows. First, the footprint 
is derived for S when it is set down on the tabletop. H the projection of the 
center of mass of S in the -z direction onto the tabletop falls outside of the 
footprint, then S is deemed unstable. 

Evaluation of stability occurs if a potential operation (S, t, f) is a separating 
move. The gravitational stability of the resulting subassemblies having more 
than one component is evaluated, and (S, t, f) is rejected if instability results. 

BRAEN currently does not try to find a reorientation strategy that will remove 
an instability condition. For example, if only S is unstable, then after S is 
separated from A it could be rotated sufficiently so that it is stable when set 
down on the tabletop. H A - S is unstable, then an appropriate reorientation 
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Table 12.1: Characteristics of disassembly examples 

Statistic pipe latch capsule safe record industrial puzzle 

Product components 2 2 3 4 4 10 12 
Bezier patches 90 44 162 104 79 376 230 
Nodes generated 16 7 14 17 58 32 52 
Calls to freedom 6 3 6 7 6 9 18 
Calls to search 5 2 5 3 1 0 8 
Moves in disassembly 4 3 5 6 4 9 14 
t:.. d calls w / 0 reuse 162 124 260 684 1350 1540 6882 
t:.. d calls w / reuse 66 58 102 158 234 182 652 
Time W /0 reuse (min) 18 26 81 54 163 1033 500 
Time w/reuse (min) 9 14 32 28 78 60 74 

of A would be needed before removing S. 

12.3 Experimental Results 

BRAEN is implemented on a Symbolics 3640, with computation of b.. d and 
sa delegated to an HP 9000 Model 835. Component models were generated 
with the PATRAN® solid modeler package. Table 12.1 reports various charac­
teristics for a number of disassembly runs. Each example included a tabletop 
environment component. For each example the elapsed time and number of 
evaluations of b..d are reported when the reuse rules are not used (w/o reuse) 
and when they are used (w/reuse). Note that the improvement in performance 
provided by the reuse rules becomes more dramatic as the number of compo­
nents increases. Figure 12.10 shows each product in its initial configuration, 
except the industrial example for which a cross section is supplied. 

In the pipe example, the pipe component was suspended in midair in most 
configurations during the disassembly process, preventing the base component 
in the assembly from slipping around underneath the pipe (since that would 
require two robots to implement). The complete sequence of operations gen­
erated for capsule disassembly is given in Figure 12.11. Each step indicates 
the subassembly to be moved and the operation to be pedormed: the type 
of motion (translation or rotation), the direction (or axis) of motion, and the 
magnitude of motion. This sequence is illustrated in Figures 12.12 and 12.13; 
for brevity, those operations that transport components to the edge of the 
tabletop have not been shown. Figure 12.12 shows the sequence of operations 
that break up the initial assembly. This sequence corresponds to the search 
graph shown in Figure 12.7. Figure 12.13 shows how the subassembly key & 
roof is broken up. Initially, the key component is being held up and must be 

@PDA Engineering, Costa Mesa, CA. 
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Figure 12.10: Example assemblies 
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Moving Components: (key) 
Operation: (TRANSLATION (0 .0 0 .0 1 .0) 0 .832) 

Moving Components: (root key) 
Operation : (TRANSLATION (-1.00.00.0) 0.7) 

Moving Components: (root key) 
Operation: (TRANSLATION (0.0 0.0 1.0) 3 .2) 

Moving Components : (root key) 
Operation·: (TRANSLATION (1.0 0.0 0.0) 10.7) 

Moving Components : (root key) 
Operation: (TRANSLATION (0 .0 0.0 -1.0) 3 .3) 

Moving Components: (key) 
Operation: (TRANSLATION (0.0 0 .0 -1.0) 0.732) 

Moving Components : (base) 
Operation: (TRANSLATION (0.0 0 .0 1.0) 3 .3) 

Moving Components : (base) 
Operation: (TRANSLATION (-0.393176 -0.919463 0.0) 10.8769) 

Moving Components: (base) 
Operation : (TRANSLATION (0 .0 0 .0 -1 .0) 3.3) 

Moving Components: (root) 
Operation : (TRANSLATION (0 .00 .0 1 .0) 3 .3) 

Moving Components : (root) 
Operation : (TRANSLATION (-0.680074 -0 .733143 0.0) 13.639896) 

Moving Components: (root) 
Operation: (TRANSLATION (0.0 0.0 -1 .0) 3.3) 

Moving Components : (key) 
Operation: (TRANSLATION (0.0 0 .0 1.0) 3 .3) 

Moving Components : (key) 
Operation: (TRANSLATION (-0.481919 -0.876216 0.0) 11.412712) 

Moving Components : (key) 
Operation : (TRANSLATION (0 .0 0.0 -1 .0) 3 .3) 

Figure 12.11: Capsule disassembly sequence 
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Figure 12.12: Part 1 of capsule disassembly 
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Figure 12.13: Part 2 of capsule disassembly 
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set down. Then, the roof component may be lifted from the subassembly. 

The record player disassembly in Figure 12.14 demonstrates the operation of 
the stability maintenance mechanism. There are four components; a disk that 
has a weight affixed to one side, a peg that holds the disk down, a foot that 
props the whole assembly up on one end (especially when the disk is rotated 
so the weight is on the same side as the foot) and also fastens the peg, and 
the base. The freedom determination module initially finds that the foot can 
be removed from the assembly, but rejects that move when it discovers the 
remaining three components are unstable. Nevertheless, the disk can rotate 
freely, and it is found that rotating the disk by 1800 shifts the center of mass 
of the disk-peg-base subassembly enough so that the foot may be removed. 
Disassembly of the disk-peg-base subassembly then follows. 

The industrial example was adapted from [21. For this example, the derived 
disassembly sequence was to remove components in the order {la, 9, 8, 7, 
1, 2, 4, 3, 5, 6}. Note that after components {10, 9, 8, 7} were removed, 
component 6 was able to be separated from the remaining components. The 
stability test discarded this potential move, however, and the safer operation 
of removing component 1 was used instead. After components {10, 9, 8, 7, I} 
were removed, although component 6 could still be removed on initial analysis, 
gravity would cause all other remaining components to move along with it, and 
thus component 6 could not be profitably moved until it was the sole remaining 
component. Note that the number of calls to search strategy is 0; this is because 
freedom determination always succeeded in discovering a separating motie. 

12.4 Discussion 

We have demonstrated an approach for generating an assembly sequence of a 
product expressed in B-rep format with bicubic surfaces. This treats compo­
nents as part of a real workcell environment by allocating sections of the table 
to subassemblies and disassembled parts. We have demonstrated a number of 
common sense techniques for enhancing the system performance. 

We are currently developing the capability for BRAEN to focus on specific 
disassembly goals rather than disassembling until all components are separated. 
For example, this capability is useful when: 

o Several components are linked together to form an articulated object and 
cannot be taken apart. 

o A maintenance sequence for a particular component is desired. Move­
ments of other components should be minimized. 

One modification made to BRAEN involves choosing the assembly A in the 
work area based on the specified goal rather than on number of components in 
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Figure 12.14: Record player disassembly sequence 
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A. Other issues for successful focused disassembly, such as predicting the utility 
of a given operation toward a given goal configuration, are being addressed. 

Other directions for future work are: 

o Implement reuse rules for rotational motions; this should be fairly similar 
in flavor to the translational reuse rules, except that swept volumes will 
be cylindrical. 

o Improve capabilities for detecting instability. In particular, some consid­
eration of friction is needed. 

o Introduce a tool component class, which can be used to determine acces­
sibility of a component to be moved as well as determine grasp points. 

o Use fixtures as environment components. 

o Relax assumptions about operations for assembly, such as allowing simul­
taneous translation and rotation operations. For example, it is possible 
for one component to rotate as another component translates, as with a 
doorknob and door latch. 

A number of further issues must be addressed before these results can be put 
to practical use. For example, the operations supplied are relatively high level, 
and must be converted to robot-specific command sequences. In addition, robot 
path planning is required to provide a collision-free path for the robot arm and 
tool during operation setup and execution. If an operation involves a location 
that cannot be reached by the robot or a singularity point, then it may be 
necessary to modify the assembly sequence. Therefore, a practical system will 
either perform robot simulation concurrently with assembly sequence planning, 
or do it after assembly sequence planning and provide a feedback mechanism 
for replanning when needed. 

We have shown how a few simple ideas for reusing freedom of motion results 
has provided substantial reduction of cost of automated assembly sequence 
planning. This bodes well for the development of more sophisticated rules to 
provide further savings. 
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Chapter 13 

Assembly Coplanner : 
Cooperative Assembly 
Planner based on 
Subassembly Extraction 

Sukhan Lee and Yeong Gil Shin 

The use of multiple assembly workstations enables assembly operations to be 
done in parallel. The routing of parts and the capabilities of robotic systems 
provide flexibility in assembly. To maximize performance of a system of mul­
tiple robotic workstations, an assembly plan that provides proper parallelism 
and flexibility is required. The problem of assembly planning can be stated 
formally as follows: 

Given the description of parts, P = {PI, Pz, ... ,Pn}, and the geo­
metric and topological relations on P, n = {TI, TZ, •.. , T m}, how 
does one determine sequences of assembly operations that satisfy 
n subject to (1) minimizing cost, (2) maximizing parallelism, and 
(3) satisfying feasibility conditions. 
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Figure 13.1: The Block Diagram of COPLANNER 

It is assumed here that: 1) an assembly operation joins two parts or subassem­
blies, 2) the order of assembly is the reverse of the order of disassembly, and 
3) the geometric relationship between individual parts remains fixed after they 
are assembled; we deal with nonlinear, nonsequential but monotonic assembly 
plans[14]. It is also assumed that assembly planning is supported by a proper 
path planning algorithm[2] to detect geometric interference in part assembly. 

13.1 COPLANNER: A Cooperative 
Assembly Planning System 

As an assembly planning module of the flexible assembly system, we developed 
CO PLANNER. COPLANNER has been implemented in Common Lisp and C 
on a Sun260 workstation. Lisp functions are used for the implementation of 
reasoning processes and C codes are incorporated for the mathematical com­
putation and the communication protocols. COPLANNER is organized under 
the "Cooperative Problem Solving(CPS)" paradigm. The cooperative problem 
solving system which is shown in figure13.1 consists of the following models: 
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• The plan coordinator: The plan coordinator coordinates the cooper­
ation of the knowledge sources by controlling their access to a common 
message buffer, the blackboard. 

• The heuristic advisor : The heuristic advisor extracts subassemblies 
based on the embedded heuristics. It evaluates the difficulty and cost of 
each assembly operation required for each primary liaison and assigns the 
weight to each edge of the liaison graph. 

• The geometric reasoner : The geometric reasoner checks the feasi­
bility of an assembly operation by calculating the directional freedom of 
motion, the manipulability, interference with the neighboring parts, and 
accessibility of a part. 

• The physical reasoner: The physical reasoner reasons about stability 
of a part, the weight of a subassembly, and the connection type of each 
liaison. 

• The resource manager : The resource manager keeps the information 
of currently available resources and decides the feasibility of an assembly. 

• The blackboard: This is a common working memory and communica­
tion protocol among advisors. The blackboard contains all the relevant 
information for planning, such as part descriptions, liaisons, and any data 
structure constructed during planning. The access to the blackboard can 
be controlled by the slot ACCESSIBLE of the blackboard schema. Ad­
visors who can access the content of the blackboard are specified in the 
slot ACCESSIBLE. 

In the traditional blackboard systems[5, 6, 10], only one agent can read or write 
on the blackboard at any given time. Under this single access mode, the most 
important problem is how to schedule access to the blackboard since perfor­
mance of the system is affected by the available knowledge in the blackboard. 
Most blackboard systems have a scheduler which controls the access to the 
blackboard by evaluating the degree of contributions of each knowledge source. 
In COPLANNER, several advisors are allowed to read the blackboard but only 
one advisor can modify it at any given time, with the higher priority given to 
the advisors who intend to write. 

13.2 Attributed Liaison Graph 

In this chapter, an assembly is represented by an attributed liaison graph. An 
attributed liaison graph is a connected graph, G = (N, E), with N representing 
a set of nodes, and E representing a set of edges. A node n, n EN, is assigned 
to each part of the assembly, and an edge e, e E E, is assigned to each liaison . 
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Table 13.1: The Relative Stability of an Edge as a Function of Interconnection 
Type 

Mating Type 
Interconnection Type Insert Semi-Insert Place-On 

Attach 0.3 0.2 0.1 
Sticky 0.4 0.3 0.2 

Force-Fit 0.5 0.4 0.3 
Push & Twist 0.7 0.6 -

Screw 0.8 0.7 -
Connectors 0.9 0.8 0.7 

Weld 1.0 1.0 0.9 

A liaison is said to exist between a pair of parts if one part constrains the 
freedom of motion of the other either by a direct contact or by a near contact. 1 

A part frame is attached to each node to describe attributes associated with 
a part. The attributes of a part frame contains 1) the part geometry which 
specifies its shape and volume, 2) the mating volumes and the contact subfaces 
as part features, and 3) the physical properties of the part such as weight. 

A liaison frame is attached to each liaison to describe attributes associated with 
the liaison. The attributes of a liaison consist of 1) the mating features , 2) the 
mating type such as insertion, semi-insertion, and place-on, 3) the intercon­
nection mechanism, 4) the relative stability of a liaison after the corresponding 
interconnection is completed (refer to Table13.1), and 5) the functional and 
physical dependency among liaisons. The functional support of a liaison is a 
list of the liaisons which functionally assist the achievement of the given liaison. 
The stability support of a liaison is a list of the liaisons required for the stabi­
lization of the given liaison which is otherwise unstable after the interconnection 
is done. Figure 13.3 illustrates the attributed liaison graph representation of 
the flashlight shown in figure 13.2. 

13.3 Geometric Reasoning 

Geometric reasoning is needed to decide the feasibility of an assembly operation. 
To be a feasible assembly operation, it is necessary that there is no interference 
in part motion. The local constraints in part motion can be deduced based on 
the geometry of each part and constraints embedded in the associated liaisons. 

1 A near contact is defined between two contact surfaces having distance smaller than the 
prespecified threshold. 
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Figure 13.2: The Flashlight Assembly 

Definition 13.3.1 (Freedom of Separation (FS» Let us denot e the free­
dom of separation of a part or a cluster of parts, Pi, against another part or 
another cluster of parts, P2, by FS(PI/ P2) or simply by FS(Pi ) if P2 is clear 
from the context. FS(Pi / P2) is represented by a tuple composed of the prin­
cipal axes of motion in which Pi can be separated from P2 and the directional 
tolerances along the principal axes of motion. Formally, F S( PI/ P2) = {( d+x , 
d_ x , d+y , d_ y, d+z , d- z ), (a+x , a_x, a+y, a_ y, a+z , a_ z)}, where da = 1, 
if F S(Pl/ P2) has the freedom of separation in the direction of a, otherwise 
da = 0,. ab is the directional tolerance along the b directional freedom of sep­
aration, such that ab = (th e maximum angle of directional errors that the b 
direction of separation can tolerate}/90. 

For instance, in figurel3.4, FS(B/A U B) = {(I 0 1 100),(15/900000 On 
indicating that B has the freedom of separation in the direction of (+x , +y, 
-y) and the tolerance of 15/90 along +x. 

Definition 13.3.2 (Degrees of Freedom of Separation (DFS» The de­
grees of freedom of separation of Pi with respect to P2, DFS(PdP2), is obtained 
from FS(PI/P2 ), FS(Pl/P2 ) = {(d+x , d_ x , d+y, d_ y, d+z , d- z ), (a+ x , a_x, 
a+y, a_ y, a+z , a_ z )}, by 

DFS(PdP2) g L:(da + (l:a), a E {+x, -x, +y, ~y, +z, , -z} 
a 

Table 13.2 illustrates the FSs and the DFSs calculated for all the part clusters 
of the subassembly {A, B, C} in Fig.13.4: 
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Figure 13.3: The Attributed Liaison Graph for the Flashlight Assembly 
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(b) The numbers indicate the relative 
stability of interconnection for 
individual edges 

Figure 13.4: An Example to illustrate the Degree of Freedom of Separa­
tion(DFS) 

Table 13.2: FSs and DFSs for the subassembly S shown in Fig.3 

Parts and Principal Direction Tolerance DFS 
Clusters of separation 

{A} (0 0 1 1 0 0) (0 0 0 0 0 0) 2 
{B} (1 0 1 1 0 0) (15/900 0 0 0 0) 31 

6 
{C} (0 1 1 1 0 0) (0 0 0 0 0 0) 3 

{A B} (1 0 1 1 0 0) (0 0 0 0 0 0) 3 
{A C} (0 1 1 1 0 0) (0 0 0 0 0 0) 3 
{B C} (0 0 1 1 0 0) (0 0 0 0 0 0) 2 
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Note that FS{A,B} and FS{C} are equivalent. So are FS{A,C} and FS{B}, 
and FS{B,C} and FS{A}. This is because the +x directional freedom of sepa­
ration of {A,B} represents the -x directional freedom of separation of the rest 
of the cluster (C), and vice versa. Therefore, FS{A} == FS{A}, where Au A 
represents the whole subassembly. 

13.4 Construction of an Abstract Liaison 
Graph 

The construction of an Abstract Liaison Graph(ALG) is based on merging a 
set of mutually inseparable nodes( as defined later in this section), into a single 
node called a supernode. Let us first introduce the following definitions: 

Definition 13.4.1 (Manipulable Node(M-node)) A part is said to be ma­
nipulable if it is accessible and manipulable by a tool for disassembly. A node 
is accessible and manipulable if any of the parts forming the node is accessible 
and manipulable. Shaded nodes in Fig.13.5{b) show manipulable nodes. 

Definition 13.4.2 (Accessible Path(A-path)) An accessible path to a node 
n is a simple path starting from an M-node and ending with the node n without 
having any other M-node on the path. A set of A-paths to the node n is called 
independent if they share no common node except the node n. 

Definition 13.4.3 (Satellite Node) A node nl, which is not an M-node, is 
said to be a satellite of a master node nz, if all the A-paths to the node nl pass 
through the node nz. In Fig.13.5, Part E is a satellite of part D. A satellite 
node of the node n is not independently separable from the master node n, since 
it is not possible to deliver the force required for breaking the liaison between 
the satellite and the master nodes. 

Definition 13.4.4 (Floating Liaison) A liaison between two nodes is said to 
be floating if each node has its own independent A-paths and the force required 
for breaking the liaison is not deliverable to that liaison. 

Let us define Dp( h; ni)ni2 ) as a set of principal directions of the motion and 
force involved in the separation of the liaison Ii between nil and ni 2 under the 
condition that ni2 is fixed. The direction of separation of a liaison Ii is assumed 
arbitrary, which may not be coincident with a principal axis of an assembly, but 
may have components on a set of principal axes. 

Since there exist different ways of separating nil from ni 2 , a liaison Ii may have 
a collection of such Dp(li; ni)ni2), represented by D(li; niJniJ, D(li; niJni,) 

~ {Dp(li; niJni2),p E P, P =an index set}. 
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(a) An Example of an Assembly 

M-node _ 

A-Path of part E 

(b) An Example of a Satellite Node 

j! ... . 
. ' ( G 'r Jr! 

. j D(A1 .13 ;B,v) 

(I) ~~ fE\ ~· ·: :.e \!V \2V ... 
D(14;GfY) and . F 

D(l4;F/G) . ." . ' .. ::I.z' D(A F I 1. A/F) 
....... 1 ' 5' 

A-Path of part G 

A-Path of part F 

Floating Liaison 

(c) The Existence of a Floating Liaison 

Figure 13.5: Examples of Mutually Inseparable Nodes 
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0.2532 

0.4335 

Figure 13.6: The Weighted Abstract Liaison Graph for the Flashlight Assembly. 
The nodes marked with S represent supernodes. 

M1: The node n1 is a satellite of the node n2 , or vice versa. 
M2: The liaison between the two nodes n1 and n2 is floating. 
M3: The liaison between the two nodes n1 and n2 includes 

at least one unremovable connector/retainer. (A connec­
tor/retainer which is neither accessible nor manipulable is 
considered unremovable.) 

M4: The liaison between the two nodes n1 and n2 is the pre­
condition for another liaison, due to its role as a functional 
support or a stability support. 

M5: The node n1 is immobilized by a supernode n2, or vice 
versa. 

An ALG is constructed by merging those nodes which are mutually insepa­
rable until all the nodes of the ALG are free from any of the above merging 
conditions. From the liaison graph of the flashlight(see Figs 13.2 and 13.3) two 
supernodes are generated: 51 by merging P6 , P7 , and Pg which are connected 
by floating liaisons 15 , 16 , and 17; and 52 results from merging P2 and P3 which 
are connected by a floating liaison 12 . 

13.5 Construction of a Weighted ALG 

A weighted ALG (WALG) is an ALG with a weight assigned to each of its 
edges. The weight of an edge is determined by the total strength of the edge 
in terms of physical stability and structural connectivity, and the cost involved 
in disconnecting or connecting the edge. 
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The Total Strength of an Edge 

Definition 13.5.1 (The Net Strength of an Edge) The net strength of an 
edge ei, SN(ei), is defined by the relative stability of ei, X 8 (ei), and the direc­
tional constraints of a motion during part separation, Xd(e;) , as follows: 

where a is the weighting coefficient, 0 ::; a ::; 1. 

X$(e;), 0 < X$(e;) ::; 1, is specified in the liaison frame based on the inter­
connection type of the edge. Xd(ei), 0 < Xd(ei) ::; 1, represents how the 
motion of the node nil is restricted by the node ni2 during the separation of 
ei, or vise versa. Xd(ei) is obtained by Xd(ei) = 1- DFS(njt!ni2)/6, where 
DF S(nil/ni2) represents the degree of freedom of separation between the two 
nodes, nil and ni2, connected by ei. Refer to the Section 3 for the details of 
how to compute DFS(nil/ni2). 

Definition 13.5.2 (The Total Strength of an Edge) The total strength of 
an edge ei, ST(ej), is determined by reinforcing SN(ej) with the structural con­
nectivity and the structural preference of the edge ej. The structural connectivity 
and the structural preference evaluate the strength of an edge in the context of 
its surrounding structure. ST(ei) can be computed by the following two steps: 

Step 1. The Reinforcement by Structural Connectivity 

The structural connectivity between two nodes, nil and nj2, of the 
edge ej is due to the indirect as well as the direct paths between nil 
and nj2. A direct path between nil and ni2 represents a path of a 
single edge( ej), whereas an indirect path between nil and ni2 repre­
sents a path of multiple edges. An indirect path gives an additional 
strength to SN(ei), e.g., the net strength of an edge between P3 

and PH in Fig.13.6 is reinforced by an indirect path through nodes 
P3 ,P12 , and Pll . The modification of SN(e;) between nil and ni2 

by the structural connectivity is accomplished by the following al­
gorithm: 

(a) Find all the indirect paths between nil and ni2 of ej, {Pjlj = 
1, ... , n}, sharing no common edges. Assume that pj consists 
of a set of edges {ej dl = 1, ... , mj} for j = 1, ... , n. 

(b) Define the net strength of a path Pj, S N (Pj), by 

where II is the multiplication operator. 
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(c) Reinforce SN(ei) by adding c. E7=1 S~(Pj) to SN(ei), where 
c., 0 < c. < 1, is a weighting constant. Note that the re­
inforcement SN(Pj) attenuates geometrically according to its 
magnitude. 

(d) Normalize the result of (c) by a sigmoid function to obtain the 
total strength of an edge ei, S!r (ei) reinforced by the structural 
connectivity: 

SHei) = 1/[1 + exp{ -(S' - O)/T}] 

where S' = SN(ei) + c. E7=1 S~(Pj), and 0 and T are the 
parameters (the threshold and the temperature, respectively) 
of the sigmoid function. 

Step 2. The Reinforcement by Structural Preference 

The structural preference of an edge ei is measured by the attrac­
tiveness between the associated nodes nil and ni2. The attractive­
ness between the two nodes, Attr(nil, ni2), is defined by Attr(ni1, 
ni2) = ID(nil) - D(ni2)1 , where D(n) represents the degree of n, 
the number of edges incident on n. A higher attractiveness implies 
a stronger tendency of associated parts to be merged into a sup ern­
ode. Thus, in Fig. 3, PI is more likely to be merged with P7 as 
opposed to SI inasmuch as the attractiveness between P7 and PI is 
higher than that between PI and S1 . 

The total strength of an edge, ST(ei), is now obtained by modify­
ing SHe.) with the reinforcement from the structural preference. 
This can be done by shifting S!r (ei) to the left proportional to the 
attractiveness: 

ST(ei) = 1/[1 + exp{ -(S' - 0 + .60)/T}] 

where .60 = caAttr(nil,ni2), and Ca is the weighting constant . 

The Assembly Cost of an Edge 

The cost of assembly of an edge depends on such factors as the difficulty of 
aligning and positioning parts, the resistance during insertion, the difficulty 
of part handling, the need to hold down a part after assembly, etc.[I] To be 
more specific, we consider that the cost of assembly of an edge is a function 
of the interconnection type of the edge, the relative stability of the edge after 
the interconnection is completed, the degrees of freedom of separation(DFS) of 
the two parts associated with the edge, the mating tolerance, the number of 
mating volumes involved in an edge, the number of connectors/retainers, and 
the weight of the mating part. 
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Table 13.3: The Relative Cost of an Edge as a Function of Interconnection 
Type 

Type Attach- Stick- Force- Push 
ment ing Fit & 

Twist 
Relative 0.1 0.3 0.4 0.5 
Cost 

The relative cost of assembly of an edge ei, Cr(ei), 

0< Cr(ei) ~ 1, is then determined by: 

where 

5 

Cr(ej) = L (};jX • 
• =1 

Screw Conne- Weld-
ctors ing 

0.6 0.7 1.0 

Xl = the relative cost as a function of interconnection type (see 
Table 13.3), 
X 2 = 1 - the relative stability associated with an interconnection 
type, 
X3 = 1 - DFS(e.)/6, 
X4 = l/[l+exp{ -(the number of mating volumes-1)/normalization 
factor}], 
X5 = min(1,0.2x (the number of connectors -1», 

and (};., 0 ::; ();. ::; 1, i = 1, ... ,5, are asembly coefficients, and L:: ();. ::; 1. The 
values of ();. 's and normalization factor are dependent upon the actual assembly 
environment and also on whether it is manual assembly, robot assembly, or 
hard automation assembly. The value of normalization factor is set to 1 based 
on the cost analysis of robot assembly by Boothroyd and Dewhurt[l]. The 
normalization factor 1 gives 1.5 times of the cost of single insertion to the 
cost of a multiple insertion since multiple insertion increases the difficulty of 
alignment. 

Weight Assignment 

The weight of an edge e" W (ei), is determined by the linear combination of the 
total strength of the edge, ST(e.), and the assembly cost of the edge, Cr(e;), 
as follows: 
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where f3 represents the weighting coefficient. 

It is noted that the assignment of weights relies upon various heuristic functions 
having a number of parameters associated with them. The heuristic functions, 
though not from analytic results, can be tuned to particular assembly opera­
tions by optimizing their parameter values based on experimentation. Fig.13.E 
illustrates a WALG for the assembly of the flashlight using the following values 
of assembly coefficients: (Y = 0 .5, j3 = 0 .5, c. = 0.5, Ca = 0.5, and (Yi = 0 .1, 
(i=1,oo. , 5). 

13.6 Decomposition of a Weighted ALG 

A set of tentative subassemblies is generated by successive merging of nodes 
in the WALG: 1) The nodes connected by edges having weights greater than 
or equal to a threshold are merged into supernodes. 2) The disassemblability~ 
of each supernode is checked. 3) The disassemblable supernodes become ten­
tative subassemblies. 4) By adjusting the threshold, different sets of tentativ€ 
subassemblies can be obtained. 

Fig.13.7 illustrates the tentative subassemblies generated by applying the de­
composition process to the flashlight assembly. At first, among the individual 
nodes and supernodes of the WALG , P1 and P4 are found disassemblable. Since 
the disassembly of P1 makes P2 and P3 (embedded in S2) unstable and the dis­
assembly of P4 makes P5 unstable, both subassemblies become cut-supernodes. 
The subsequent reduction of threshold up to 0.4968 and the test of disassembla­
bility results in three tentative subassemblies [S2, P1], [P4 , P5], and [Sl, P4 , P5]. 

There can be at most 2n-l tentative subassemblies for a WALG with n nodes. 
This is because the upper bound of the number of generated supernodes occurs 
when the merging process successively combines a pair of nodes, resulting in a 
binary tree: The total number of nodes in a binary tree with n terminal nodes 
is 2n - 1. Table 13.4 shows a set of tentative subassemblies generated for the 
flashlight with several different threshold settings. 

2 A nod e(part) is said to be disassemblable from the rest of an assembly if there is a path 
along which the part can be taken out by a single motion without colliding with the rest of 
the assembly. A node is said to be separable from the other node if the edge between the 
two is breakable, and a node is said to be decomposable if it is separable from the rest of 
the graph. A decomposable node is not necessarily disassemblable, whereas a disassemblable 
node must be decomposable 
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Table 13.4: A set of Tentative Subassemblies Generated for Flashlight Assembly 

I threshold I tentative subassemblies I 
0.4994 lP4 ) Ps] 
0.4968 [S2) P1] 

0.4859 [Sl) P4) Ps) 

0.2532 

0.4335 

Figure 13.7: The Tentative Subassemblies Generated from the Decomposition 
of the ALG of the Flashlight 
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13.7 Selection of Preferred Subassemblies 

The preferred subassemblies can be selected by evaluating tentative subassem­
blies based on subassembly selection indices(SSls). The SSls evaluate a cluster 
of parts as a subassembly based on the following criteria: 1) the stability of a 
cluster of parts during assembly, 2) the difficulty of disconnecting a cluster of 
parts from the rest of an assembly, and 3) the structural preference of a cluster 
of parts as a subassembly. Note that these criteria are closely related to the 
cost of assembly since they determine the required assembly set-ups, such as 
fixtures, jigs, special tools, robots, etc. 

SSls are composed of the stability index, SI, and the structural preference 
index, SPI, which are measured by the intra- and inter-cluster mobilities and 
the intra- and inter-cluster structural complexities, respectively. 

13.7.1 Stability Index 

Definition 13.7.1 (Intra-cluster mobility) The intra-cluster mobility, 
M¢(S), of a subassembly S represents how easily the subassembly can be bro­
ken into two or more pieces. M¢(S) is determined by the freedom of separation 
and the relative stability of individual cutsets of the subassembly S. Suppose 
that CI, C2, . .. , Cn are valid cutsets3 of S, and the maximum relative stability 
of Ci is r(ci), where the maximum relative stability of Ci, r(ci), is the highest 
value among the relative stabilities of the liaisons involved in Ci . assembly. The 
intra-cluster mobility of S is calculated by 

M¢(S) ~ L max {DFSd• (Ci) x (1- r(ci))lci is a cutset in S, i = 1, ... , n} 
d. 

where da = X, y, and z-axis, and D F Sd. (Ci) is calculated by the free refer­
ence axes and the tolerance of Ci along the direction of the free reference axes: 
DFSd.(cd = (the number of free reference axes in the axis of ±da ) + (the 
tolerance of the free reference axes). 

Fig.13.8 illustrates the intra-cluster mobility of various subassemblies. In the 
flashlight assembly, the M¢(S) of [S2 , PI] is relatively lower than other sub­
assemblies since liaisons in the subassembly are not rigid. 

Definition 13.7.2 (Inter-cluster mobility) The inter-cluster mobility, 
M,,(S), of a subassembly S represents how easily the subassembly S can be 
connected to or separated from the rest of the assembly. 

3For the generation of separable cutsets from a subassembly, the rigid liaisons are consid­
ered to be non-separable edges. Therefore, a s et of cutsets is extracted from a liaison graph 
in which nodes that are connected by rigid liaisons are merged. 
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0.3 

+ max { (1+2u)x(1-Q.3),lx(1-Q.3),lx(1-Q.3)} 
= (3+2u)xO.7 

Mq,= max{lx(1-Q.3),lx(1-Q.3)} = 0.7 

Figure 13.8: Intra-cluster Mobility of Various Subassemblies. The number in 
each subassembly represents the relative stability of a liaison. 

M,..(S) ~ DFS(Si/Si) x (1- the maximum relative stability of 
the interconnections between Sand S) 

where SuS represents the original assembly. 

For instance, in Fig.13.8, M,..(BUC) = DFS(BUC) x (1-0.1) = 5 x 0.9 = 4.5, 
and M,,(C) = DFS(C) x (1- 0.3) == 3 x 0.7 = 2.1. 

Definition 13.7.3 (Stability Index) The stability index, SIrS), of a sub­
assembly S is measured by the intra-cluster and inter-cluster mobility of the 
subassembly S: a high stability index is assigned to a subassembly with a lower 
intra-cluster mobility and a higher inter-cluster mobility. 

SICS) = exp{ -[WdMq,(S) + ws (6 - M,..(S»)]} 

where Mq,(S) and M,..(S) represent the intra-cluster mobility, and the inter­
cluster mobility of the subassembly S; and Wd and Ws , 0 :::; Wd,W s :::; 1, are 
assembly coefficients. 
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13.7.2 Structural Preference Index 

Definition 13.7.4 (Intra-cluster structural complexity) The intra-clus­
ter structural complexity, C,p(8) , of a subassembly 8 is represented by a tu­
ple (dw, TJw) . dw is the average of the weighted degrees of individual nodes 
in the subassembly 8 . TJw is the weighted connectivity of the subassembly 8: 
dw = L:7=1 dw(ni)/n , where dw(ni), the weighted degree of a node ni, is the 
sum of the weights of the edges incident upon nj in the weighted ALG of the 
subassembly 8; and n is the total number of nodes in the weighted ALG of S. 
TJw = the sum of the weights of the edges which belong to the minimal cut-set 
of the weighted ALG of the subassembly 8 . 

Definition 13.7.5 (Inter-cluster structural complexity) The inter-clus­
ter structural complexity, C".(8), of a subassembly 8 represents the complexity 
of connection between the subassembly 8 and the rest of the assembly. C".(8) 
is the sum of the weights of the edges connecting the subassembly with the rest 
of the assembly. 

Definition 13.7.6 (Structural Preference Index) The structural prefer­
ence index, SP1(S), of a subassembly 8 is measured by the intra-cluster and 
inter-cluster structural complexities: a higher structural preference index is as­
signed to a subassembly with a higher intra-cluster structural complexity and a 
lower inter-cluster structural complexity. 8P 1(8) is computed by: 

8P /(8) = exp{ -[(1- TJw(S)jn) + 'y!(1 - dw(8)jn) + 72C".(8)/n]} 

where 

n : 

TJw(S), dw(S) : 
C".(8) : 
71,72 : 

the number of nodes in the weighted ALG representing a 
cluster of paris, 
the intra-cluster structural complexity of a subassembly 8 , 
the inter-cluster structural complexity of a subassembly 8, 
the assembly coefficients. 

Note that ~ and ~ are less than 1 since TJw and dw are bounded by n - 1.4 

Table 13.5 shows SIs and SPIs of the tentative subassemblies of the flashlight . 
We assume that Wd = 0.2 , w. = 0.2, 71 = 0.5 , and 72 = 0.5. The SI of [82, P1] 

is relatively low since the liaisons between parts in [82 , P1] are free. 

4The edge connectivity of a graph with n nodes and e edges is bounded by l2e/n J, where 
l J indicates the maximum integer value not exceeding 2eln. The maximum number of edges 
in a graph with n nodes is n(n - 1)/2. 
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Table 13.5: Stability Indices(Sls) and Structural Preference Indices(SPls) cal­
culated for the Tentative Subassemblies 

I subassembly I SI SPI 

[P4 , Ps] 0.2466 0.2285 
[S2, PI] 0.2369 0.2728 

[Sl, P4 , Ps] 0.2466 0.3236 

13.7.3 Selection Process 

The selection of subassemblies is based on the stability and structural pref­
erence of each tentative subassembly as measured by the SI and SP!. The 
system calculates the subassembly selection index, SSI(S), for each tentative 
subassembly S by the linear combination of SI(S) and SPI(S). The weights 
can be determined based upon the relative significance of SI(S) and SPI(S) 
on the overall assembly cost, if such a measure is available, or can be subject 
to designer's preference. In the flashlight example, considering SSI with the 
assignment of equal weights to SI and SPI, [Sl, P4 , Ps] is selected as the best 
subassembly(see Fig.13.7 and Table 13.5). 

Some additional considerations are given in the following: (1) Through SI and 
SPI, the system prefers to select a stable and cost-effective subassembly which 
can be easily connected to the rest of assembly; (2) there is a possibility that 
the extraction of a subassembly may cause the rest of assembly to be unstable. 
However, such a possibility is obviated in this system by the use of the stability 
support in the construction of an ALG; (3) Additional constraints due to the 
limitations of assembly environment, such as the maximum allowable weight 
or volume of a subassembly, can be incorporated in the selection process. For 
instance, if we limit the maximum size of a subassembly by at most three parts, 
[Sl, P4 , Ps] cannot be selected even though it shows the best SS!. 

13.7.4 Assembly Instruction 

The selected subassemblies define the cut sets along which an assembly is de­
composed. Each cut set is to be assembled after the associated subassemblies 
are assembled. An assembly instruction is generated for each cut set to guide 
the assembly of two subassemblies decomposed by the cut set. An assembly 
instruction script contains the following attributes: 

• PRINCIPAL-PART - the part or subassembly which is moving. A sub­
assembly which has a higher SI becomes the principle part since a moving 
subassembly is more likely to be unstable. 
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• SECONDARY-PART - the part or subassembly which is fixed during 
assembly operation. 

• PRINCIPAL-DIRECTION - the suggested direction of motion of the 
principle part in assembly. The direction with more tolerance is selected 
from the free axes. 

• ALTERNATIVE-DIRECTION - the alternative direction of motion of 
the principle part in assembly. 

• INTERCONNECTION-TYPE - the type of the interconnection which 
requires the highest cost. 

• WEIGHT - the weight of the subassembly. 

• TOOLS - tools required for assembly. 

• PART-TO-FIX - parts which require fixtures. 

• STABLE-ORIENTATION - the orientation of the parts in assembly to 
secure all the parts not to be separated. A stable orientation of an assem­
bly is represented by tuples: (Ox, Oy, Oz), in which each tuple represents 
the counterclockwise rotation along the x-, y-, and z-axis of the reference 
coordinate. 

An assembly instruction in Fig.13.9 shows an example of a script for mating 
subassemblies 84 and 86. The script implies that 84 is assembled with 86 by a 
screw type connection, and 84 is moved into 86 in the direction of -X-axis of 
the reference coordinate. 

13.8 Generation of a Assembly Plan 

13.8.1 Hierarchical Partial-Order Graph 

The recursive application of decomposition process results in a disassembly 
plan in which temporal and spatial parallelism is embedded. For example, the 
selection of [31 , P4 , P5] as a subassembly decomposes the original assembly into 
two: [31 , P4 , P5] and [32 , PI], which defines a temporal relationship between the 
liaisons connecting the two subassemblies and the liaisons of individual sub­
assemblies: {14,lu,112} -< {11,12,13,15,16,17,ls,lg,llo}. The disassembly plan 
also presents spatial parallelism among assembly operations, since individual 
subassemblies, such as [PI, P2, P3 ] and [P4 , P5, P6, P7, Ps], can be assembled in 
different workstations. The temporal and spatial relationships among liaison 
resulting from the recursive application of decomposition process can be orga 
nized into a hierarchical partial order graph(HPOG) as shown in Fig.13.9 fa 
the assembly plan of the flashlight shown in figure 13.2. 
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Figure 13.9: A Hierarchical Partial Order Graph generated by the Assembly 
Planning System for the Assembly of the Flashlight 
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A HPOG is an acyclic digraph, G = (V, E), which consists of a finite nonempty 
set of vertices V and a set of edges E connecting vertices. The set of vertices V 
is composed of two subsets V = (N, S) with N representing a set of nodes and 
S representing a set of supernodes. A vertex of a node is represented by a circle 
vertex, and a vertex of a supernode is represented by an oval vertex. A node n, 
n E N, represents either a part or a subassembly. A node which corresponds 
to a completely assembled product is called a rootnode . For each node n of 
a subassembly, there is a corresponding supernode s which describes how the 
node n is assembled. S consists of such supernode, and all the supernodes 
are reachable5 from the rootnode. A supernode s of a node n contains a set 
of liaisons of which connections result in n and the pointer to an assembly 
instruction that contains the detailed information for the assembly of n. An 
edge e, e E E, is a relation on the set of vertices. A set of edges which is 
identified with an ordered pair (s; ,Sj), (i.e. there is a path from Sj to Sj in a 
HPOG), defines temporal relationship in assembly of Sj and Sj, such that the 
completion of the assembly of Sj is required for starting the assembly of Sj. For 
example, in Fig.l3.9, the assembly of {/4, 111, h2} must be started after {/2, 13} 
and {/s,/g} are completely assembled. Note that each edge in a HPOG is a 
directed edge which connects a node with a node in lower level. 

A HPOG shows temporal and spatial parallelism in assembly by explicitly rep­
resenting subassemblies. A set of supernodes which is reachable from a node 
n shows all the liaisons in the subassembly n. In other words, all the nodes 
reachable from n correspond to subassemblies which are extracted from n . A 
pair of subassemblies which are not reachable each other have no temporal rela­
tionship, thus both subassemblies can be done in arbitrary order. For example, 
in Fig.l3.9, S4 and S6 show such a loosely parallel operation mode in which a 
set of subassemblies can be done in different workstations or in an arbitrary 
order. On the other hand, a set of liaisons in a supernode, such as 14 , 111, and 
112 in Fig.l3.9, shows a tightly parallel mode in which assembly operations are 
required to be done at the same workstation simultaneously. 

13.8.2 Procedure of Generating HPOG 

A HPOG is generated by recursively decomposing a liaison graph into a set of 
subgraphs. The following algorithm gives the details of generating a HPOG. 

Step1: Select a w-node fOT the decomposition. A leaf node which is newly 
generated by the previous decomposition is selected. If there is no such 
a node then the decomposition process stops. 

Step2: Decide the type of the node. Check the disassemblability and manip­
ulability of each part in the w-node to decide whether liaisons in the 

SIn a digraph a node n is said to be reachable from node m if there is a directed path 
from m to n . 
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w-node have any temporal and spatial relationship. 

Step3: Decompose the node. The w-node of which parts have any temporal and 
spatial relationships each other is decomposed into a set of subassemblies. 

Step4: Modify HPOG. The w-node is modified based upon the result of Step3. 
The extracted subassemblies become new nodes and liaisons between the 
new nodes locate at the supernode of the w-node. 

StepS: Generate an assembly instruction. For the supernode of the w-node, 
an assembly instruction is generated. 

Fig.13.9 shows a HPOG for the assembly of the flash light shown in figure 
13.2. To generate a HPOG for the flashlight assembly, the following values of 
assembly coefficients are used in the construction of a weighted ALG: (¥ = 0.5, 
f3 = 0.5, Cs = 0.5, Ca = 0.5, and (¥i = 0.1 (i = 1, ... , 6). However, the 
adjustment of various parameters involved in the WALG and SSIs and the use 
of different criteria for selecting preferred subassemblies result in a different set 
of subassemblies which leads to a different assembly partial order. There may 
exist a correlation between the optimal values of these adjustable parameters 
and the particular assembly tasks. 

13.9 Conclusion 

This chapter presents a method for the automatic determination of assembly 
partial orders from a liaison graph representation of an assembly through the 
extraction of preferred subassemblies. The resulting assembly partial order 
is inherently cost-effective in the sense that effects of all extraneous factors 
such as instability, difficulty in handling and manipulation of subassemblies, 
extra fixturing requirements, as well as the concepts of temporal and spatial 
parallelism which have a direct consequence on the implementation cost of an 
assembly plan have been carefully incorporated in the method suggested here. 
The procedure is performed in three stages: 1) Selecting a set of tentative 
subassemblies by decomposing a liaison graph into a set of subgraphs based 
on feasibility and difficulty of disassembly, 2) evaluating each of the tentative 
subassemblies based on the subassembly selection indices, and 3) constructing a 
Hierarchical Partial Order Graph by the recursive extraction of subassemblies. 
For each selected decomposition, the assembly instruction is generated for the 
lower level plan refinement. A HPOG is a unified representation scheme for 
temporal and spatial relationship among assembly operations. 
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Chapter 14 

Backward Assembly 
Planning with DFA 
Analysis 

Sukhan Lee 

Most of the automatic assembly planners developed up to date are concerned 
mainly about generating assembly sequences or assembly partial orders based 
on reasoning of geometric interference among parts and subassemblies during 
assembly. Although geometric reasoning should be a fundamental mechanism 
for automatic assembly planning, and a considerable advancement has been 
made in this regard[1l ,12,13,14]' there still remains a number of important 
problems to be resolved, in order to bring automatic assembly planning closer 
to reality. 

First, the assembly of a product often requires special processes such as test­
ing, cleaning, painting, labeling, etc, to be intermixed with assembly (mating) 
operations. Since special processes not only require particular sets of parts to 
be processed, but also have precedence relationships, special processes playa 
role as additional constraints on the feasible assembly sequences and should be 
incorporated into assembly planning. 
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Second, due to a large number of feasible assembly sequences or partial orders, 
it is desirable to select a few best sequences or partial orders which incur 
minimum assembly cost . However, this has been hampered by the difficulty 
of selecting proper performance criteria[7,8,9,1O] and relating them directly 
to assembly cost. In addition, it requires to deal with the combinatorially 
explosive search space[2,3,4,5], should a globally optimal plan be searched for . 

Third, one of the roles of automatic assembly planning in computer integrated 
manufacturing automation is to analyze a product in terms of the assembla­
bility and assembly cost that Can be fed back to the designer for design im­
provement. An automatic assembly planner with the capability of "design for 
assembly (DFA 1)" analysis will be an extremely valuable tool .for automat­
ing design evaluation and modification cycles based on concurrent engineering. 
This problem has yet to receive proper attention. 

This chapter presents an algorithm for backward assembly planning which takes 
the above three issues into consideration. Backward assembly planning recur­
sively identifies decomposable subassemblies and Can handle the case where an 
assembly sequence is not necessarily the reverse of a disassembly sequence . 

First, the special processes involved in a product are represented by a "special 
process forest", and are incorporated into the backward assembly planning 
based on the "grouping principle" . The grouping principle identifies, based on 
the given special process forest, those parts that should be grouped together 
in a subassembly at the current stage of backward assembly planning, in order 
for the special processes to be carried out properly. The grouping principle 
together with the merging principle (which merges those parts that are not 
decomposable at the current stage of backward assembly planning due to the 
infeasibility of interconnection) helps reduce the complexity of search space. 

Second, as a criteria for selecting best subassemblies in backward assembly 
planning, stability, directionality, assembly pose, manipulability, process plan­
ning and parallelism are introduced and quantified. Most significantly, the 
above criteria are evaluated with a direct connection to assembly cost based 
on 1) the identification of the number of holding devices to stabilize assembly 
operations, 2) the derivation of the number of reorientations required during 
mating operations, 3) the determination of the best assembly poses for indi­
vidual subassemblies generated during planning, and 4) the estimation of the 
effect of part/subassembly manipulability on mating cost . 

Third, the search for a globally optimal plan is performed based on the AO* 
algorithm[15] with a cost function and a heuristic function defined in terms of 
the above criteria. In the process of searching for an optimal assembly plan , 
DFA analysis is performed for each assembly operation based on the detailed 
evaluation of the above criteria. The result is summarized into a DFA analysis 
table. 

IDFA is a term representing design guidelines for easy assembly[1,6]. 
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14.1 Representation of an Assembly 

This section provides a definition of an assembly and presents a method of 
representing an assembly based on an attributed liaison graph, a special process 
forest, and an assembly constraint forest. 

14.1.1 Definition of an Assembly 

Definition: An Assembly, A 

An assembly A is a cluster of parts assembled together by a certain assem­
bly sequence, which maintains a particular geometric relationship among 
parts. More specifically, a necessary and sufficient condition that a cluster 
of parts, P, becomes an assembly is as follows: 

1) Every part in P has at least one geometric constraint imposed on 
itself in relation with other parts in P . 

2) There exists an assembly sequence which brings all the parts in P 
together to satisfy the geometric constraints imposed on themselves. 

3) P is stable in a sense that it can maintain its geometric constraints 
either by itself or through the aid of holding devices. 

A single part is an assembly by definition. An assembly is said to be connected, 
ifthere exists a path (through part connections) between every pair of parts in 
the assembly. An assembly is said to be self-stable, if it can maintain stability 
by itself without assistance of external devices. 

The definition of an assembly presented above is quite general, since it includes 
two or more connected assemblies assembled with certain geometric constraints 
but without any physical contact. A product is defined as a connected and self­
stable assembly. However, a disconnected and non-self-stable assembly may be 
generated during the assembly of a product. 

14.1.2 Representation of an Assembly 

Formally, an assembly A is represented by 4-tuples: A = {peA), G£(A), Gp(A) , 
I1(A)}, where peA) represents the set of parts constituting A, GL(A) the at­
tributed liaison graph representation of A, Gp(A) the special process and con­
straint forest associated with A, and I1{A) the set of all the feasible assembly 
sequences for A . 

Attributed Liaison Graph 

Definition: A Liaison 
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A liaison is said to exist between a pair of parts if one part constrains the 
freedom of motion of the other by a direct contact. 

Definition: A Liaison Graph 

A liaison graph is a graph, G, G = (N, E), with N representing a set of 
nodes, and E representing a set of edges. A node n, n E N, is assigned 
to each part of an assembly, and an edge e, e E E, is assigned to a liaison 
between a pair of parts. 

Definition: An Attributed Liaison Graph, GL(A) 

An attributed liaison graph is a liaison graph with frames attached to 
individual nodes and edges of the liaison graph to describe the attribute 
associated with a node or an edge. A part frame attached to each node 
describes the attributes associated with a part, including 1) the part 
geometry, 2) the mating volumes and the contact surfaces as part features, 
and 3) the physical properties of a part such as weight. An edge frame 
attached to each liaison describes attributes associated with the liaison. 
The attributes of a liaison consist of 1) the mating parts, 2) the mating 
features, and 3) the interconnection type such as Attachment, Force-fit, 
Connectors/Retainers, Push-and-Twist, Screw, Glue, or Welding. Thus, 
GL(A) contains information on the topology of part configurations, the 
geometry and relative pose of parts in A, the interconnection mechanisms 
of part connections, and the local freedom of motion in part mating. 

Special Process and Constraint Forest 

The assembly of a product involves not only the interconnection of parts to form 
required liaisons but also the execution of special processes such as testing, 
adjusting, surface treatment, painting and packaging during assembly, while 
observing certain assembly constraints. This implies that assembly planning 
should consider generating feasible assembly sequences not only by reasoning 
about geometric and physical interference in part matings, but also by reasoning 
about the accomplishment of special processes and the satisfaction of assembly 
constraints. 

Special processes may be subject to a certain precedence relationship in case 
1) several processes share a common part, or 2) there is a need to prevent 
electrostatic, electromagnetic, and thermal interference, as well as mechanical 
vibrations and chemical pollutions during processing. The latter may also incur 
constraints on assembly sequences, and impose precedence relationships among 
some assembly operations. 

Special processes and assembly constraints associated with A are represented 
by a special process forest, Gs(A), and an assembly constraint forest, Gc(A). 
The collection of Gs(A) and Gc(A) is referred to here as a special process and 
constraint forest, Gp(A). 
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Definition: Special Process Forest, Gs(A) 

G 8 (A) consists of a set of trees having the following properties: 

1) A node n[ of Gs(A) represents a special process, Si. ni is associated 
with a tuple (P/, E:), ni '" (P/, ED, where P/ represents a set 
of parts involved in Si, and E: represents the union of the parts 
involved in Si and the special processes corresponding to all the 
offsprings of n[: E: = P/ U{Uj Ej}, 'v'nj : nj '" (PJ, Ej) and nj 
is a child of n! . 

2) A branch bi connecting nt and nj represents the precedence rela­
tionship between Si and Sj: Sj < Si if nj is a child of nt. Special 
processes corresponding to the sibling nodes of a tree or to the nodes 
of different trees have no precedence relationship. 

Definition: Assembly Constraint Forest, Gc(A) 

G c (A) consists of a set of trees having the following properties: 

1) A node nf of Gc(A) represents a liaison Ii of GL(A) . ni is associated 
with a tuple (Pt, L), ni '" (1=tc , E~), where P{ represents a pair 
of parts involved in Ii, E~ represents the union of P{ and the parts 
involved in all the offsprings of nf: E~ = ~c U{Ui L:j}, 'v'nj, nj ,.... 
(PI, Ej) and nj is a child of nf. 

2) A branch bf connecting nf and nj represents a precedence relationship 
between Ii and Ij: Ii < Ii if nf is a child of ni. Liaisons corresponding 
to the sibling nodes of a tree or to the nodes of different trees have 
no precedence relationship. 

The existing assembly planners to date focus on generating feasible assembly 
sequences based mainly on geometric reasoning on path interference. Since 
special processes as well as assembly constraints impose constraints on assembly 
order, the generation of an assembly sequence should consider effective and 
efficient accomplishment of special processes under the satisfaction of assembly 
constraints. 

14.1.3 Example: Raster Output Scanner (ROS) 
Optical Assembly 

The raster output scanner (ROS) optical assembly (a component of a Xerox 
printer), as shown in Figure 14.1, is used for the illustration of the concepts 
and algorithms developed throughout the chapter~ 

The ROS optical assembly consists of a base (B), lenses (Ll,L2), mirrors (Ml, 
M2 assembly), an I/O test unit (IOU), a motor assembly, and the PWB guard 
assembly. The M2 assembly is composed of a mirror (M2) and a mirror bracket 
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Figure 14.1: An Exploded View of the Raster Output Scanner (ROS) Optical 
Assembly (courtesy of Xerox, EI Segundo) 
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Figure 14.2: The Attributed Liaison Graph Representation of ROS Optical 
Assembly 

(MB). A motor assembly consists of a motor (M), a motor cover (MC), a poly­
gon mirror (PM), a mounting plate (MP), and a lead balance weight (LBW), 
while PWB guard assembly consists of a board (B), and a base cover (BC). 
A motor guard (MG) which protects a motor assembly under the base is not 
shown in Figure 14.1. 

Figure 14.2 shows the attributed liaison graph of the ROS optical assembly, 
where a typical form of a node frame and an edge frame are shown in the 
boxes. 

Figure 14.3 illustrates the special process forest associated with the ROS optical 
assembly. It shows that the balancing and labeling process of a motor assembly, 
the adjusting process of a base and M2 assembly(M2, MB), and the cleaning 
process for a lens, L1, should be done prior to the testing process. 
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testing [P(A), peA)] 

[ {M} ~"~ [{ B,.", MB} C """'"V 
{ M, PM, MP, LBW, MC} I { B, M2, MB } I 

[{M, PM,MP,LBW,MC} Geaninv [{ M2} {M2} I [{U} {U}] 
{ M, PM, MP, LBW, Me} ] 

[{LBW} {PM,LBW}] 

[ { PM, LBW } { PM, LBW} ] 

Figure 14.3: Special Process Forest for ROS Optical Assembly 

14.2 Backward Assembly Planning 

14.2.1 Definition of Backward Assembly Planning 

Definition: A Subassembly of an Assembly A, Si IA 
A subassembly of an assembly A, Si lA, is an assembly. Si IA represents 
a nonempty, proper subset of A, i.e., Si IA =f=. 0, Si IA C A, which can be 
generated in one of the feasible assembly sequences for A . 

Definition: A Direct Subassembly of an Assembly A, SflA 

A direct subassembly of an assembly A, SfIA, is a subassembly of A, 
which can be directly assembled with A-Sid IA at the last step of assembly 
in one of feasible assembly sequences for A. 

Definition: Assembly Planning of an Assembly A, AP(A) 

The assembly planning, AP(A), of an assembly A, A = {P(A), GL(A), 
Gp(A), TI(A)}, is the process of generating a set of assembly sequences 
TIa(A) ~ TI(A) based on the given P(A), GL(A) and Gp(A), and the 
criteria for selecting desirable assembly sequences. 

Definition: Backward Assembly Planning of an Assembly A, BAP(A) 

BAP(A) is a particular method for achieving AP(A), based on the recur­
sive identification and selection of desirable direct subassemblies. BAP(A) 
first identifies and selects a direct subassembly of A, SflA(or a set of di­
rect subassemblies of A , {StIA, i = 1,···, m}) and decompose A into 
SflA and A - SflA (or {SfIA and A - sflA,i = 1,·· ·,m}). Then, it 
recursively applies the process of decomposition to the subassemblies gen­
erated by the previous decomposition until no further decomposition can 
be applied (i.e., all the generated subassemblies consist of a single part). 
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Step 1: If A = a single part, then return. 

Step 2: Select stlA and (A - stIA). 

349 

Step 3: Generate GL(StIA), Gp(stIA), GdA - SfIA), and Gp(A -
stIA). 

Step 4: Call BAP(stIA) and BAP(A - SfIA). 

14.2.2 Backward Assembly Planning vs. 
Disassembly planning 

BAP(A) differs from disassembly planning in that BAP(A) can handle the 
case where an assembly sequence can not be obtained from the reverse of a 
disassembly sequence. For instance, a sequence of operations to disconnect a 
liaison of force-fit interconnection type is often quite different from the reverse 
of a sequence of operations to interconnect the liaison. As shown in Figure 14.4 
(a), the snaps of A should be widened in order to disassemble part B from part 
A, which may require a new tool. In Figure 14.4 (b), we can have the following 
disassembly sequence: C-A-D-B, since Screw C can be disassembled before 
Cover A is removed. However, the reverse of the above disassembly sequence, 
B-D-A-C, can not be an assembly sequence, since the inability of holding part 
D during assembly of part C prohibits such an assembly sequence. BAP(A) 
identifies this problem and generates a feasible assembly sequence, B-D-C-A. 

14.2.3 Identification of SllA 

The necessary and sufficient condition that a cluster of parts PIA, PIA C A, 
can be a direct subassembly of A is as follows: 

1) Accessibility Condition: PIA is accessible. 

2) Stability Condition: PIA and A - PIA are stable. 

3) Local Mating Motion Condition: All liaisons between PIA and A - PIA 
have at least one common axis of separation. 

4) Path Existence Condition: PIA can be brought to A-PIA from the free 
space for mating. 

5) Interconnection Feasibility Condition : PIA can be interconnected to 
A - PIA by applying the interconnection operations defined for the liaisons 
between PIA and A - PIA. 

6) Process Constraint Condition: PIA meets the constraints defined by the 
special process and constraint forest of A, Gp(A). 
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(a) (b) 

Figure 14.4: Two Typical Assemblies which illustrate the Situation where an 
Assembly Sequence is different from the Reverse of a Disassembly Sequence. 

14.3 Abstract Liaison Graph by 
Part Clustering 

The identification of Sf IA can be accomplished by checking the above condi­
tions for individual PIA's obtained from all the cut-sets of GL(A) . Since the 
number of cut-sets of GL(A) is often large and grows exponentially with respect 
to the number of nodes in GL(A), and the cost of testing the path existence 
condition for a cut-set is very high, the consideration of all the cut-sets of 
GdA) results in inefficiency in assembly planning. This problem hampers the 
applicability of assembly planning to a product with a large number of parts. 

The number of the cut-sets subject to the test of path existence condition may 
be reduced considerably if we first select those cut-sets that pass the intercon­
nection feasibility condition, the process constraint condition, and the stability 
condition, prior to the test of the path existence condition. This is well justi­
fied by the fact that the cost of testing the interconnection feasibility condition 
and the process constraint condition is minimal due to the locality involved in 
the test of these conditions. The process of selecting those cut-sets that pass 
the test of the interconnection feasibility condition and the process constraint 
condition is equivalent to finding cut-sets in a simpler form of liaison graph 
called an abstract liaison graph, GdA). GL(A) is obtained by transforming 
GL(A) based on: 
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1) Merging those parts of A that cannot be interconnected to form A, al­
though it is assumed that those parts are already brought into their mat­
ing position. This process identifies the liaisons of GL(A) that violate the 
interconnection feasibility condition for StIA, based on reasoning whether 
the preconditions for a particular interconnection mechanism associated 
with a liaison can be satisfied. 

2) Grouping those parts that should belong to the same subassembly to 
meet the requirement of special processes. 

The parts merged together become a super node, whereas the parts grouped 
together become a group node in GdA). A super node and a group node 
are considered as a single node in finding cut-sets, resulting in a considerable 
reduction of the number of cut-sets in search space. 

Finally, the accessibility and stability conditions for StlA will be tested for 
each cluster of parts defined by the cut-sets of GL(A) before the decision on 
valid cut-sets is made. 

14.3.1 Interconnection Feasibility and Part Merging 

A liaison Ii between PIA and A - PIA cannot be completed, in spite ofthe fact 
that PIA can be brought into its mating position without path interference, if 
the following conditions are not satisfied: 

Condition 1: The feasibility of applying tools and connectors required for the 
interconnection of Ii . 

Condition 2: The feasibility of applying a force, while maintaining stability, 
required for the interconnection of I •. 

This implies that a liaison of GL(A) that violates one of the above conditions 
cannot be included in a cut-set (or PIA) to be tested for StIA. Pruning out 
those cut-sets of GdA) that include the liaisons violating the above conditions 
is equivalent to defining cut-sets in a simplified GL(A) obtained by merging 
those nodes associated with the liaison. 

The test of Condition 1 requires the verification of accessibility of the part 
(associated with a liaison Ii) by the tools and connectors required for the inter­
connection of Ii. This can be done by checking the existence of an open channel 
to the designated part locations, through which tools and connectors can be 
operated without geometric interference[ll] . The test of Condition 2 requires 
reasoning on the force delivery to a liaison h through intermediate liaisons. 

To be more specific regarding the testing of interconnection feasibility, let us 
first categorize a liaison into one of the following three classes: 
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Definition: A floating liaison 

A liaison is said to be floating if there exists no physical force holding the 
parts (associated with the liaison) together. For instance, a liaison with 
the interconnection type of "attachment" is a floating liaison. A floating 
liaison mayor may not be stable, depending on the geometric constraints 
imposed on the parts associated with the liaison. 

Definition: A rigid liaison 

A liaison is said to be rigid, if there exists physical force holding the 
associated parts together, by which the liaison becomes self-stable even 
under the presence of external force. For instance, a liaison with the 
interconnection type of ''force-fit'', "welding", or "connectors" may -be 
classified as a rigid liaison. 

Definition: A firm liaison 

A liaison is said to be firm if there exists a physical force holding the asso­
ciated parts together, by which the liaison becomes self-stable, although 
it may exhibit a deformation or a freedom of motion under the presence 
of external force. For instance, a liaison with the interconnection type of 
"glue", ''push & twist" , or "screw" may be classified as a firm liaison. 

A liaison is associated with its local freedom of motion: 

Definition: The Local Freedom of Motion of a Liaison Ii, LFM(li) 

The local freedom of motion of a liaison Ii connecting the two parts, 
PI and P2, Ii ~ (PI, P2), is represented by the freedom of motion of 
PI against P2, LFM(/i ;PIIP2) or the freedom of motion of P2 against 
PI, LFM(/i ;P2IPI), where LFM(/i ;PI IP2 ) or LFM(li;P2 IPI) is rep­
resented in terms of the coordinates of the assembly to which PI and 
P2 belong, {±x,±y,±z,±"p,±B,±¢}. Note that LFM(l;;PIIP2 ) and 
LF M(li; P2IPI) are symmetric about individual coordinates, e.g., if LF M 
(li; PIIP2) = {+x, -z, +¢}, then LFM(li; P2 IPI) = {-x, +z, -¢}. 

A local freedom of motion of a liaison may be changed after the interconnection 
is completed: A floating liaison does not change its local freedom of motion 
after the interconnection is done. A rigid liaison of the interconnection type , 
"welding", "force-fit", or "connector", however, completely loses its local free­
dom of motion after the interconnection is completed. On the other hand, a 
firm liaison of interconnection type, "screw" or ''push & twist" may show a 
local freedom of motion, when a certain amount of force is applied to the liai­
son . To distinguish the local freedom of motion of Ii after the interconnection 
from that before the interconnection, LF M+(li) is used to represent LF M(li) 
after the interconnection. Note that, due to the orthogonality between motion 
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space and force space, a liaison cannot deliver force to the direction where a 
local freedom of motion exists. 

Definition: An Accessible Node, A-node 

A part is accessible by a tool if it is reachable and graspable by a tool for 
an assembly operation. A node are accessible if any of the parts forming 
the node is accessible. 

Definition: An Access Path to a node n, A-path 

An access path to a node n, A-path, is a path starting from an A-node 
and ending with the node n without having any other A-node in the 
middle of the path. By definition, an A-node has an A-path to itself. 
An access path is represented by an ordered set of liaisons or parts on 
the path. A-node may have one or more A-paths. A pair of A-paths, 
A-path(nt) and A-path(n2), nl =/:. n2, are said to be independent each 
other, if they share no common part. 

Definition: The Internal Motion Space, M[A-path(n)], and the Static Force 
Space, F[A-path( n)], associated with A-path( n) 

The internal motion space, M[A-path(n)], of A-path(n) is defined by 
the union of the local freedom of motion of individual liaisons in A­
path(n), and represents the flexibility that the configuration of parts 
along A-path(n) can be deformed by an external force, with the first part 
(corresponding to A-node) and the last part (corresponding to the node 
n) fixed in space. Note that M[A-path(n)] is a function of the external 
force applied to A-path(n) when A-path(n) includes firm liaisons, since 
the external force determines which firm liaisons can be broken. As will 
be explained shortly, the external force to be applied to A-path(n) is 
given as the force required for the interconnection of the liaison which n 
is associated with, and is subject to the evaluation of force-deliverability. 

Assume that A-path(n) is represented by an ordered set ofliaisons, {II, 12 , 

... ,Ir }, with Ii formed by a pair of nodes, (n;ll ni 2 ), and that (nill ni 2 ) is 
ordered along A-path(n) in the direction toward n. Then, M[A-path(n)] 
=U;=l LF M(li ; ni , ln i 2)· 

The static force space, F[A-path(n)], of A-path(n) defines the static force 
that can be delivered to the node n through A-path(n). F[A-path(n)] is 
represented by the orthogonal complement of M[A-path(n)], i.e., F[A­
path(n)] ={±x, ±y, ±z, ±?/>, ±O, ±~} - U~=l LF M(li; ni,lni2). 

Definition: A Force-Deliverable A-path 

A-path(niJ is said to be force-deliverable to ni, for the liaison Ii, Ii '" 
(nill n i 2 ), if F[A-path(ni,)] includes the force required for the intercon­
nection of ni, to n i 2' 
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The test of Condition 2 for a liaison, Ii '" (nil' ni2), is now transformed to the 
verification of the existence of an independent force-deliverable A-path for nil 
and ni2. 

The force-deliver ability of an A-path to n;l or n;2 depends on the force required 
for the interconnection of Ii. That is, M[A-path(nil)] or M[A-path(ni2)] is 
determined by the freedom of motion of individual liaisons along the A-path 
under the presence of an external force equivalent to the force required for the 
interconnection of Ii. For instance, in case Ii is floating, the amount of force 
required by Ii is negligible, and the decision of the internal motion space of the 
A-path is based solely on the floating liaisons along the path . Note that , in 
this case, the force-deliver ability of Ii becomes equivalent to the feasibility of 
maintaining stability during interconnection. As a summary, we present the 
following merging principle: 

Merging Principle : 

A liaison Ii, Ii'" (nil> ni 2 ), can not be listed as a cut-set, and consequently 
nil and ni2 should be merged together, if one of the following conditions 
is true: 

1) It is not feasible for the tools and connectors (required for the inter­
connection of Ii) to access the designated locations. 

2) Either nil or ni 2 has no independent force-deliverable A-path, in­
cluding the case where either nil or ni 2 has no A-path at all. 

By applying the merging principle described above to an assembly A, we can 
transform GL(A) into GL(A) in which those parts of a liaison that can not be 
separable for Sf IA are clustered together, as described by the following merging 
process: 

Step 1: Put all the liaisons of GdA) in Open set. Identify A-nodes of GdA). 

Step 2: If Open set is empty, then stop. 

Step 3: Select liaison, Ii '" (nil> ni 2 ), from Open set in an increasing order 
from an A-node, and remove Ii from Open set. 

Step 4: Check whether h requires tools or connectors to complete the inter­
connection. If not, go to Step 6. 

Step 5: Check the accessibility of tools or connectors to the designated loca­
tions. If not, merge nil and ni2 and go to Step 2. 

Step 6: Check whether nil and ni2 have independent, force-deliverable A­
paths. If not, merge nil and ni2 and go to Step 2. 
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Example : Part Merging of the ROS Optical Assembly 

A-nodes of the ROS optical assembly are identified as B, BC, and MG. 
First, it is identified that it, 12 , 13 , 14, 15 , 114 , it5, it6, 117, and its can be 
merged, since each of them does not have an independent force-deliverable 
A-path for one of the associated parts. The analysis of part merging for 
some other liaisons is given in the following: 

1) A liaison 16,/6'" (B,IOU) 

A-paths of B : {B} 
A-paths ofIOU : {B,IOU}, {BC,BO,IOU}, and {MG,M,BO, 
IOU}. 
16 does not require a tool or a connector to complete the in­
terconnection. A part, IOU, has independent force-deliverable 
paths which can deliver a force needed to interconnect the float­
ing liaison, 16. (It is unnecessary to check whether the part, B, 
has a force-deliverable A-path because B is an A-node.) There­
fore, 16 is not merged. 

2) A liaison Ig , Ig '" (BC, BO) 

A-paths of BC : {BC} 
A-paths of BO : {BC,BO}, {B,IOU,BO}, and {MG,M,BO}. 
Ig does not require a tool or a connector to complete the inter­
connection. The part, BO, has no independent force-deliverable 
paths which can deliver a force needed to interconnect Ig • There­
fore, Ig is merged. 

The result of applying the merging process to the ROS optical assembly is 
shown in Figure 14.5. 

14.3.2 Special Process Constraints and Part Grouqin!b 

A cluster of parts required for a special process should be grouped together and 
included in a subassembly for processing. A subassembly may be associated 
with one or more special processes that operate on the parts included in the 
subassembly. 

The recursive determination of Sf IA in backward assembly planning should 
support the execution of special processes in an order specified by Gs(A) and 
satisfy the assembly constraints specified by Gc(A). 

This requires 1) the determination of those parts of A that should be grouped 
together and should not be separated into StlA and A - StIA, based on the 
special process forest Gs(A) and the assembly constraint forest Gc(A), and 2) 
the generation of a special process forest and an assembly constraints forest for 
sflA and A-stIA, i.e., Gs(StIA), Gc(StIA), Gs(A-stIA), and Gc(A-stIA). 
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• :A-node 

......... : floating liaison 
-- : firm 1iaison 
_ : rigid liaison 

E]) : Merging 
• :Gtouping 

Figure 14.5: The Clustering Process for ROS Optical Assembly 

The determination of parts for grouping can be done by the following process: 

1) Given Gs(A), we first determine which special processes should be accom­
plished with A, by selecting one or more special processes from Gs(A) 
in a top-down order from the root nodes of Ga(A) . We then remove out 
those nodes corresponding to the selected special processes from Gs(A) 
and transform Gs(A) into Gs(A). Since the special processes remaining 
in Gs(A) need to be accomplished in the later stage of backward assembly 
planning, we should group those parts in the accumulated part list of a 
root node of Gs(A), i.e., we group those parts in :L~;, no; ""' (POi' :L~) 
with n~; a root node of Gs(A). 

2) In order to preserve the precedence relationship defined by Gc(A), we should 
group those parts in the accumulated part list of a child of a root node 
of Gc(A), i.e., we group those parts in :L~;, ni; ""' (Pt,:LU with ni; 
a child of a root node of Gc(A). A liaison represented by a root node 
of Gc(A) is eligible for decomposition at the current stage of backward 
assembly planning, and is exempt from grouping. 

In summary, we present the following grouping principle: 

Grouping Principle : 

For a given A, GL(A) and Gp(A) where Gp(A) = Gs(A)UGc(A), we 
group those nodes of GL(A) that belong to either of the following lists: 
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[ {M} 
{ M, PM, MP, LBW, Me } ] 

[ { M, PM, MP, LBW, Me} 
{ M, PM, MP, LBW, Me} ] 

[{ LBW} {PM, LBW}] 

[{ PM,LBW} {PM, LBW}] 

<§U~ti~ [{ B, M2, MB} 
{B,M2,MB}] 

~ani~ [{M2}{M2}] 

C§:eani~ [{U} {Ll}] 
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Figure 14.6: Special Process Forest, G.(A), after removing the Root Node from 
Gs(A), where the Process associated with the Root Node of Gs(A) is assigned 
to A 

1) L:~i associated with a root node, ng., of a Gs(A), where Gs(A) is 
obtained by removing out from Gs(A) those nodes that are to be 
processed with A. 

2) L:~i associated with a child, nt, of a root node of Gc(A). 

The application of grouping principle to the ROS optical assembly is shown in 
the following example: 

Example: Part Grouping of the ROS Optical Assembly 

First, Gs(A) is obtained in Figure 14.6 by removing the root node of 
Gs(A) shown in Figure 14.3, since the testing of the whole assembly 
should be done with A. 

Then, the grouping ofthe nodes in GL(A) is performed with the accumu­
lated part lists of individual root nodes of Cs(A): {M,PM,MP,LBW,MC} 
becomes a group and {B,M2,MB} becomes another group, as shown in 
Figure 14.5. 

14.3.3 Abstract Liaison Graph 

Merging and grouping operations transform the original liaison graph, GL(A), 
into the simplified liaison graph, called the abstract liaison graph, GdA), as 
shown in Figure 14.7. GL(A) is composed of super nodes and group nodes ob­
tained from part merging and part grouping, as well as simple nodes remaining 
from GL(A). 
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./// 

A-node 

o Supemode 

Figure 14.7: The Abstract Liaison Graph of the ROS Optical Assembly 

14.4 Identification of Direct Subassemblies 

The problem of finding direct subassemblies is now transformed into the prob­
lem of finding valid cut-sets ofthe abstract liaison graph, 8L (A). A cut-set'fi, 
decomposes 8dA) into disjoint subgraphs, 8fl(A'fd and 8f2(A'fi), where 
8fl(A, fi) or 8f2(A, fi) may not be a connected graph , but may be a collection 

~s ~Sl' 
of multiple connected subgraphs, G/(A'fd = {GL J (A'fi), j = 1,2", ',/d 

~s ~S2 
or GL2(A"i)={GL i(A'fi), j = 1,2", ',l2}' A cut-set, fi, is valid if: 

~~. ~~. 

1) Each connected subgraph,GL J (A, Ii), j = 1,2"", It, GL J (A, fd, 
j = 1,2· . ,,/2 , generated by the cut-set'f; includes at least one 
A-node. 

2) There exists a collision free path between the cluster of parts, 
PIA, corresponding to 8fl(A"i) and A-PIA, corresponding 
to 8f2 (A, fi) for their mating. 

The first condition ensures that PIA and A - PIA, can be handled by a tool 
for assembly whereas the second condition ensures that StlA can be placed 
in its mating position. For the test of the second condition, we first test the 
feasibility of the local mating motion between PIA and A - PIA, so that the 
computational complexity involved in the path verification can be reduced. To 
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be more specific on this point, let us define the following; 

Definition: Local Mating Motion, LM 

The predicate LM(PIA, A - PIA) is true if all the liaisons between PIA 
and A - PIA has at least one common axis of separation. 

Definition: Path Existence, P E 

The predicate P E(PIA, A-PIA) is true if there exists a path along which 
the cluster of parts PIA can be brought to its mating position without 
colliding with the rest of the assembly. 
Since the premise that LM(PIA,A - PIA) is not true is a sufficient con­
dition that P E(PIA, A - PIA) is not true , the test of LM(PIA, A - PIA) 
preceding the test of PE(PIA,A - PIA) can provide a considerable re­
duction in the number ofthe costly PE(PIA,A - PIA) test. 

Algorithm: Identification of Direct Subassemblies 

Input: GL(A) , A-Node Set = {all the A-nodes of GL(A)}, Tested Cut-set 
List={0}, Valid Cut-set List={0}. 

Output: A list of direct subassemblies specified in Valid Cut-set List. 

Method: 

Step 1. If A-node Set is empty, stop . 

Step 2. Select an A-node from A-node Set, and remove it from A-node 
Set. 

Step 3. If there exists a cut-set Ii, Ii f/. Tested Cut-set List, such that 
Gfl(A'/d includes the A-node selected in Step 2 and Gf2(A'Ii) 
includes at least one A-node of GL(A), then continue. Otherwise, 
go to Step 1. 

Step 4. Put Ii into Tested Cut-set List . 

Step 5. Test Ii for LM. If it is false, go to Step 3. 

Step 6. Test Ii for P E. If it is true, put Ii in Valid Cut-set List. Oth­
erwise, go to Step 3. 

The above algorithm results in the list of all valid direct subassemblies of A con­
tained in Valid Cut-set List. Table 14.1 illustrates the directed subassemblies 
generated for the ROS optical assembly. 
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Table 14.1: Valid Cut-Sets or Direct Subassemblies generated from OdA) for 
the ROS Optical Assembly 

II Cut-set II PIA A - PIA I Result II 
{ed MG 51-52-IOU Valid 

51-52-IOU MG Valid 
{e2,e3} MG-51 52-IOU Valid 

S2-IOU MG-51 Valid 
{e3, e4} 82 MG-81-IOU Valid 

MG-51-IOU 52 Valid 
{el,e2,e3} SI MG,S2-IOU Failed in the LM test 
{el, e3, e4} SI-IOU MG,S2 Failed in the LM test 
{e2,e4} MG-SI-52 IOU Failed in the A-node test 
{el, e2, e4} SI-S2 MG,IOU Failed in the A-node test 

14.5 Subassembly Evaluation Criteria 

The direct subassemblies identified from OL(A) are subject to further evalua­
tion for the selection of a few best direct subassemblies. This serves to main­
tain a manageable number of assembly sequences, out of a potentially explosive 
number of possible assembly sequences in assembly planning. 

The evaluation of a subassembly is based on the following criteria: 1) Stability, 
2) Directionality, 3) Manipulability, 4) Process Planning(Processing Cost), and 
5) Parallelism. Stability, directionality, and manipulability provide an indirect 
measure of the assembly cost involved in local assembly operations that can 
be directly used for the analysis of Design for Assembly (DFA). Processing 
planning and parallelism are concerned about the optimality associated with 
the order of special processes and the adaptability to flexible assembly envi­
ronments. Note that the optimal selection of a direct assembly at each stage 
of backward assembly planning based on local criteria may not yield a globally 
optimal plan. As will be shown later, this problem is handled by the AO· 
algorithm with its cost and heuristic functions defined in terms of the above 
criteria. 

14.5.1 Stability 

To analyze the stability of a subassembly, let us first define the following: 

Definition: A floating cluster of parts of Sf IA 
A cluster of parts of StIA, .J\1(SfIA), is said to be floating if it is con­
nected to the rest of Sf IA only by floating liaisons. Pk I(SfIA) corresponds 
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to a subgraph of GL(stIA) that can be separated from GL(stIA) by a 
cut-set consisting only of floating liaisons, called a floating cut-set. 

Definition: A disconnected cluster of parts of sf IA 

A cluster of parts of sflA, AI(SfIA), is said to be disconnected if it 
has no liaison connected to the rest of sflA. AI(SfIA) corresponds to a 
separate subgraph of GL(SfIA). 

The stability of a subassembly, sflA , can be defined based on a set of float­
ing clusters of parts, 1\1(stIA), and a set of disconnected clusters of parts, 
AI(SfIA), included in SfIA. 

A floating cut-set, Tk, of G L (Sf IA) decomposes sf IA into 1\ I (Sf IA) and sf IA-
1\1(SfIA). The local freedom of motion of rk, LF M(Tk), can be defined as the 
local freedom of motion of 1\1(SfIA) against sflA -l\I(SidIA): 

for alllj, lj E Tk . 

Note that j\I(SfIA) is chosen under the constraint that sflA - 1\I(SflA.) 
includes one of the A-nodes of the assembly A that will be used for holding 
SflA during the mating of SflA with A - SfIA. 

Definition: Internal Freedom of Motion of sflA, IFM(SfIA) 

The internal freedom of motion of SfIA, IF M(SfIA), is defined as a 
collection of assembly directions to which sf IA can be broken apart. 
IF M(SfIA) can be calculated by the following rules: 

1) ~ AI(SfIA) and 1\1(SfIA) => IFM(SfIA) = 0; 
2) ~AI(SfIA) but 31\I(SfIA) => IF M(SfIA) = U LF M(Tk), TlTk; 

3) 3Pkl(SfIA) => IF M(SfIA) = {± x, ± y, ± z, ± '!fI, ± 8, ± .p}. 

As an example, let us consider a simple 2-D assembly shown in Figure 14.8. 
Since h, 12 and Ig are floating liaisons, we have that 

Assuming that sf IA is oriented with reference to the assembly pose of A as 
shown in Figure 14.8, and that PI, an A-node of A, is selected for grasping of 
SfIA, we have 

LFM(Tl) 
LFM(r2) 
LFM(Tg) 

= LFM(P2 UPg,Pt) = {+x,+z}, 
= LFM(P2 , PI UPg) = {+z}, 

LFM(Pg,PI UP2) = {+x,+z}. 
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+z. S/(A) 

P2 P3 

PI 

.. 
-x "+x 

_zllr 

Figure 14.8: An Example to show the Calculation of Internal Freedom of Mo­
tion of sflA, IFM(SfIA) 

Therefore, 

IFM(sfIA) = {+x,+z}. 

Based on the definition of IF M(stIA), we can establish the stability conditi4 
for StIA, as follows: 

1) SflA is said to be self-stable or stable without the assistance of holdi 
devices, if IFM(SfIA) is null (i.e. StlA contains neither AI(stIA) n 
l\l(stIA) of non-null LFM); or IFM(SfIA) has at most a single trar 
lational freedom of motion, possibly with a rotational freedom of moti 
about the axis of translation (i.e. StlA contains a single peg-and-h< 

- d d type of Pkl(Si IA), e.g., IFM(Si IA) = {+z,±</>}). 

2) StlA is said to be stable with the assistance of holding devices, if each 
AI(SfIA) or l\I(SfIA) with more than a single translational freedom 
of motion contains an A-node of the assembly A. This implies that the 
mating operation of StlA can be stabilized and completed with the assis­
tance of external devices holding AI(SfIA) and i\1(SfIA) of more than 
a peg-and-hole type of motion freedom. 

3) Otherwise, sflA is said to be unstable. 

A stable StIA, whether it requires a holding device or not, has one or more 
stable assembly poses, where an assembly pose is represented by assembly coor­
dinate aligned with the direction of part stacking against gravity. For instance, 
Sf IA with null IF Mh (denoting IF M after the incorporation of necessary 
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holding devices) can have assembly pose of ±x, ±y and ±z. sflA with IF Mh 
of { +x, ±1jJ} can have an assembly pose of +x, requiring a reorientation of sf IA 
to align +x with the stacking direction (against gravity) . 

Let us now consider the stability associated with an assembly operation: 

Definition: Stable Assembly Operation 

The assembly operation between sflA and A - SflA is said to be stable, 
having a stable assembly direction, if sflA and A - sflA have at least 
one common stable assembly pose. 

The evaluation of sf IA in terms of stability is based on the stability of sf IA 
and A - sflA and the stability of the assembly operation between SflA and 
A - sf lA, as follows: 

1) If either Sf IA is unstable or A -sf IA is unstable, sf IA can not be selected 
for a direct subassembly of A. 

2) When sflA and A -Sf IA have no common stable assembly pose, sflA can 
not be selected for a direct subassembly of A . 

3) Otherwise we evaluate the assembly cost incurred by the need to stabilize 
sflA and A - SflA as well as the assembly operation between sflA and 
A -sfIA. 

The assembly cost is directly related to the number of holding devices required 
for stabilizing sflA and A - SfIA, and the necessity of reorienting sflA and 
A - SflA for a stable assembly operation . The latter will be analyzed in more 
detail in the next section in relation to the directionality in assembly and the 
determination of best assembly poses. Table 14.2 summarizes how to evaluate 
the relative assembly cost of sflA due to stability. 

14.5.2 Directionality and Assembly Pose 

The directionality in assembly is another important factor affecting assembly 
cost. Locally, a stacking operation is considered more cost-effective than a 
non-stacking operation . Globally, a single direction of assembly is preferred to 
multiple directions of assembly. Therefore, the evaluation of directionality in 
assembly should be based on both the local assembly direction between Sf IA 
and A - SfIA, and the uniformity of assembly directions embedded in SflA 
andA-SfIA. 
It should be noted that whether or not the local assembly direction between 
sflA and A-sfiA can be a stacking direction depends on the choice ofthe mat­
ing pose (as one of the stabl~ assembly poses common to SflA and A - SfIA). 
However, the selection of a mating pose between Sf IA and A - Sf IA based 
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Table 14.2: The Relative Assembly Cost due to Stability associated with sflA 
and A -StIA. 

Evaluation Relative Weight 
l. Unstable Sf IA or A - Sf IA 00 (Design fault) 

2. No common stable assembly pose 00 (Design fault) 
between sf IA and A - sf IA 

3. The number of holding devices re- 15 / device 
quired for stabilizing AI(SfIA) 
and AI(A-SfIA), as represented 
by the number of AI(SfIA) and 
AI(A-SfIA) 

4. The number of holding devices to 15 / device 
stabilize .Pkl(SfIA) and .Pkl(A -
sf IA) with more than a single 
translational freedom of motion . 
This number of holding devices 
can be computed by counting the 
A-nodes ofthe assembly A, which 
are included in those .J\1(stIA) 
and AI(A - StIA) that require 
stabilization 

5. The reorientation of StlA and 10 / reorientation 
A-S~IA 

Note: the above relative assembly costs are made compatible with the 
relative weights used in [6] . 
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solely on implementing a stacking operation may incur the need to reorient the 
assembly of SflA and A - sflA, so that the assembly of SjdlA and A - StlA 
can be brought into the, previously selected, best assembly pose for A. Fur­
thermore, the assembly pose of sflA or A - sflA should be chosen from the 
set of stable assembly poses of StlA or A - sf lA, which may differ from the 
selected mating pose between SflA and A - sflA. This also incurs the need 
to reorient SflA or A - SfIA, so that sflA or A - StlA is brought into its 
pose. This implies that the determination of an assembly pose and an assemb1y 
direction should consider the trade-off between maximizing the directionality 
in assembly and minimizing the reorientation of assembly pose. In principle, it 
is desirable to avoid a costly reorientation, unless the reorientation is required 
to allow many local stacking operations in the subsequent backward assembly 
planning, thus justifing the cost of reorientation. 

Now, let us first introduce the following notational conventions to be used in 
the algorithm for selecting the best assembly poses for StlA and A -StIA, and 
for evaluating the relative assembly cost of StlA and A - StlA in terms of the 
directionality in assembly: 

1) tI, t2 ~ an assembly pose of StlA and A - StlA represented with reference 
to the previously determined assembly pose of A, t*. 

2) {tn, {tn ~ a set of stable assembly poses for SjdlA and A - StIA. 

3) {tb} ~ a set of stable assembly poses common to StlA and A - StIA, i.e., 
{tb} = {tn n {tn. 

Then, we can associate each pair (tt, ti), where tt E {tn and ti E {tn, with 
the relative assembly cost, L, involved in a local mating operation. 

The relative assembly cost involved in a local mating operation, L, can be 
determined based on the need of reorientations and the directionality of mating 
operations (whether it is a stacking operation or a non-stacking operation), as 
well as the difficulty of handling the related subassemblies (which is analyzed 
in detail in the next section in terms of manipulability). 

The reorientation of the assembly poses of Sf IA and A -Sf IA during assembly 
becomes necessary due to: 

1) The need to transform tt and/or ti into a mating pose, th, tb E {tb}, in 
the case where tl :f:. tb or ti :f:. tb· 

2) The need to transform the selected mating pose, tb, into the assembly pose 
of A, t*, in the case where th :f:. t*. 

Table 14.3 shows the reorientations required for the mating between sflA and 
(A - SfIA), under various conditions on tf and ti. The directionality of the 
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Table 14.3: The Reorientations required for the Local Mating Operation be­
tween Sf IA and A - sf IA 

Conditions The Required Reorientations 
t* ¢ {th} tf = ti tf E {tb} l(th --+ t*) 

tf ¢ {tb} 3(tf --+ tb ti --+ tb tb --+ t*) 
t S =f:. t S 1 2 tf E {tb} or 2(tf --+ tb or ti --+ tb, tb --+ t*) 

ti E {tb} 
tf ¢ {tb} and 3(tf --+ tb ti --+ tb, tb --+ t*) 

ti ¢ {tf2} 
t* E {tb} tf = ti tf = t* 0 

tf =F t*,tf E {tb} l(tb --+ t*) 
tf =F t* , tf ¢ {tb} 2(t S --+ t* t S --+ t* ) 1 , 2 

t S =f:. t S 1 2 tf = t* or ti = t* l(t; --+ t* or tf --+ t* ) 
tf =F t* and ti =F t* 2W --+ t* t S --+ t* ) 1 , 2 

mating operation can be tested by transforming the mating directions (between 
sf IA and A - sf IA) in terms of t* into the mating directions in terms of tb 
where the mating directions in terms of t* are identified during the verification 
of the path existence (P E) . 

The relative assembly cost, L, involved in a local mating operation can now be 
calculated for individual (tf, ti), by 

where REO(tf), REO(ti), and REO(th) are binary functions of either 1 (when 
the reorientation of the corresponding assembly pose is required) or 0; ao and 
/30, represent respectively the normal relative assembly cost due to a reorienta-

tion (ao = 10) and a mating motion (/30 g /301 = 1 for a stacking operation and 

/30 g /302 = 5 for a nonstacking operation); 11,12,13 and 14 represent the effect 
of part manipulability on the relative assembly cost (refer to the manipulability 
section for more detail). 

The best assembly poses of sflA, t*(SfIA), and A - sflA, t*(A - SfIA) can 
then determined based on achieving the minimum relative assembly cost, L, 
due to the local mating operation. 

Let us consider the relative assembly cost, R(SfIA), involved in the assembly 
of Sf IA as the global estimation of the relative assembly cost associated with 
SfIA. Since the exact evaluation of R(SfIA) can only be obtained after a 
complete assembly plan is formulated, we indirectly estimate R(SfIA) based 
on the following two major factors contributing to R(SfIA): 
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1) The estimated relative assembly cost, Ro(SfIA), due to the number of re­
orientations involved in the assembly of sf IA. 

2) The estimated relative assembly cost, R.(SfIA), due to the number of stack­
ing and non-stacking operations involved in the assembly of SfIA. 

To obtain Ro(SfIA) and R8 (SfIA), let us define the following : 

Definition: Directionality of sflA, DdSfIA) 

sflA is said to have m degrees of directionality in ~ (~ = x, y, or z), 
denoted as D~(SfIA) = m, in the case where the number of +~ or -~ 
included in the list of {LF M(ld, Vii, Ii E GL(SfIA)} is m. 

Note that in defining the directionality of Sf lA, x, y, and z are referenced in 
terms of the assembly pose of A, and LF M(ld, Ii '" (PI, P2), can be com­
puted either by LFM(/;iPI,P2) or LFM(liiP2,PI), since LFM(hiPI,P2) = 
-LF M(lii P2, PI). 

Definition: Directional Uniformity of sflA, u{(SfIA) 

sf IA is said to have the directional uniformity of T in ~, denoted as 
U~(SfIA) = T, in the case where D~(SfIA)/Card {Ii, Ii E GL(SfIA)} = T. 

Sf IA has the maximum directional uniformity in ~, if Sf IA has the maximum 
directionality in ~. 

Definition: Directionality of a Base Node, nB, of sf lA, DnB(SfIA) 

The directionality of a base node, nB, is defined by the independent 
directions involovedin {LFM(l;i Pi, Base), Vh: Ii is associated with nB 
representing Base}, where an nB is a node of GL(SfIA) which has the 
degree far greater than the average degree of a node of G L (Sf IA), i.e., the 
degree ofnB 2: k· Average Degree of GL(SfIA) with k cosntant, k» 1. 

We can select U~(SfIA) from {UdSfIA), ~ = x, y, or z} in a decreasing order 
until the accumulation of the selected U~ (Sf IA) 's becomes greater than or equal 
to unity. Let us define {e*(StIA)} as a set containing e's which are associated 
with the selected udstIA)'s. 

Then, Ro(SfIA) can be estimated by the following equation: 

Ro(sfIA) = ao[( E a{ . b{ - 1) + C~], 
~=x ,y,z 
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where 

2, if±e E DnB(StIA), nB E {nB}: 
A set of base nodes in GL(stIA) 

1, otherwise 
1, if e E {e*(StIA)} 
0, otherwise 
1, if the selected best pose of SflA ¢ {e*(SfIA)} 
0, otherwise. 

R,(stIA) can be estimated based on the following equation: 

where N represents the number of parts included in StIA, and 

Now, the relative assembly cost, Rs(stIA), representing a global estimation of 
the relative assembly cost associated with sf IA becomes 

Finally, the global estimation of the relative assembly cost, R, due to direc­
tionality, can simply be obtained by R = R(stIA) + R(A - StIA). 

14.5.3 Manipulability 

A subassembly subject to either a reorientation and/or a translation for mat­
ing should be easily manipulable by tools or hands. The term manipulability 
of SflA is used to quantify the efficiency in orienting sflA and in handling 
of StIA. The manipulability of sflA is closely linked to the size, shape and 
weight of StIA. More specifically[6], the orientation efficiency can be measured 
based on the symmetry and marked polarity in the geometry and weight of 
StIA, whereas the handling efficiency can be measured based on the regularity 
in the size, weight and shape of StIA, and the flexibility and fragility of StIA, 
which determine the need for special tooling, as shown in Table 14.4. 

The manipulabilities of sf IA and A - sf IA affect the relative assembly cost 
of the local mating operation between SflA and A - stlA, since they directly 
influence the relative assembly cost for the required reorientations as well as 
the mating motion. 

To take this into consideration, in the previous section, the relative assembly 
cost for a reorientation, a, as well as the relative cost for a mating motion, 
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Table 14.4: The Criteria for Measuring Manipulability of a Part or a Subassem­
bly[6] 

Orientation Efficiency Relative Assembly Cost 

Part tangles, nests or shingles 5 
Asymmetric part without marked 5 
polarities of weight or geometry 
Asymmetric part with marked 3 
polarities of weight or geometry 
Symmetric part 1 
Part delivered to the assembly station 1 
with a known orientation 

Handling Efficiency Relative Assembly Cost 

Large off center weight potentially 5 
causing loss of orientation 
Very large parts 5 
Very small parts 5 
Fragile 3 
Flexible 3 
Irregular shaped part requiring 3 
special tooling 
Easily handled part with standard tooling 1 
(tooling can handle more than 1 part) 
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13 were determined by multiplying the manipulability coefficient, /, to their 
nominal values, ao and 130. 

The manipulability coefficient, /, can be determined for sflA as follows: 

(S~ IA) = l: the scores of orientation and of handling efficiency for Sf IA 
/, l: the nominal scores of orientation and of handling efficiency 

14.5.4 Process Planning 

The special process forest, Gs(A), represents the precedence relationship among 
special processes associated with A, where a child process should precede its 
parent process. The association of Gs(A) with A implies that the processes 
included in Gs(A) should be accomplished during the assembly of A. The 
backward assembly planning of A, which decomposes A into Sf IA and A - Sf lA, 
also requires the decomposition ofthe processes included in Gs(A). 

1) The processes that should be accomplished with A prior to the decomposi­
tion of A into SidlA and A - SfIA. 

2) The processes that should be left for sflA. 

3) The processes that should be left for A - SfIA. 

Note that the processes to be accomplished with A should be selected in the 
top-down order starting from the root nodes of Gs(A). 

In general, the decomposition of special processes associated with A into the 
above 3 categories is not unique. For instance, let us assume that A is associated 
with Gs(A) consisting of 3 trees, {Tl,T2,T3 }, as shown in Figure 14.9 (a). By 
selecting {PAl, {PAl = {pJ, ?fl, P6}, as a set of special processes to be 
accomplished with A, the remaining forest representing the special processes 
that should be accomplished with sflA and A - SflA consists of 5 trees, {TL 
T2, T3, T4, Tn, as shown in Figure 14.9 (b) . 

Now, the selection of StlA dictates a particular decomposition of {T{, T2, T3, 
T.L Tn into two disjoint sets of trees to be associated with sflA and A-stIA. 
For instance, sflA '" {Tf,T2} and (A - SfIA) '" {T3' T4, T~}, as shown in 
Figure 14.9 (b). 

It should be noted that the selection of the special processes, {PAl, from 
Gs(A) for A, and the decomposition of Gs(A) - {PAl into the two disjoint 
sets, Gs(StIA) and Gs(A - StIA), to be associated with StlA and A - StlA 
impose additional precedence constraints among special processes. That is, a 
different selection of special processes, {PAl, for A, and/or a different selec­
tion of StlA may result in a different partial order among special processes 
due to the different Gs(SfIA) and Gs(A - StIA), resulting in a difference in 
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Figure 14.9: (a) The Special Process Forest, Gs(A), associated with an Assem­
bly Aj (b) The Special Process Forests that should be assembled with SllA 
and with A - SfIA, in the case where a set of Special Processes, {PA}, {PAl 
= {PrJ, Pl1 , pJ}, are selected for A. 
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processing cost. This prompts the need to incorporate process planning, which 
concerns the minimization of the cost involved in special processes, into the 
selection of StIA. Planning of special processes requires the estimation of the 
cost in accomplishing a special process at a different stage of assembly, as well 
as the estimation of the overall cost of the special processes associated with 
sflA and the overall cost of the special processes associated with A - SfIA. 
The details of process planning including the estimation of processing costs are 
highly domain dependent and will not be elaborated here. 

14.5.5 Parallelism 

The total parallelism in an assembly sequence differs depending on the selected 
subassemblies. Parallelism can shorten the assembly time, although it is not 
necessarily linear due to the increased material transfer time. Parallelism may 
require additional resources such as workstations, fixtures, manpower, and ma­
terial transfer facilities for the implementation. Therefore, an assembly plan 
with the maximum parallelism may not be always desirable. However, paral­
lelism can be a useful feature for flexible assembly systems. 

Parallelism can be measured approximately by the depth of an assembly partial 
order graph. However, the exact depth can be obtained only by generating the 
whole assembly order. Therefore , we consider the estimation of a particular 
decomposition (SfIA and A - SfIA) on the parallelism of assembly, based on 
the number of parts in Sf IA and A - Sf lA, as follows: 

where wp(SfIA) represents the effect of selecting SflA on the parallelism in 
assembly, and Nl and N2 represent the number of parts in SflA and A - SfIA, 
respectively. 

14.6 Selection of Best Subassemblies 
based on AO* Algorithm 

As indicated in the beginning of this section, the selection of StlA based solely 
on the relative assembly costs involved in the local mating operation between 
Sf IA and A - Sf IA may not produce a globally optimal assembly plan . There­
fore, we adopt the AO* algorithm with a properly defined evaluation function 
to search for a globally optimal or suboptimal plan. 

The search space to which the AO* algorithm is applied can be represented 
by an AND/OR tree. The decomposition of an assembly A in backward as­
sembly planning implies the expansion of an AND node (representing an as­
sembly A) into its OR children representing the alternative decompositions of 
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root (product) 

1 

Figure 14.10: The AND/OR Tree representing the Search Space for AO* Algo­
rithm, where 2", A implies that 4 '" {SfIA,A - SfIA}, 5 '" {S~IA, A - S~IA}, 
8", sflA, 9", (A - SfIA), 10 '" S~IA, and 11 '" (A - S~IA). 

A, {(Sf lA, A - SfIA),i = 1," ' ,/}, and its AND grandchildren {SfIA and 
A - SfIA, for i = 1"", /} attached to indivisual OR children, as shown in 
Figure 14.10. The AO* algorithm searches for an optimal solution tree by ex­
panding those AND nodes of the current potential solution tree that are open 
to expansion, and by evaluating the next alternatives based on an evaluation 
function. 

A potential solution tree is an AND tree2 having the minimum value for the 
evaluation function at the current stage of search, whereas a solution tree is an 
AND tree with leaves consisting of only single parts. 

To formulate the evaluation function, ej, for the AO* algorithm, let us intro­
duce the following definitions: 

Definition: The Local Cost, cl(n?), associated with an OR node, n? 

CI (n?), n? '" (Sf lA, A - Sf IA), represents the relative assembly cost in­
curred by the local mating operation between StlA and A - StIA. cz(np) 
can be computed by the weighted sum of the following three components: 

1) The relative assembly cost due to the stabilization of SflA and A -
Sf IA by using holding devices and/or reorientations, as described in 

2 An AND tree is an AND JOR tree every AND node of which has no more than one OR 
child. 
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Table 14.3. 

2) The relative assembly cost due to the reorientations and translations 
required for mating between sflA and A - sflA, as described in 
Table 14.4 and Table 14.5. Note that this cost is linked to the 
directionalities and best assembly poses for Sf IA and A - Sf lA, as 
well as the manipulabilities of SflA and A - StIA. 

3) The relative cost of the special processes assigned to A, the parent 
node of n? 

Definition: The Accumulated Cost, ca(Tia), associated with an AND tree, Tia 

Ca (Tia ) represents the weighted sum of the following two components: 

1) The sum of cI(np) for all np, np E Tia. 

2) The depth of Tia defined by the maximum depth of np for all n?, 
n? E Tia, where the depth of an OR node is measured in terms of 
the depth among OR nodes without considering AND nodes. 

Definition: The Local Heuristic Estimate, he(nP), associated with an OR 
node, np 

he (np), np '" (Sf lA, A - Sf IA), represents an estimate of the optimal 
relative assembly cost to assemble Sf lA, and can be computed by the 
weighted sum of the following components: 

1) The relative assembly cost, R, associated with the directional unifor­
mity of sflA and A - sflA, as defined in the previous section. 

2) The relative assembly cost, S, associated with the internal stability 
of sflA and A - sflA : 

S = 5[x(SfIA) + X(A - SfIA)] 

where x(SfIA) and X(A - SfIA) represent the internal stability of 
SflA and A - sflA, respectively, and are defined by 

x(SfIA) = 

X(A - SfIA) 

the number of floating liaisons in G L (Sf IA) 
the average degree of a node in GL(SfIA) 

the number of floating liaisons in GL(A - SfIA) 
the average degree of a node in GL(A - SfIA) 

and 5 represents the relative assembly cost due to a holding device. 

3) The effect of parallelism, wp(SfIA), as defined in the previous section. 

Definition: The Accumulated Heuristic Estimate, ha(Tia), associated with an 
AND tree, Tia 

ha (Tia) represents the sum of he (np) for all n?, n? E Tia. 
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Table 14.5: A DFA Analysis Table for an OR Node, n?, n? '" {SfIA,A-SidIA} 

DFA Analysis Category 

Stability Total relative 
cost due to 
the need to 
stabilize sf IA 
and/or A -
sflA 

Manipulability Total relative 
and Direc- cost involved 
tionality in mating be-

Process 

tween sflA 
and A - sflA 
due to manip­
ulability and 
directionality 

Total relative 
cost 
for the spe­
cial processes 
assigned to A 
Total cost at 
n~ 

DFA Criteria Details 

The number of hold­
ing devices required 
for the stabilization 
of sflA and/or A -
SflA 

The number of re­
orientations required 
for the stabilization 
of sflA and/or A -
S~IA 
The manipulability 
factors 
(Refer to Table 14.4 
for more details L 
The best assembly 
poses for sf IA and/or 
A-S~IA 
The number of reori­
entations required for 
mating between Sf IA 
and/or A - sflA 

The translatinal mo­
tion during mating 
between SflA and/or 
A-sfiA 

The list of special 
processes assigned to 
A 

The relative cost 
due to the 
required holding 
devices 

The relative cost 
due to the 
required reorien­
taion 

r(stIA) and 
rCA - sflA) 

The ralative cost 
due to the re­
quired reorienta­
tions 

The ralative cost 
due to the re­
quired translati­
nal motion for 
mating 
The relative cost 
of individual spe­
cial processes 
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Then, the evaluation function, eJ(T;a), associated with an AND tree T;a simply 
becomes 

14.7 Assembly Planning with DFA Analysis 

As shown in the previous section, the evaluation of the local cost, c/(np), at an 
OR node, np, is based on the detailed analysis of cr( np) in terms of the stability, 
the directionality, the assembly pose and the manipulability associated with the 
assembly of the children of np, as well as the cost of special processes assigned 
to the parent of np. 
The result of this analysis at each OR node of the search tree can directly be 
used for the identification of the assemblability of a product and for the evalu­
ation of DFA criteria, which can be fed back to the designer for proper design 
evaluation and modification. The assembly planner developed here has both 
the capability of selecting an optimal assembly partial order as well as the ca­
pability of conducting DFA analysis, serving as a powerful tool for automating 
the DFA evaluation and modification cycle in concurrent engineering. 

DFA analysis performed during the process of computing the local cost, q(np), 
associated with an OR node, np, np "" {StIA,A - StIA} , is summurized into 
the DFA analysis table for np, as illustrated in Table 14.5. 

Now, the analysis of DFA for a given product can be accomplished based on 
the DFA tables associated with all of the OR nodes of the solution tree. 

Example: The ROS Optical Assembly 

The AO* algorithm with the cost and heuristic functions defined in the previous 
section is applied to the ROS optical assembly for finding an optimal solution 
tree and performing DFA analysis . Figure 14.11 illustrates first several nodes 
ofthe AND/OR search tree formed by the AO* algorithm, where DFA analysis 
tables are attached to individual OR nodes. 

At Node 1, the system identifies two alternative direct subassemlies, MG and 
S2, of the product through the generation of the abstract liason graph (refer to 
Figure 14.7) and the identification of the valid cut-sets based on the generated 
abstract liason graph. These two alternatives are represented as the OR nodes 
2 and 3 in Figure 14.11, while the two OR nodes are expanded to their AND 
children,(4,5) and (6,7), respectively. 

The system then calculates the evaluation function at Node 2, eJ (Node 2), 
and the evaluation function at Node 3, eJ (Node 3), based on the local costs, 
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c/(Node 2) and c/(Node3), and the local heuristic estimates, he(Node 2) and 
he(Node 3}, as follows: 

At Node 2, the system identifies that 

1) MG and Sl+S2+IOU are self-stable. 

2) The best assembly pose of Sl+S2+IOU is determined to be the 
same as the assembly pose of the product in order to avoid 
a costly reorientation. The assembly pose of the product is 
initially given in such a way that MG is located on top of the 
product. 

3) MG can be stacked onto Sl+S2+IOU. 

4) MG is symmetric and easy to handle. 

This implies that the decomposition represented by Node 2 requires one stack­
ing operation ((30 = 1) without the need of holding devices and reorientations, 
and that the manipulability coefficient of MG is low(O.4), incurring low assem­
bly cost. As a result, we have that c/(Node 2) = 1 x 0.4 = 0.4. ca(Node 2) can 
then be obtained directly from c/(Node 2) by adding the depth(l) of Node 2: 
ca(Node 2) = 1.4. For the calculation of the local heuristic estimate at Node 
2, the system identifies the following: 

1) The estimates of the relative assembly cost due to the directional 
uniformity, R, of MG and the internal stability, S, of MG are 
zero, since MG is a single part. 

2) Sl+S2+IOU consists of 15 parts with the maximum uniform 
directionality of 1 in z. However, it has a base node which has 
directionality of +z and -z. Therefore, Ro(Sl+S2+IOU) = 
10 . 1 = 10, and Rs (Sl+S2+IOU) = 1 . 15 = 15, given the 
selected best assembly pose of Sl+S2+IOU. As a result, the 
estimate of the relative assembly cost due to the directional 
uniformity, R, of Sl+S2+IOU is 25. 

3) Sl+S2+IOU has 4 floating liaisons and has the average degree of 
node of 33/14. Therefore, the estimate of the relative assembly 
cost due to the internal stability, S, of Sl+S2+IOU is 25.5 
(S = 15 x 4/(33/14) = 25.5), where 15 is used for the relative 
assembly cost for a holding device. 

4) The effect of Node 2 on assembly parallelism,wp , can be esti­
mated as 8.67 (wp = 10 x 13/15 = 8.67 with 10 assigned as a 
weight). 

As a result, we have that he(Node 2) = 59.17. Furthermore, ha(Node 2) = 
he(Node 2), since no other OR node exists at the current potential solution 



www.manaraa.com

378 

o 

Ca = 1.4, he = 59.17 
root (Product) 

S 
010 
010 

o. 
M&D 010 

1 I o. 
Total 0.4 

et= fIJ.57 
{MG, Sl+S2+IOU} 

{MG} 

Ca =1.8 ,he = 55.4 

S 
o 10 
o 10 
y- O.~ 

M&D 010 
1 I o.~ 

Total 0.8 

10 

1 

6 

M&D 

Total 

Ca =11.8, he = 53.23 

S 
o 10 
o 10 

3 y- O.~ 
M&D 1 I 10 

1 I o.~ 
Total 10.8 

7 et=65.03 

{S2} = 0 {MG+Sl +IOU} 
{BC,BO} 

Figure 14.11: The AO* Search of an Optimal Plan for the ROS Optical Assem­
bly, where the generated DFA analysis tables are attached to individual OR 
nodes. S, M, and D inside the tables represent respectively stability, manipu­
lability and directionality. 

tree candidate. 

Therefore, we have that 

e J (Node 2) = Ca (Node 2) + 1/ha (Node 2) 

60.57 (with 1/ = 1.0). 

At Node 3, the system follows the same steps that are used for calculating 
ej(Node 2), and results in the following: 

c/(Node 3) = ca(Node 3) = 11.8, 

he(Node 3) = ha(Node 3) = 53.23, 

with R = 25, S = 20.9, and wp = 7.33. 
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Figure 14.12: The merging and grouping operations applied to the liaison graph 
generated at Node 5 for the construction of the abstract liason graph. 

Therefore, we have that 

ef(Node 3) = ca(Node 3) + 7Jha(Node 3) 

65.03 (with 7J = 1.0). 

Finally, comparing ef(Node 2) and ef(Node 3), the system selects Node 2 for 
further expansion. The result of such an expansion is shown in Figure 14.11. 
It is noted that, at Node 5, GL(S1+S2+IOU) should be generated first, so 
that the process of constructing GL(S1+S2+IOU) and identifying the valid 
cut-sets from GL(S1+S2+IOU) can start. Figure 14.12 illustarates the merg­
ing and grouping operations applied to the GL(S1+S2+IOU) to construct 
GL(S1+S2+IOU) . 

14.8 Conclusion 

This chapter contributes to bringing automatic assembly planning closer to 
reality by 

1) Developing an efficient backward assembly planner which handles the case 
where an assembly sequence is not same as the reverse of a disassembly 
sequence. 

2) Achieving the efficiency in planning with the reduction of search space not 
only by merging parts based on interconnection feasibility constraints 
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but also by grouping parts based on the special process precedence con­
straints. 

3) Extending assembly planning into assembly process planning by incorporat­
ing special assembly processes such as testing, cleaning, etc, in planning. 

4) Establishing and evaluating the subassembly selection criteria with a direct 
connection to assembly cost. 

5) Developing the AO* algorithm for the search of a globally optimal assembly 
plan. 

6) Developing an automatic DFA analysis tool for concurrent engineering by 
combining automatic assembly planning with DFA analysis . 

However , there still remain many problems to overcome in turning automatic 
assembly planning into practice. Further research on the more powerful geo­
metric and physical reasoners for assembly planning should follow, in order to 
have a direct connection to CAD database, to handle more complicated prod­
ucts, to achieve greater efficiency in assembly planning, and to solidify methods 
that evaluate an assembly plan in terms of assembly cost and DFA. 
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Chapter 15 

Computer aids for finding, 
representing, choosing 
amongst, and evaluating 
the assembly sequences of 
mechanical products 

Thomas E. Abell, Guillaume P. Amblard, 

Daniel F. Baldwin, Thomas L. De Fazio, 
Man-Cheung Max Lui, Daniel E. Whitney 

Sequence of assembly of a set of parts plays a key role in determining important 
characteristics of the tasks of assembly and of the finished assembly. Matters 
such as difficulty of assembly steps, needs for fixturing, potential for damage 
during assembly, ability to do in-process testing, occurrence of need for rework, 
and cost of assembly, are all affected by assembly sequence choice. The rational 
exploration and choice of assembly sequence is then an important task for a 
production engineer. 
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Exploring assembly sequence choice is difficult for two reasons: the number 
of assembly sequences can be large even at a small parts count, and can rise 
rapidly with increasing parts-count; and seemingly minor design changes can 
drastically modify the available choices of assembly sequences. Production en­
gineers seldom consider all assembly sequences before choosing a sequence to 
be used. That this is so is due only in part to the potentially large number 
of sequences involved in most assemblies. Means for generating the complete 
set of assembly sequences have been few, not well-known, and not always con­
venient. Past techniques for exploring the choices of assembly sequence have 
been informal or incomplete. 

Our interest in choosing good assembly sequences dates from a 1977 demon­
stration of robot assembly of automobile alternators[23]. Our past work used 
parts-trees and connection diagrams to represent assemblies[1l,27]. 

Our current algorithms are rooted in the work of Bourjault and his colleagues[6, 
7,8,18] and Homem de Mello and Sanderson[19,21,20,26j. Bourjault used a 
parts-connection diagram or liaison diagram to generate yes-no questions to be 
addressed by the designer. "Yes" or "no" represents the ability or inability to 
assemble a part to a subassembly, which depends on whether a clear approach 
path without geometric interference exists for that part and subassembly. An­
swers to the questions are processed to generate a list of the possible sequences. 
Henrioud and Bourjault[18] use the same information but process the connec­
tion diagram differently, posing far fewer questions for the same result. De Fazio 
and Whitney[12] altered the form of the Bourjault[6] yes-no questions, asking 
the user fewer questions; theirs are not yes-no questions and require geometric 
reasoning and anticipation by the user. They showed how to represent assembly 
sequences as paths through a network of assembly states (nodes) and assembly 
moves (arcs) such as that shown in Figure 15.4. This compact representation 
is called the assembly sequence diagram and forms a basis for the following 
evaluation and editing methods. An implementation similar to Henrioud and 
Bourjault's is described in De Fazio et aL[13]. Homem de Mello[19] uses cut­
sets of the connection diagram of the assembly and subassemblies as bases for 
disassembly questions. An approach combining aspects of the techniques of 
Homem de Mello and Sanderson, and of Henrioud and Bourjault is used here 
to generate precedence relations and is referred to as the "cut-set method." In 
this method, the ability or inability to disassemble each cut-set of the assembly 
and each subassembly is inferred where possible, or answered by the user where 
not. Frommherz and Hornberger[14] describe a similar approach. 

To make benefits of assembly sequence consideration widely available, we have 
developed a set of computer aids to generate possible assembly sequences and 
provide an environment that allows the designer to select a good sequence. 
Figure 15.1 illustrates the process schematically. It shows generation of possible 
assembly sequences followed by user sequence choice according to such criteria 
as: ease or reliability of assembly, fixturing, or gripping[2,4]; least assembly 
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unit-cost or least fixed, variable, or total assembly system cost[9,15,17]; best 
product-testing strategy for on-line testing[25]; assembly-line layout, or other 
production-related criteria. 

15.1 Background 

Earlier work used concepts from Bourjault[6] to also generate a complete set of 
assembly sequences, though certain simplifications allowed practical application 
of the technique to assemblies with higher parts counts. Bourjault begins by 
using information contained in a parts list and an assembly drawing to charac­
terize an assembly by a network where nodes represent parts and lines between 
nodes represent user-defined relations between parts called "liaisons." A def­
inition of "liaison" follows the principal literal definition[l], "a close bond or 
connection," and generally includes physical contact between parts. A liaison 
exists between two parts if the two parts may be assembled together alone. 

Once the assembly is characterized by a network of nodes (parts) and lines 
(liaisons), names are associated with these two sets of elements: parts names 
with the nodes; and liaison numbers with the lines. Subsequently any assembly 
step is characterized by the establishment of one or more of the liaisons of the 
assembly. Completion of assembly from start can then be characterized by a 
punctuated string of numbers representing, in some sequence, all of the liaisons 
of the assembly. Bourjault's and our simplified technique correspond up to this 
point. 

Bourjault derives rules that permit algorithmic generation of (only) valid num­
ber strings representing assembly sequences from the answers to a series of 
questions about individual mates. Each question is answered with "yes" or 
"no." For assemblies consisting of rigid parts alone, the questions are of the 
single form (Li is read "the liaison numbered i"): 

Is it true that Li cannot be done after L j and Lk have been done? 

The method of Bourjault involves asking and answering a large number of 
questions arranged in sets, each of which involves imagining some set of liaisons 
first completed, then not yet completed. 

15.1.1 Simple technique for generating assembly sequences 

Points differentiating our simple technique from that of Bourjault are: a smaller 
set of questions regarding conditions of liaison establishment, a set whose size 
increases in proportion to liaison count rather than faster than the square 
of liaison count; and algorithmic generation of liaison sequences from a more 
compact and evocative form of the liaison-sequence rules. Both techniques 
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Figure 15.1: The roles of assembly sequence design and evaluation in early 
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share opening moves, based on information in an assembly drawing and parts 
list or in a prototype or sample assembly. Figure 15.2 is an idealized assembly 
drawing with parts list representing an assembly from industry (AFI), the final 
assembly of an automotive automatic transmission. 

One begins by repr .3senting the assembly as a network of nodes and lines. 
Each part is represented by a node bearing the name of the part. Liaisons, 
as relationships between parts, are represented as numbered lines connecting 
related parts. Figure 15.3 is an example network representation of assembly. 

Once the assembly is characterized as a network of parts and liaisons, the user 
must answer a question for each liaison. If each component part of the assembly 
is rigid, then the questions to be answered, for each liaison i, i = 1 to l, are: 

Q1: What liaisons must be done prior to doing liaison i? 

Answers are to be expressed as precedence relationships between liaisons or 
logical combinations of liaisons. Example answers may be of the form: 

~ Li 

Li ~ 

(L j or (Lk and Lm)) 

(Ls or (Lt and Lu)) 

(Ls or (Lt andLu)) 

The symbol "~" is read "must precede." 

The user must seek and anticipate all the alternatives which permit each liaison 
to be done. Doing so results in a close knowledge of the design details of the 
assembly. Overlooking alternatives falsely constrains assembly sequence count. 
Overlooking precedence rules yields spurious assembly moves. A false move is 
exposed by trying to practice it, if not earlier by consideration of the assembly 
drawing. 

One may be concerned that question count reduction is accompanied by a 
staggering increase in the difficulty of answering each question. This is a sub­
jective matter, but empirically an increase in difficulty does not seem to occur 
in many cases, and where it does occur, it is a reasonable increase in difficulty. 
A difference is that a question of the simpler technique must evoke an answer 
that contains the same logical relations implied a (large) set of yes/no answers 
to questions of the technique of Bourjault. Perhaps surprisingly, most of the 
questions of the simpler technique have answers that are at once simple and 
accessible, and easily expressed. A complicated design can result in an answer 
that is complicated or difficult to express. It is often useful and possible to 
answer difficult questions in prose. The prose may be translated into symbolic 
logical form, and logical technique may be used to reduce answers to simpler 
form. Examples of prose response to assembly questions appear in subsection 
15.1.3. 
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Figure 15.2: Assembled parts of example assembly from industry (AFI) 

Figure 15.3: Liaison diagram of example assembly from industry (AFI) 
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The symbolically stated answers to the 1 questions are in form of precedence 
relations between liaisons or logical combinations of liaisons. Liaison sequences 
may be generated directly from the answers. The initial state is disassembly, 
no liaison is established. "State" refers to the state of establishment of liaisons. 
An explicit list of which liaisons are and which are not established represents 
the state of assembly. Assembly proceeds from state to state by adding a 
part or a subassembly to another part or subassembiy until all liaisons are 
established. The imaginary path associated with the attachment of a part or 
subassembly is called an assembly state transition, a state transition, or an 
assembly move. Each state may be represented by a box with a list of numbers 
representing established liaisons, and assembly moves may be represented as 
lines connecting states. The starting state's list has no entries. 

To generate liaison sequences, begin by scanning the liaison list and the answers 
for liaisons which are not precedented. Any of these may serve as the first liaison 
to be established. Line up representations of each first possible state across a 
rank and connect each with the starting state by a line. For each possible first 
liaison, explore for all possible subsequent states by again scanning the liaison 
list, the precedence relations (answers) and any other constraints imposed on 
the assembly, thereby generating another rank. It is convenient to show no 
state more than once, so if it occurs that there are two or three ways of getting 
to a state in the second rank, its representation will have two or three assembly 
moves (lines) entering it. In this way one proceeds algorithmically to the end 
state where all liaisons are established. State and assembly-move diagrams are 
seen as Figures 15.4 and 15.5. 

Name the ranks ordinally, zeroth for the unassembled state, first for the 
prospective first liaisons, and so forth. Note that there are as many ranks 
as parts. Since l ;::: (n - 1), a single liaison per assembly move is the rule only 
for assemblies where l = (n-l). For assemblies where l > (n-l), some assem­
bly moves involve establishing two or more liaisons. One may consider that an 
assembly move involves placing a part or a subassembly, but the bookkeeping 
is not by part name but by liaison number. But it is already known that parts 
count and liaison count can differ by more than one. Another manifestation of 
the same matter is noted on the liaison diagram where closed figures (triangles, 
quadrilaterals, pentagons, etc.) may occur with parts at the vertices. If a last 
part is placed in a set that makes a closed figure, two liaisons (lines) are es­
tablished. If a part placement closes two figures, three liaisons are established 
in the assembly move, and so on. The AFI example, Figure 15.2, has a liaison 
diagram, Figure 15.3, with multiple closed figures. 

Even though liaison-sequence generation is algorithmic and can be arranged to 
be done by a computer, it is useful that a graphical form of a state and assembly-
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move diagram be available. This diagram may be arranged in (inverted) tree 
form such that a state is shown as many times as there are paths to reach that 
state and so that the final assembled state is shown as many times as there are 
liaison sequences to completion[6]. Alternately, the diagram may be arranged 
so that no state is shown more than once and some states show a plurality 
of assembly moves entering or leaving[12]. The latter representation is chosen 
for convenience. The following example involves 818 liaison-sequences. Their 
representation, Figure 15.4, would be huge if it were in tree-form rather than 
the more compact "diamond" form. 

15.1.3 Development of an example 

An example is developed representing an assembly from industry (AFI), final 
assembly of an automotive automatic transmission. Its geometry is represented 
by circular symmetry about the axial centerline. Excepting the axial center­
line, the centerline segments in Figure 15.2 represent bolts on bolt circles. Since 
these fasteners are transparent to the liaison sequence process when not rep­
resented by nodes, one is obliged to respond to questions Ql in a way that 
considers the placement and securing of fasteners as part of the liaison of the 
parts being joined. 

The liaison diagram of AFI, Figure 15.3, follows almost directly from the as­
sembly drawing, Figure 15.2. One feature calls for comment. Part K has axial 
freedom and may come into contact with part L. No liaison is shown between 
parts K and L since no subassembly of parts K and L alone is anticipated. The 
assembly is highly integrated; there is a large number of liaisons for the number 
of parts. This is manifest on the liaison diagram as a relatively large number 
of closed figures or network loops. Parts count and liaison count are: n = 11, 
l= 18, l > (n-l). 

Each assembly sequence will have some assembly moves with mUltiple liai­
son establishment. The liaison-sequence diagram has 11 ranks including fully­
disassembled and fully-assembled states. 

The liaison diagram established, the next step is to ask and answer a group of 
questions. Answers to Q1 for some liaisons are shown below: 

i = 1: Once L1 is done, part B cannot be installed. Part B must be installed 
prior to L1, either into part C (L6) or into part A. Were part B to 
be placed in part A there must be something to receive it, a jig (not 
characterized in the example) or part G (L8). But if part G is in place 
in part A, then L3 is done. So: (6 or (3 and 8)) -+ 1. 

i = 3: Nothing need be done prior to doing L3. 

i = 4: Nothing need be done prior to doing L4 . 
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]!tiLOth Rank 

E§i~ 3rd Rank 

~~~4thRank 

Ea=~ 5th Rank 

Figure 15.4: Graphical representation of all valid liaison sequences for the exam­
ple assembly from industry (A.F.!.) under the additional constraint precluding 
a plurality of unconnected subassemblies in an assembly state 
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i = 5: Once parts A and L are mated (L5), access for the internal parts G, H, 
J, and K is denied. These internal parts must be placed before the L5 
mate. The needs and alternatives are implied by the following: Part G 
must be in part A or on part H (3 or 14); Part H must be in part G or on 
part L (14 or 17); Part J must be in part H or in part L (15 or 18); Part 
K must be in part A or on part H with part H on part L (4 or (16 and 
17» Also (so that parts G and H cannot be assembled together (LI4) but 
externally to parts A and L) Part G must be in part A or part H must 
be on part L (3 or 17). So: «3 or 14) and (14 or 17) and (3 or 17) and 
(15 or 18) and (4 or (16 and 17))) -+ 5. 

i = 8: Parts Band G may only be usefully mated while they are inside part A. 
To insure this, either part, B or G, must initially be placed inside part 
A. For part B to be secure, part C must be fastened to part A (L1) . For 
part G to be placed, L3 is completed. So: (lor 3) -+ 8 

i = 16: There is no physical constraint requiring a precedent for liaison 16, but 
part K alone on part H (LI6) is unstable and difficult to support. One 
may choose to constrain the assembly so that part K is stably supported. 
Part K is axially free on part H (L16) and needs a backstop before the 
liaison is stable. Part K can be supported on part L after part H mates 
to part L (L17) or on part A. For parts K and H to be mated (L16) with 
part K in part A (L4), part G must be in part A or mated with part H. 
So: (17 or (3 and 14) or (4 and (3 or 14))) -+ 16 

i = 18: Nothing need be done prior to doing L18. 

The following is a summary of the precedence constraints that follow from the 
design, geometry, and dimensions of AFI when all questions are answered: 

(6 or (3 and 8» -+ 1 

1 -+ 2 

«3 or 14) and (14 or 17) and (3 or 17) 

and (15 or 18) and (4 or (16 and 17))) -+ 5 

2 -+ 7 

(lor 3) -+ 8 

(8 or «lor 3) and 14» -+ 9 

(9 or (8 and 15» or «(1 or 3) and 14 and 15» -+ 10 

1 -+ 11 

2 -+ 12 

7 -+ 13 

(17 or (3 and 14) or (4 and (3 or 14») -+ 16 

(15 or 18) -+ 17 
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It remains to generate the valid liaison sequences. First an additional con­
straint is imposed to reduce the count of liaison sequences. The additional 
constraint is a preclusion of a plurality of unconnected subassemblies. This is 
done for convenience here, though it can be done by design. The constraint is 
equivalent to imposing a sequential assembly line, without branches. All liai­
son sequences for AFI, subject to the precedence constraints based on design, 
dimensions, and geometry, and to the avoidance of any plurality of subassem­
blies, are represented in Figure 15.4. There are 818 sequences. Assembly states 
are represented by boxes. In this case each box has 18 cells in a three row by 
six column array corresponding to 18 liaisons: liaisons one through six, left to 
right across the top row; seven through 12 left to right across the middle row; 
and 13 through 18, left-to-right across the bottom row. A blank cell denotes a 
liaison not established and a marked cell denotes an established liaison. 

For the technique to be industrially useful, an engineer must be able to en­
compass output as that represented in Figure 15.4 and reduce it to a relatively 
small number of choices by deleting the awkward and retaining the favorable. 
Such sweeping reductions are possible in this case. 

Consider this characterization of assembly of AFI: Part A is "filled" with parts 
from two ends and the "fill" at each end is independently secured. Parts 
B,C,D,E, and F fill the front, and parts G,H,J,K, and L fill the back. Con­
sider that during assembly the axis will be vertically oriented using gravity to 
keep parts in place until they can be secured. If orientation is front-up, parts 
B,C,D,E, and F can be placed but G,H,J, and K would fall out before L is 
secured; a similar but opposite situation obtains for rear-up orientation. This 
suggests constraining assembly further, so that if a front fill is begun, nothing 
is put in the back until the front fill is finished, and so that if a rear-fill is 
begun, nothing is put in the front until the rear fill is finished. This additional 
constraint is easily expressed by writing another menu classifying liaisons as 
front-fill liaisons, rear-fill liaisons, and front-to-rear association liaisons and; 
once any single liaison is completed from either the front-fill or the rear-fill 
liaison category, that no liaison be completed from the opposite category until 
all liaisons from the first-used category are completed. The menu is presented 
in Table 15.1. 

Table 15.1: Menu for an Additional Constraint Precluding Simultaneous or 
Mixed (from front and rear) Filling of Part A for the Assembly from Industry 

Front-fill Liaisons 1, 2, 6, 7, 11, 12, 13 
Front-to-Rear Association Liaisons 8,9,10 
Rear-fill Liaisons 3, 4, 5, 14, 15, 16, 17, 18 
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All liaison sequences for AFI, subject to precedence constraints based on design, 
dimensions, and geometry, and the additional constraints, are displayed in 
Figure 15.5. There are now but 18 assembly path choices, down from 818. 

The new constraint eliminates states that include incomplete sets of liaisons 
from both front-fill and rear-fill categories. In Figure 15.5, note a channel, 
uncrossed by any state transition, internal to the state and state-transition 
diagram, that persists from the 1st rank through the 9th rank inclusively. To 
the left of the channel lie all the liaison sequences involving first the front-fill 
liaisons complete, followed then and only then by the rear-fill liaisons. To the 
right of the channel lie all the liaison sequences involving first the complete 
set of rear-fill liaisons, followed then and only then by the front-fill liaisons. 
That this channel may exist, uncrossed by state transitions, is a predictable 
manifestation of the last constraint. 

Further reductions in liaison-sequence path count remain. They result from 
recognition and removal of particularly awkward assembly moves, which occur 
in some but not all liaison sequences. Two such assembly moves have been 
recognized and are marked on Figure 15.5. They are, first, the installation 
of part K between parts A and H simultaneously, characterized as liaisons 4 
and 16 occurring simultaneously, marked in four places by circles; and, second, 
mating part B simultaneously with parts G, H, and J, characterized as the 
simultaneous establishment of liaisons 8, 9, and 10, marked by a triangle. The 
former involves three simultaneous splined-shaft to splined-bore or toothed­
bore mates and some journal to bore mates; the latter represents feeding a 
loose stack of clutch discs between the splined female cage and the splined 
male part. 

If the decision is now made to avoid all these (five) awkward assembly moves, 
there remain but two liaison-sequence paths. In particular, avoiding simulta­
neous establishment of liaisons 8, 9, and 10 disqualified all of Figure 15.5 which 
lay to the right of the previously identified channel. Following the injunctive de­
cision and the earlier constraints implies that assembly of AFI properly begins 
by filling the front and securing the last front element, followed by reorienting 
the assembly and filling parts into the rear. 

The preceding material explains basic technique of simple liaison sequence anal­
ysis by description and example. The topology, geometry, and dimensions of 
an assembly determine the necessary and inviolable constraints on assembly se­
quence which are expressed as precedence relations. Subsequently the user con­
siders other constraints, not dictated by geometry and dimensions but rather 
optionally imposed, to simplify the field of choice of assembly sequences. The 
question of optional constraints is a delicate one. On one hand, each optional 
constraint represents a potentially significant reduction in the complexity of 
the liaison-sequence diagram; on the other hand, carelessness in applying con­
straints may preclude important assembly-sequence options. The editing effort 
is explained in detail in the last section of this chapter. 
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EE~~ 1st Rank 

~~w 2nd Rank 

~ww 3rd Rank 
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Figure 15.5: Graphical representation of all valid liaison sequences for the 
example assembly from industry (A.F.!') under two additional constraints pre­
cluding a plurality of unconnected subassemblies and precluding the mixing of 
front-fill and rear-fill liaisons. Moves marked with a circle involve the difficult 
simultaneous establishment of liaisons 4 and 16; that marked with a triangle 
involves the difficult simultaneous establishment of liaisons 8, 9, and 10. Two 
liaison sequence paths remain if both of these assembly paradigms are avoided. 
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15.2 Interactive program for finding 
and editing assembly sequences 

There are disadvantages associated with the simplified assembly sequence anal­
ysis: the technique requires mental analysis of assembly alternatives; in com­
plicated assemblies these alternatives may be occasionally many and difficult 
to consider; and it is not algorithmic. Our user-interactive assembly-sequence 
analysis and editing programs avoid such difficulties by combining the disas­
sembly analysis based on assembly cut-sets pioneered by Homem de Mello and 
Sanderson[21], with simplifications based on liaison diagram loop closure recog­
nized by De Fazio and Whitney[12], and those based on assembly of subassem­
bly subsets and supersets recognized by Bourjault et al.[8]. Using disassembly 
analysis precludes trial generation of any "dead-end" assembly states, but re­
quires answering a disassembly question for each assembly cut-set. (A "dead­
end" assembly state is one from which full assembly cannot be reached). Using 
loop-closure, subassembly subset, and subassembly superset considerations of­
ten permits many answers to cut-set disassembly questions to be inferred from 
the answer to one question. 

The method assumes that the parts to be assembled and their mates are rigid. 
Many commercially significant products fit these assumptions. Each liaison 
must be accomplished once and once only. The assembly sequence generating 
algorithm includes the following "rules:" 

Loop-Closure Rule: A cycle in a liaison diagram implies a need to simul­
taneously complete two of the liaisons in the cycle. (This rule follows from 
assuming rigid parts and liaisons.) 

Superset Rule: If two parts or subassemblies cannot mate due to interference 
in the approach path, then adding a part to either set will not change this 
situation. 

Subset Rule: If two parts or subassemblies can mate, then removing any part, 
itself not associated with the mating liaison(s), from either subassembly, will 
not change this situation. 

These rules let the algorithm make heavy use of previously-answered questions 
to deduce answers to others. In typical "hard" problems we have addressed, the 
algorithm uses the rules to infer answers to over 95%[4] of the questions. The 
interactive aids described below make answering the rest so easy that we have 
postponed attempts to use solid modeling to automatically answer approach­
path interference questions. Nonetheless we have created a fast, easily-used 
tool that addresses usefully complicated assemblies. 

Answering the questions yields a set of precedence relations connecting liaisons 
with ordering operators. The Bourjault and cut-set methods both create prece-
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(1&2) 

>= 3 

>= (3&4) 

>= 3. 
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The operator ">=" means "must precede or concur with." The simplified[12] 
method generates statements containing "&," "or," or "not," and the operator 
"--"," meaning ''must precede." The numbers represent liaisons. For example, 
the statement: 

(1&2) >= (3&4) 

reads that both liaisons 1 and 2 must be completed, before or concurrently with, 
completion of (both) liaisons 3 and 4, but not necessarily before or concurrently 
with either liaison 3 or 4. 

Precedence relations of any of the above forms enter a program written by 
Lui [22] to generate an assembly sequence diagram[12] representing valid as­
sembly sequences. The assembly sequence diagram is generated by forward­
chaining through the relations, starting with liaisons having no precedents. 
Lui's program lets the user edit resulting sequences by removing individual 
states and moves from a displayed representation of sequences, using a graphic 
and mouse-menu interface. 

Henrioud and Bourjault, Homem de Mello and Sanderson, and Bourjault have 
shown that all possible assembly sequences can be generated without explicit 
precedence relations. However, we have found it useful to be able to add 
other constraints by expressing them as logical relations. Examples include: 
addressing cases that violate rigidity assumptions, as with liquid or compliant 
parts in an assembly; and enforcing early assembly of a particular subassembly 
to support an in-process test. For this reason we have chosen to generate 
explicit precedence relations. 

Lui's program has been extended to the noted user capabilities: to choose de­
sirable assembly states, moves, or partial sequences; avoid awkward assembly 
states or moves; represent part or subassembly fixturing and orientation op­
portunities; consider fixture-change and re-orientation counts; or choose good 
sequences based on desirable fixturing or orientation sequences. Editing capa­
bilities include: edit all redundant full or partial assembly sequences associated 
with separate subassemblies made at parallel sites[3]; impose constraints such 
as: "avoid simultaneous completion of a set of designated liaisons;" or "liai­
son k must immediately follow liaison j;" or eliminate of states that involve a 
plurality of subassemblies, or that involve a branched assembly line or parallel 
assembly operations; or eliminate, or incorporate, a particular state or move. 

The implementation on SUN 3/60 workstations integrates the processes of an­
swering questions and editing and evaluating sequences into one seamless activ-
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ity in which the user is aided by graphic representations of parts, subassemblies, 
and assembly states, moves, and sequences. 

15.2.1 Assembly sequence generation 

A cut-set method[4] partly based on the work of Romem de Mello and Sand­
erson[20] is used to find and represent all geometric or mechanical assembly 
constraints as precedence relations. The method is similar in its use of graph 
cut-sets to analyze the liaison diagram. Our method also uses the superset and 
subset rules developed by Bourjault. The Lui[22] program uses the precedence 
relations and the liaison diagram to generate the assembly sequence diagram. 

The cut-set method includes three elements to increase efficiency or utility not 
fully utilized by either Bourjault and Renrioud or Romem de Mello and Sander­
son. They are incorporation of the subset and superset rules; implementation 
of an efficient precedence relation search algorithm; and generation of explicit 
precedence relations. 

Overview of the cut-set method 

A flow chart for the cut-set method implementation is shown as Figure 15.6. 
First, part assembly topology is entered as a liaison diagram. Next, all sub­
assemblies are found by generating all possible part combinations, and testing 
connectivity of the subgraph formed by the combination of parts or nodes in the 
liaison diagram. Connected subgraphs are subassemblies. Assembly cut-sets, 
generated next, are defined by two part sets (Le. subassemblies) Ni and N j and 
the connecting liaison set S. The assembly cut-sets are used to generate all the 
questions needed to determine the precedence relations for an assembly. The 
questions, represented by "R(Ni; N j )?," take the form: "Can the subassembly 
of parts of Ni be disassembled from the subassembly of parts N j ?" 

Next, the questions are answered by logical inference if possible or by the user 
if not. A check for invalid assembly states, the superset rule, the subset rule, 
a precedence relation search algorithm, and user input are invoked to do so. 
Starting from the largest assembly cut-sets formed by the full liaison diagram, 
the question R(Ni ; Nj )? is checked against all previously-obtained precedence 
relations to insure that the assembly state N; U N j is not invalid. If it is not 
invalid, then R(Ni ; Nj )? is checked against all previous question answers using 
the subset rule. If R(Ni ; Nj )? passes the subset rule in that N; and Nj are 
subsets of NI' and Nil for which R(N£'; Nj')? has already been answered YES, 
then R(N;;Nj )? is YES. If R(N;;Nj )? fails the subset rule, it is checked 
against all previous question answers using the superset rule. If R(N;; Nj )? 
passes the superset rule in that Ni and Nj are supersets of Nt and N'/ for 
which R(Nt; Nj/)? has already been answered NO, then R(Ni; Nj )? is NO. If 
R(Ni; Nj )? fails both the subset and superset rule checks, the user is asked the 
question, and the answer is stored. 
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If R(Ni ; N j )? is NO, then the program seeks to write a precedence relation. 
The search algorithm looks for the smallest N:, Nj assembly cut-set (where 
N: and Nj are subsets of Ni and N j respectively) for which R(Nt; Nj) is NO. 
Answers for the R(Nt; Nj)? questions are determined in the same manner as 
above. The resulting precedence relation takes the form: 

Liaisons in S >= (Liaisons in Nt and Liaisons in Nj). 

A more detailed description of the cut-set method and an example follow. 

Assembly cut-sets 

A cut-set of a connected graph is typically defined as a minimum set of edges 
in the graph which leave two disjoint connected subgraphs if removed[4]. That 
set of edges is called the edge-set S, and the two connected subgraphs are called 
node-sets Nj and Nj • If any edge in S remains, the graph remains connected. 
An alternate definition of a cut-set is used here: cut-set is defined by the node­
sets Ni and N j such that each node-set forms a connected subgraph, Ni U N j is 
the node-set of the full graph, and Ni n N j is the empty set 0. Here a cut-set is 
referenced by any two node-sets (subassemblies) that meet the above definition; 
and the corresponding cut liaisons joining Ni to N j is referenced by the edge 
set (or liaisons) S. A single node is a connected subgraph. 

Assembly cut-sets are cut-sets of the full assembly and all subassemblies. 
Equivalently they are the cut-sets of the liaison diagram and of all connected 
subgraphs of the liaison diagram. Assembly cut-sets omit cut-sets formed by 
single part pairs since any pair of rigid mating parts can be assembled or dis­
assembled. For example, the assembly cut-sets of the liaison diagram of Figure 
15.7 are given in Table 15.2. 

Cut-sets as questions 

Assembly cut-sets are posed as questions to determine the precedence relations. 
The question can be presented as either an assembly or a disassembly operation 
since these operations are assumed equivalent and reversible. We chose to use 
the disassembly form as follows: 

R(Ni ; N j )?: If assembled together, can subassembly Ni be separated from sub­
assembly Nj ? 

Ni and N j are the subassemblies or subgraph node-sets created by breaking 
the liaisons in the cut-set S. The above question asks whether the cut liaisons 
S can be established if the liaisons of the connected subgraphs Ni and N j 

have been previously established. Answers are based solely on the assembly 
cut-set information given, and not on whether a final completely assembled 
or disassembled state can be reached. Equivalently, determination of a cut­
set's feasibility is based solely on geometric and mechanical aspects of the 
subassemblies given in the question. 
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A 

o ~--------~~------~. B 

c 

Figure 15.7: Example liaison diagram 

Assembly cut-set generation 

The algorithm to generate assembly cut-sets takes as input the liaison diagram, 
and all possible subassembly subgraphs arranged in order of decreasing parts­
count in assembly state Ni U Nj , with the smallest subgraphs having three 
nodes. Assembly cut-sets are generated by looping through each subgraph 
starting with the full liaison diagram and ending with the last subgraph with 
three nodes. The cut-sets of each input graph are generated by determining 
all possible subassemblies (node sets of connected subgraphs) Ni and N j such 
that Ni U N j is the node-set of the input graph and Ni n N j is the empty set. 

Simplification rules 

The assembly cut-sets represent a sufficient question set to determine prece­
dence relations for an assembly. If knowledge from earlier answers is not ex­
ploited, the interference question count needed to determine the precedence 
relations equals the assembly cut-set count, a quite large number for even 
moderately-sized assemblies. As questions are formed, several techniques are 
used to answer most of them by inference from previous answers. First, in­
valid Ni U N j assembly states are not considered. Suppose we are faced with 
R(Nt; Nj)? and have already determined the precedence relation "Liaisons in 
S >= (Liaisons in Ni and Liaisons in Nj ) ." If the liaisons in Nt U Nj comprise 
a superset of the liaisons in Ni and Nj and do not comprise a superset of S, 
then Nt U Nj is an invalid state. Cut-sets of invalid assembly states need not 
be posed as questions. 

Other uses of prior information are simple extensions of the superset and subset 



www.manaraa.com

402 

Table 15.2: Assembly cut-sets for the example in figure 15.7 

Graph or Cut-Sets Graph or Cut-Sets 
Subgraph Ni N j Subgraph Ni N j 

A,B,C,D,E A B,C,D,E A,B,C,E A B,C,E 
B A,C,D,E C A,B,E 
C A,B,D,E E A,B,C 
D A,B,C,E A,B,C,D A B,C,D 
E A,B,C,D B A,C,D 

A,B C,D,E C A,B,D 
A,D B,C,E D A,B,C 
B,C A,D,E A,B C,D 
B,E A,C,D A,D B,C 
C,D A,B,E C,D,E C D,E 
D,E A,B,C E C,D 

B,C,D,E B C,D,E B,C,E C B,E 
C B,D,E E C,B 
D B,C,E A,D,E A D,E 
E B,C,D E A,D 

B,C D,E A,C,D A C,D 
B,E C,D C A,D 

A,C,D,E A C,D,E A,B,E A B,E 
C A,D,E E A,B 
E A,C,D A,B,C A B,C 

A,B,D,E A B,D,E C A,B 
B A,D,E A,B,D B A,D 
D A,B,E D A,B 
E A,B,D B,D,E B D,E 

A,D B,E D B,E 
A,B D,E B,C,D B C,D 

D B,C 
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rules of Bourjault et al.[8] and are stated in terms of parts, but they also have 
a dual form for liaisons: 

If R(Nii Nj )? = YES, then R(Nf; Nj)? is also YES, where NI and Nj are 
subsets of the parts in Ni and Nj respectively (Subset Rule). 

If R(Nii N j )? = NO, then R(NIi Nj)? is also NO, where NI and Nj are super­
sets of the parts in Ni and N j respectively (Superset Rule) . 

The last two rules indicate that the most information can be gained from YES 
answers to R(Ni; Nj )? with large Ni and Nj (subassemblies with many parts) 
and from NO answers to R(Ni; Nj )? with small Ni and Nj (subassemblies with 
few parts). This implies advantages for a logical ordering of cut-set questions. 
Using the heuristic that, for most industrial assemblies, precedence relations 
spring from a small subset of parts which cause geometric or mechanical in­
terferences, the initial questions are posed using cut-sets in decreasing order 
of the number of parts in assembly state Ni U N j because the probability of 
quickly obtaining YES answers is high. As soon as a NO is obtained, the prece­
dence relation search algorithm is entered and is pursued via questions that use 
cut-sets in increasing order of the number of parts in assembly state Ni U N j 

because the probability of quickly obtaining NO answers is high. 

Precedence relation search algorithm 

The precedence relation search algorithm, shown on the right side of Figure 
15.6, is invoked when R(Ni; Nj )? = NO. Search starts with assembly cut-sets 
of subassemblies with three parts and continues in order of increasing parts 
count in the assembly state Ni U Nj . Nested within the precedence relation 
search is a series of question searches. A question search also starts with the 
assembly cut-sets of subassemblies with three parts and continues in order of 
increasing number of parts in the assembly state Ni U N j . The question search 
stops once an assembly cut-set NI, Nj is found where N: and Nj are subsets of, 
or ultimately equal, the Ni , Nj assembly cut-set that invoked the precedence 
relation search. If NI equals Ni and Nj equals Nj , then the precedence relation 
search ends, and the original R(Ni ; Nj) = NO forms a precedence relation. An 
answer for the new question R(N:; Nj)? is found by using the subset rule, the 
superset rule, or asking the user. If R(Ni; Nj)? is YES, the precedence relation 
search continues with another question search. If R(Nt; Nj)? is NO, the search 
ends and R(Nt; Nj)=NO forms a precedence relation. 

Formation of explicit precedence relations 

The precedence relations used to generate assembly sequences follow from 
R(Ni ; N j ) = NO results found during a precedence relation search. The general 
form is: 

(Set of Cut Liaisons S) >= (Liaisons forming Subassemblies Ni and Nj ). 

R(Ni ; N j )? asks whether all liaisons of cut-set S can be established once the 
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liaisons forming Ni and N j are established. The precedence relation is the 
logical conclusion from R(Ni ; Nj )? = NO. For example, suppose the assembly 
cut-set Ni = A,B; Nj = C,D of the liaison diagram of Figure 15.7 forms a 
precedence relation. The precedence relation's explicit form is: 

(2&4) >= (1&3) 

or that liaisons 2 and 4 must be established prior to or concurrently with the 
liaisons 1 and 3. 

An example illustrating the use of the program 

The algorithms, programmed in "C," run interactively on a SUN 3/60 work­
station. The software is shown in use on an example product, shown with its 
liaison diagram in figures 15.2 and 15.3, AFI, an automatic transmission[12]. 
AFI has 8221 assembly cut-sets, found in about 40 seconds on a SUN 3/60 
work station. 

The user can display the parts in a window. Part drawings are made using 
SUN's drawing software, SUNDRAW, and are stored and displayed as raster 
images. The subassemblies Ni and Nj are shaded white and grey respectively in 
a parts display window. The user answers questions posed based on geometric 
or mechanical constraints. Figure 15.8 shows the first question. Geometric 
constraints preclude removal of part A from the entire assembly. The NO 
answer starts a precedence relation search ending with the question "R(C,D; 
A)?", Figure 15.9. Removal of part A from parts C and D is impossible as 
part D blocks access to bolts connecting parts C and A. The user continues 
until all necessary questions are answered, responding to most questions quickly 
and easily simply by looking at the displayed subassemblies. The precedence 
relations resulting are printed to the screen, Figure 15.10, and to a file for use 
by Lui's LSG program. Of the potential 8221 questions in this case, 111 are 
asked of the user. An engineer familiar with the design answered them in about 
14 minutes. 

The algorithm has been extended to request local-mating-condition informa­
tion about liaisons in the question-answering process. The user describes the 
local separation direction of each liaison, represented as a Cartesian coordinate 
vector. A computer routine inspects separation directions of all liaisons con­
necting subassembly Ni to subassembly Nj to determine if a common direction 
exists. If not, the answer to R( Ni ; Nj ) is NO. If so, the user must be questioned 
to determine if any global interferences exist. Applying this feature to the AFI 
transmission example reduces the number of interference questions a user must 
answer to 55. Adding local separation information has greatest potential for 
reducing user effort for more complex assemblies, since separation information 
enters in proportion to liaison-count, not cut-set count. 

In comparison, with neither local direction information nor a check for validity 
of states, the transmission example asks the user 142 questions; the Bourjault 
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method applied to the same example, as implemented in De Fazio et aI.[13]' 
asks the user 482 questions. Table 15.3 presents statistics for four assemblies. 

Table 15.3: Question-Count statistics for the cut-set method for four example 
assemblies. Total question count equals the assembly cut-set count as earlier 
defined. Geometric interference count is the number of questions requiring a 
geometric interference check more extensive than a check of local separation 
constraints. The major factors in reducing the user-referred question count are 
the superset rule, the subset rule, and the invalid state check. 

ASSEMBLY Part Liaison User-Referred Total Question Count 
Count Count Question Count (Cut-Set Count) 

Gimbal 11 18 32 6,693 
AFI 11 18 55 8,221 

Viewfinder 16 21 403 313,530 
Seeker Head 17 26 58 203,754 

Generating the assembly sequences 

Precedence relations are now passed to Lui's program "LSG" [22] which converts 
them into an assembly sequence diagram, as shown in Figure 15.4. Each box 
in the diagram is an assembly state; each line is an assembly move. Each path 
from top to bottom is an assembly sequence that builds the entire product. 
Editing and evaluation can now begin by calling the editing program. 

15.3 Editing Means to Select Favorable 
Sequences 

Once a product's possible assembly sequences are found, the user must nar­
row the choice to a few "good" sequences. These few sequences can then be 
evaluated more rigorously to find any best sequence. Typical products have 
thousands of possible assembly sequences, and many factors influence the qual­
ity of assembly sequences; so the designer needs a tool that represents assembly 
sequences and allows a variety of editing options. 

Physical or judgmental characterizations of the states (boxes) and assembly 
moves (lines) of the liaison-sequence diagram provide rational bases for the 
choice of the "best" assembly sequence. Characterizations may be either qual­
itative or quantitative, and will generally suggest to the user the appropriate 
evaluation and choice technique. 
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An important qualitative state characterization is stability of the assembly 
state. Briefly, stable subassemblies are welcome states and unstable assembly 
states are best avoided if possible since they call for the complication and 
expense of stabilizing jigging. Conditionally stable assembly states are welcome 
only to the extent that the assembly sequence does not call for any move that 
violates the condition of stability. For example, if a state is stable front-up and 
unstable rear-up, an assembly move calling for a front-up to rear-up flip, prior 
to realization of an unconditionally stable state, should be avoided if possible. 

Assembly moves can be qualitatively characterized in terms of the ease or 
difficulty of the parts mate implied, or in terms of the skill-level required for 
completing the assembly move or mate, or in terms of whether the assembly 
move threatens part damage. 

Qualitative characterizations of states and assembly moves were quite sufficient 
to reduce 818 liaison-sequence choices to two in the example, noting that an 
applied optional constraint was invoked to preclude unstable states and undue 
flips for access. The nature of a network such as the liaison-sequence diagram 
is that a few forbidden states and moves may force the abandonment of other 
preceding or subsequent states and assembly moves, very effectively pruning 
the diagram. Reduction of this sort can be done very quickly on a graphical 
representation of the liaison-sequence diagram. 

Quantitative characterizations may include times for various technologies to 
accomplish assembly moves, costs of the hardware associated with the tech­
nologies appropriate to assembly moves, probabilities of failure for particular 
technologies addressing particular assembly moves, costs of fixturing or tooling 
needed to secure unstable states, and so forth. The user can apply a simple 
criterion to choice of assembly sequence, such as a shortest time path through 
the liaison-sequence diagram. Alternately, subsequent to extensive quantitative 
economic and durational characterization of the states and assembly moves of 
the liaison-sequence diagram, the user can extend a synthesis routine[16] to 
simultaneously suggest both assembly sequence and assembly technology. 

Editing assembly sequences to find a preferred sequence is done on four bases: 
editing representationally redundant sequences; pruning away any difficult, 
awkward, or unwanted elements while maintaining any preferred elements 
in the network of assembly possibilities; minimizing non-productive assembly 
tasks such as reorientation of a subassembly; and choosing among candidate 
assembly sequences on a calculated economic basis. The middle bases are the 
design or assembly engineer's provinces, thus seem the richest and most inter­
esting. Editing bases, moves, and paradigms include the following. 

Purge of representationally-redundant partially-parallel sequences 

Editing redundant sequences applies only to sequences with parallel assembly 
operations, branched work flow, and one or more states with two or more sub­
assemblies. The redundancy is implicit in the representation of assembly. Only 
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one assembly operation may be represented at a time on an assembly sequence 
diagram. If two operations, A and B, are to be done in parallel and nominally 
simultaneously, they are represented twice and in both possible sequences: as 
(A, then B); and as (B, then A). The assembly operations A and B may be done 
in parallel and the order of completion is unimportant (in lieu of any applicable 
constraints) though each order is representated in the analysis. Three opera­
tions done in parallel are represented six times, N are represented N! times. All 
but one of parallel-operation sequences is eliminated by this purge, described 
in detail in Amblard[3] and in Abell[2]. Elimination of redundant representa­
tions is done as a default option in our sequence editing software. This purge 
may be undone or redone at will with single keystrokes. Assembly graphs that 
admit to many parallel operations are massively pruned by this purge, as the 
simple combinatoric examples suggest. An AND/OR graph representation lacks 
the exhaustive list of parallel-operation assembly sequences explicit in a liaison 
sequence diagram before removal by a purge of redundant sequences. After 
purge of a liaison sequence diagram, each parallel-operation line layout is rep­
resented by an arbitrary single sequence, rather than the implicit choice of the 
AND/OR graph. 

Choice of Assembly-Line Topology 

In assembly line design, an engineer often has reason or need to impose an 
assembly line topology. Final assembly lines are often sequential, withou 
branches. Branched assembly lines may be difficult to implement or to suppl~ 
with parts, and worker access may be awkward. Supply lines may have t( 
cross branches of a branched assembly line, while a sequential line may be fe( 
from one side and manned on the other. Branched assembly lines are suited t( 
some products and sequences: where several stable subassemblies are created 
or where sequential line-balance is difficult, and where line-supply and acces 
are easily accomodated, for example. 

A branched assembly line with one or more parallel operations implies an as 
sembly state with two or more unconnected subassemblies. Imposing a sequen 
tial assembly line is done by purging all assembly states containing a pluralit~ 
of unconnected subassemblies, and is a two-keystroke operation if using our 
editing software. 

An engineer wanting a branched assembly line must identify the state or states 
that represent the subassemblies that are to be processed on parallel lines; then 
impose that each assembly sequence pass through one of the identified states. 

A void an assembly state 

Avoiding or excising a particular assembly state is one of a few primitive editing 
actions. Reasons to invoke include to avoid subassembly instability or fixturing 
difficulty. State avoidance typically is a least powerful editing move (erases 
fewest sequences) at mid-assembly; and most powerful (erases most sequences) 
when assembly is just beginning or just ending. Avoiding a state is done by 
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using a mouse to denote, and highlight, the state on the assembly sequence 
diagram, and calling "delete" from a command menu. 

A voiding an assembly paradigm 

Every connection between parts must be made at some time between start and 
finish of assembly, none is avoided. If connection count exceeds parts-count less 
one, then one or more assembly steps include making a multiple connection. 
A "difficult assembly move" that may be avoided excludes single parts-pair 
connections since each is unavoidable; and includes only multiple simultaneous 
connections among parts, some combinations of which may be avoided. 

In any complicated assembly a particular difficult assembly move consisting 
of the simultaneous establishment of two or more particular connections may 
occur in several locations on an assembly sequence diagram, either alone or 
as subset of a more complicated set of connections. Such a move is called an 
assembly paradigm. Engineers responsible for product design and assembly 
can identify difficult assembly paradigms and can easily characterize them in 
terms of their simultaneous connections. With the editing software, any such 
paradigm is then excluded with a few keystrokes. This is typically a moderately 
strong editing action. 

A particular state is to occur 

It is occasionally important that one or more particular assembly states occur 
during assembly; reasons may include a need to do a production test, take 
a measurement, or to take advantage of particular stable subassembly for a 
needed refixturing or reorientation move. Assuring the occurrence of a state 
is a primitive move and the complement of avoiding a state. It is a powerful 
editing action, especially so midway in the assembly sequence. That this is 
so is attested to by the fact that making subassembly decisions, deciding that 
certain subassemblies will be built as part of the assembly sequence, is generally 
the first basis of any unaided choice of assembly sequence. Passing through a 
state is assured without additional constraint by deleting all other states in the 
same rank of the assembly sequence diagram. 

A particular subassembly is to occur 

Any particular subassembly will occur only once in an assembly sequence di­
agram that is limited to sequential assembly lines, but may occur in two or 
more states of an assembly sequence diagram that includes branched assembly 
lines as well. The reasons for invocation match those of assuring occurrence of 
a particular state. The complementary editing action, that a particular uncon­
nected subassembly not occur, is used to avoid subassemblies that are hard to 
fixture except as part of a greater subassembly. 

A particular partial assembly sequence is to occur 

Assuring occurrence of a particular partial assembly sequence is a useful and 
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powerful editing action. This move is logically represented by one or a chain of 
statements of the form "task B is to immediately follow task A" and is invoked 
with a few keystrokes. Reasons include to immediately secure an unstable 
subassembly following a latest assembly move. 

Conditional precedences amongst states 

Conditional assembly, deferring completion of a particular subassembly until a 
result, possibly measured, of another, possibly subset, subassembly is known, 
is occasionally needed, and is not evoked by the means of finding possible 
sequences. Such conditional subassembly pairs must be recognized during edit­
ing sequences. Such constraints are usually easily stated logically and can be 
quite powerful editing actions. In branched assembly line cases, if a condi­
tional precedence constraint is needed, it must be applied prior to purge of 
representationally redundant sequences. 

Path editing based on assembly state fixturing 
and orientation hypotheses 

Refixturing and reorienting subassemblies are subassembly operations that in­
volve no part mating and that add no value to the product. Minimizing the 
count of such moves across an assembly sequence is a goal. Fixturing and ori­
entation options are state-related data that can be, but are not yet represented 
on an assembly sequence diagram. The data must be synthesised and provided, 
say by the user. Many earlier described editing actions consider individual as­
sembly states or assembly moves, or partial assembly sequences. Minimizing 
subassembly operations that add no product value requires a view of entire 
assembly sequences. 

The editing program leads a user state-by-state through supplying the needed 
information. The user is asked to hypothesize fixturing opportunities for sub­
assemblies of each assembly state, and characterize each opportunity in terms 
of parts and surfaces of parts supported by fixture, and corresponding stable 
orientations. When the characterizations are complete, assembly sequences are 
searched and grouped according to refixturing and reorientation counts. This 
stage of editing is represented in Figure 15.11. The engineer may choose any 
one of the groups and step through its assembly sequences, reviewing assembly 
moves and states, fixturing needs, and subassembly orientations. This provides 
abasis for further screening and sequence choice. 

Economic editing basis 

A goal in assembly system design is to produce an assembly system that is 
economical at around the anticipated production rate. Assembly cost can be 
dominated by scrapping costs and direct and rework labor costs associated with 
an ill-chosen assembly sequence. Such sequences can usually be found and 
avoided by applying the editing techniques. Where avoidance is impossible, 
product redesign may be appropriate. Similarly, costs of unneeded operations 
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Figure 15.11: The assembly sequence editing environment. The left panel rep­
resents a partially-edited assembly sequence diagram. The " show (state)" menu 
command is active and the assembly state denoted by the cursor is represented 
in the upper right. Several editing actions have already been taken: Purge 
of representationally redundant sequences; assurance of a sequential assem­
bly line; excision of two difficult part mating paradigms; excision of several 
assembly states due to fixturing difficulty. Data about fixturing opportuni­
ties and corresponding stable subassembly orientations has been entered and 
the remaining sequences have been examined for refixturing and reorientation 
counts. There are 12 combinations of sequence, fixturing, and state orientation 
that yield an assembly with 2 fixturing changes and 1 subassembly reorienta­
tion. 
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that add no value can dominate any savings from careful choice of assembly 
line technology, and such operations also can be anticipated and controlled by 
applying editing techniques. 

Once some physically acceptable assembly sequences are known, an en­
gineer may do comparative economic studies of the candidate sequences 
(Gustavson[17], Cooprider[9], Graves and Holmes-Redfield[15]). Assembly Sys­
tem Design Program (ASDP) is an example of a computer based assembly 
system design optimization routine that explores possibilities of assembly re­
sources addressing multiple tasks (Gustavson [17]). Economic screening of as­
sembly system designs often requires supplying information characterizing the 
costs and times of assembly steps. This effort is appropriate for comparisons 
amongst a few candidate sequences. Under some circumstances, for example 
in cases of products for which there are no problem assembly moves or difficult 
fits, data such as operation times, costs, and candidate technologies may be 
provided directly from a data base and without engineering consideration. 

15.3.1 Assembly Sequence Editing 

A program called EDIT has been written that allows display and editing of 
assembly sequences in this manner. EDIT is written in the programming lan­
guage "C" using SUN's graphics package, SUNVIEW. EDIT reads assembly 
sequences from input files written by LSG[22] and creates a data structure of 
the sequence graph [2]. Most of the information in this data structure is stored 
under the states of the assembly sequence diagram. The data structure for 
assembly states is shown in Figure 15.12. As shown, the state structure holds 
information about moves that lead to and from the state, the status of the 
state, and the state's subassemblies. 

The delete..status element in the data structure notes whether a state is on, 
highlighted, or removed from the display. The software is flexible about invok­
ing and undoing editing moves. When editing moves are made, the program 
changes the status of the state instead of removing the state from the structure. 

EDIT reads as input the assembly sequences generated by LSG and accepts 
raster images of SUNDRA W part drawings. The assembly sequence diagram, 
part drawings, and information about states of assembly are combined into 
a screen display of possible assembly sequences. Figure 15.13 is an example. 
Two part sets shown on the right represent two subassemblies coexisting in a 
designated state, marked with the cursor in Figure 15.13. At bottom left is an 
editing choice menu, representing the set of user commands. Above is part of 
the AFI assembly sequence diagram. 

Two classes of editing have been implemented and are described below: editing 
states and moves; and editing based on fixturing and refixturing and reorien­
tation counts. 
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state number 4 
delete status on 
jusceStablishedJiaisons 
establishedJiaisons 
next.Jl0ssible_liaisons 
number_of .Jlarents 
pointeU°.JlarenUist 
number of children 
pointerjo-=Child_list 
number_oCsubassemblies 2 
pointeuo_subassemblies 

Subassembly One 
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Fixturing and Orientation Options 

Figure 15.12: Assembly state data structure 
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Editing States and Moves 

A variety of editing choices is based on assembly states and moves. Eliminating 
individual states or moves is the most basic. An edit menu allows us to invoke 
several editing features. The "SHOW" option gives a view of the particular 
state or move designated by the mouse. Choosing "SHOW STATE" and des­
ignating a state in the assembly sequence diagram shows the following state 
data: (1) its part drawings concatenated as one or more subassemblies, (2) a 
text description in the text window, and (3) the state and all its parent and 
child states highlighted in color on the diagram. Choosing "SHOW TRANSI­
TION" and designating the two states associated with a move highlights the 
move in color and brings up part drawings of the states before and after the 
move. After highlighting a state or move, we can delete it by selecting "DEL 
SHOWN." 

The "DELETE" option deletes a particular state or move without first show­
ing it. The option has four choices: (1) "DELETE STATE," (2) "DELETE 
TRANSITION," (3) "UNDELETE STATE," and (4) "UNDELETE TRAN­
SITION." Selecting an option activates the mouse to perform the indicated 
function on selected elements. Deleting an item causes it to be highlighted in 
red. Invoking "REDRAW" removes all deleted items from the display. 

More complex editing paradigms are done by entering text commands in the 
text window. Editing features allow deletion of assembly states with multiple 
subassemblies; deletion of moves where a denoted set of simultaneous mates 
is made; or specification that a particular assembly move must immediately 
precede another. These are powerful editing tools; invoking one can signifi­
cantly reduce the original sequence count. Their use is based on knowledge of 
particular desirable or undesirable states, moves, or partial sequences. 

Use of these editing facilities is illustrated on the AFI example of Figure 15.2 
as follows: 

State and move editing usually begins by removing redundant assembly se­
quences from among the sequences having branched work flow and one or more 
states with two or more subassemblies. Redundancy-purge editing is a default 
option that may be overridden; it uses a single key-stroke ("x" in Figure 15.13) 
and reduces the assembly sequence count in this example from 50,748 to 3319. 

Editing continues by removing two awkward assembly paradigms, simultaneous 
establishment of liaisons 8, 9, and 10; and of 4 and 16. 1607 sequences remain 
after invoking this editing option, shown in Figure 15.14. Note that none of 
the five states in the next-to-last rank lack liaisons 8, 9, and 10 or 4 and 16. 
Note also invocation of the "SHOW (State)" option. In Figure 15.15, "SHOW 
(State Transition)" is invoked. The assembly move between assembly states in 
the 3rd-to-last and next-to-last ranks, both on the left edge, is shown. 

Finally, editing command "m" is used to eliminate all states containing more 
than one subassembly, eliminating branched assembly lines. 
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This sort of editing, manually-applied progressive invocation of a sequence of 
logically-described editing paradigms, is very rapid and effective for a fair range 
of products. For the AFI example, one progression is shown in Table 15.4. 

Table 15.4: An editing progression 

EDITING PARADIGM (CUMULATIVE) NUMBER OF 
SEQUENCES 
REMAINING 

Unedited Sequence Count 50,748 
Deletion of Redundant Sequences[3] 3,319 
Liaisons 8, 9 and 10, and liaisons 4 and 16 
not Done Concurrently[12] 1,607 
Constrain Against Branched Assembly Lines 312 
Load Case (Part A) from Either End 
before Starting Other End[12] 2 

Screens representing the last two of these cumulative editing paradigms are 
shown as Figures 15.16 and 15.17. The text in Figure 15.16 shows the keystroke 
entries to invoke the middle three editing paradigms. The display of Figure 
15.17, invoking the "SHOW (State)" option, shows the right branch of the two 
remaining assembly sequences. The last editing paradigm was done manually 
by repeated use of the "SHOW (State)" option and appropriate use of the 
"Delete (State)" option; it takes a few minutes. 

Editing Based on Refixturing and Reorientation 

Another editing means allows evaluating and editing all individual assembly se­
quences based on fixturing, refixturing, orientation, and re-orientation issues. 
Refixturing and re-orientation are production moves that cost but add no value; 
usually it pays to avoid them during assembly. The user must supply substan­
tial fixturing and orientation information associated with each assembly state 
to use this evaluation option. Because of the state-associated need for substan­
tial additional information, editing based on fixturing and orientation issues 
is generally left until initial editing based on assembly states, moves, and line 
topology has been completed and state- and move-counts have been reduced. 

To evaluate sequences this way, information about fixturing and orientation 
possibilities for each remaining state is entered. Each original state and assem­
bly move is replaced by a set of states and moves, allowing each possible fixture 
and orientation state combination and refixturing and reorientation move to be 
represented. The result is an expanded assembly sequence diagram. Each path 
through this network represents a sequence of liaisons, fixturing choices, and 
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orientations. The software then uses an N-th shortest-path algorithm to rank 
assembly sequences according to how many fixturings and orientations they 
require, allowing the user to consider those sequences that require relatively 
few fixturing and orientation changes. 

A shortest path approach is used so as to find paths that minimize fixturing 
and orientation change counts, and since the sequence graph is a well-defined 
directed network from disassembly to the fully assembled state. Fixturing 
and orientation changes occur during assembly moves and costs are associated 
with arcs. Associating fixturing and orientation options with assembly states 
(nodes) determines the number of changes needed in each assembly move (arc). 
These changes provide the costs for the shortest path algorithm. Operating the 
shortest path algorithm associates paths with a matrix of re-orientation count 
and refixturing count. 

Fixturing is represented by a user-named user-defined part-surface or subas­
sembly-surface to which a fixture is attached; and orientation as any of several 
user-specified orientations for which fixturing to the designated surface is stable. 
Fixturing and orientation are represented as pairs since they are interdepen­
dent. Each subassembly may have several of these pairs, each representing a 
surface and possible orientations to be associated with each fixture. 

Evaluating assembly sequences on the bases of reorientation and refixturing 
costs starts by entering names of mating surfaces and possible fixturing surfaces 
for all the parts in the assembly. One specifies all orientations to be considered 
for assembly. Figure 15.18 shows the surface and orientation information for 
the AFI transmission example. 

Possible fixturing and orientation pairs for each unique subassembly in the se­
quence graph are found next, and involves two steps. First, the user specifies 
whether any of the subassembly's surfaces are blocked. An inaccessible surface 
will not become accessible again as more parts are added, so it is eliminated 
from further consideration. The program then presents a list of fixturing­
surface and orientation pairs that consist of all available surfaces paired with 
all orientations. The user eliminates all surface-orientation pairs considered 
infeasible, leaving acceptable fixturing-surface and orientation options for fur­
ther consideration. The AFI assembly has 64 unique subassemblies, and it 
takes about 2 hours to enter fixturing and orientation data. Entering these 
data constitutes preliminary design consideration of possible fixturing for each 
subassembly of each state. The user-engineer is asked "Can, and how can each 
subassembly of each state be fixtured? (answer for each considered orienta­
tion)." 

As there is usually a plurality of fixture and orientation options for each state, 
entering these data represents significant expansion of the possibly pre-edited 
assembly-sequence diagram. For example, consider two states in adjacent ranks 
on the assembly sequence diagram; the first with two fixture-orientation op­
tions, the second with three. To encompass the new data, the first "state" 
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now must be represented as two states, the second as three. Additionally, since 
each (of two) state/option combination in the earlier rank has access to each 
(of three) state/option combination in the later rank, the single state transition 
or assembly move becomes six moves. Only two of these moves can represent 
an assembly move without orientation or fixturing change. 

Once the data have been entered, one may invoke the shortest path algorithm, 
showing the sequences requiring the fewest fixturing and orientation changes. 
One enters the command "a" and specifies the maximum number of fixturing 
changes and orientation changes to be considered. See Figure 15.11. The 
shortest path algorithm yields a matrix which indicates how many sequences 
are associated with each fixturing and orientation change pair. In the example 
there are 12 sequences that require two fixturing and one orientation changes. 
Ask to see all the paths associated with a particular change count, and the 
program will list the paths and plot them on the screen. It can list and plot 
any of these sequences individually, and step through partial assembly drawings 
of the states in this sequence. Figure 15.19 shows this for the AFI, where the 
fifth state in the sequence is shown. Having considered the paths with fewest 
fixturing and orientation changes, one may choose an assembly sequence from 
them. 

This edit is very valuable as fixtures can be very costly and reorientation takes 
assembly-line time, length, and resources. Substantial time is needed to enter 
fixturing and orientation data, but the time is well-spent in that the program 
structure prompts the user-engineer to do preliminary fixturing design, records 
his thoughts, and then allows concurrent consideration of assembly-sequence 
choice and fixture and orientation option choice. For an engineer familiar with 
a design and details of part-geometry, editing based on states and moves can 
be completed in a few to many minutes; while considering, generating, and 
entering fixturing and orientation data can take a few hours. We are currently 
examining ways to automate some of this process. 

15.3.2 Editing Strategies - Order 
of Application of Editing Means 

Preceding material presents editing moves and actions available to reduce a 
large selection of assembly sequences to a workable few for assembly system 
design. Editing is hierarchical, so that the sequence of applying editing criteria 
and actions, called an "editing strategy," is an issue. Part of a rationale for an 
editing strategy is implicit in the preceding material. A rationale for an editing 
strategy is made more explicit now. 

Several criteria are considered to evolve an editing strategy as follow: 

1. Interference between editing bases. If application of editing basis "A" ad­
versely affects the possibility of applying editing basis "B" but not vice versa, 
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then application of basis B should precede application of basis A. 

2. Expected economic impact of an editing basis. An editing basis with a high 
expected economic impact should precede one with a lower expected economic 
impact. The economic impact of a poor assembly sequence choice, one that 
leaves a product unneccesarily difficult to assemble, is high, as it extends be­
yond assembly labor cost and tooling and fixturing costs, to rework, repair, 
scrap, and warranty costs. 

3. Ease of application of an editing basis. The easier-applied of two editing 
bases should be applied earlier. One measure of application ease of an editing 
basis is the amount of data, if any, that must be user-supplied to allow editing. 
Data, if needed, are often needed on a state-by-state or move-by-move basis, so 
that state and move counts are crude multipliers of data need. This suggests 
a strategy that leaves editing actions requiring added data to follow actions 
needing no added data. 

There is a single issue of potential conflict between a pair of editing bases. 
Applying the purge of redundant branched-assembly-line sequences constrains 
the possibility of applying conditional precedences among assembly states. See 
Table 15.5. Any needed conditional precedences among assembly states must 
be assured prior to exercising the purge of redundant sequences. 

Consider the three remaining broad editing bases for expected economic im pact. 
They are: excising difficult or awkward elements while maintaining any needed 
elements in the network of assembly possibilities; minimizing non-productive 
assembly tasks such as reorientation of a subassembly; and choosing among 
candidate assembly sequences on a calculated economic basis. 

Matters of assembly ease and of non-productive task count often have large 
economic effects on both assembly and rework costs, even of the order of 50% 
to 100%, and 10% to 20% of assembly cost, respectively. Choice of assem­
bly sequence candidates on a calculated economic basis is a sensitive editing 
means, but extensive data must be supplied. Difficult assembly states or moves 
often require extensive and expensive assembly labor or tooling, or even incur 
repair, rework, and scrapping costs, wasting the discrimination of an economic 
analysis. Sequence choice on an economic basis is thus best left for when few 
acceptable candidates, already screened for assembly ease and convenience, 
fixturing needs, and subassembly orientation, are available. 

Assemby line tasks fall into two categories: non-productive tasks and produc­
tive or value-adding tasks. Productive tasks involve mating of parts; are repre­
sented on an assembly sequence diagram; and their count is invariant for any 
assembly sequence of a product and equal to the parts count. Non-productive 
tasks involve no part mating; are often fixture-related; require additional data 
to be represented on an assembly sequence diagram; and their count is ar­
bitrary and path-dependent. Example non-productive moves are: moving a 
subassembly from one conveyance to another; testing or measuring; reorienting 
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Table 15.5: Effects of editing moves on assembly sequence choice and the as­
sembly sequence diagram 

State-conditional precedence: Enforces that a specific subassembly exists 
concurrently with or precedes another specific subassembly. Concurrency im­
plies branched assembly line topology. Precedence is equivalent to a partial 
assembly sequence enforcement and is applicable to any assembly line topol­
ogy, branched or sequential. Since the purge of redundant branched sequences 
chooses an arbitrary sequence from a plurality where sequence is represented 
but concurrence is the actuality, any state-dependent concurrence must be es­
tablished before the purge. Any such constraints are at the engineer's bidding. 
Purge of redundant sequences: The purge of redundant sequences affects 
only assembly states with a plurality of subassemblies, which are those manifest 
on parallel branches of a branched assembly line. The connection sequences rep­
resent orders to the individual assembly events which occur across the branches 
of a branched assembly line. Sequence is without meaning for parallel opera­
tions which may be concurrent. The purge of redundant sequences arbitrarily 
chooses one sequence and eliminates all remaining sequences of any set of se­
quences that share common parallel assembly moves on a branched assembly 
line topology. The redundant sequences are unneeded and the purge is done 
routinely as a default option in the editing software. 
Constrain the assembly line topology: An assembly line with no branches 
is called sequential and is selected if each assembly state with two or more 
subassemblies is eliminated. A sequential line is chosen by the engineer with 
a single software command. Branched assembly "lines" remain as choices if 
any assembly state or states with a plurality of subassemblies remain on the 
assembly sequence diagram. The engineer designing a branched assembly line 
must consider all otherwise not precluded choices individually. 
Enforce a particular state: If all sequences incorporate a particular state, 
that state must stand alone in its rank in the assembly sequence diagram; the 
diagram is waisted to a w idth of one at that state's rank. The strength of 
this editing move is evident from its description. The complementary editing 
move avoids a particular state, removing that state from the assembly sequence 
diagram. It is generally a weaker move. 
Enforce a particular subassembly: Incorporating a particular state or a 
particular subassembly are equivalent for a sequential line. Since a particular 
subassembly may exist in two or more assembly states that include a plurality 
of subassemblies, the editing moves are not common if a branched assembly 
line remains an option. The complementary editing move avoids a particular 
subassembly by eliminating all states where that subassembly appears uncon­
nected. 
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Table 15.5 (continued): Effects of editing moves on assembly sequence choice 
and the assembly sequence diagram 

Enforce a partial assembly sequence: This editing option is invoked logi­
cally by enforcing that one of a pair of assembly moves will immediately follow 
another. These constraints may be chained. Reduction in assembly sequence 
options generally increases faster than the chain-length or the count of such 
constraints. Editing software accomplishes each of these constraints or each 
link in a chain with a few keyboard strokes. 
Excise Awkward assembly paradigms: Every connection must be made 
sooner or later to accomplish full assembly. Thus it is useless to seek to avoid 
a connection. Assembly move count is the parts count. If the connection count 
equals or exceeds the parts count, as it does for most designs, then two or more 
connections must be made simultaneously. Choice of assembly sequence often 
includes choice of which connections are to be combined. Of these combinations 
often some choices are clearly more easily done, and some are done with more 
or even great difficulty. Engineers responsible for product design or assembly 
can generally call out the difficult connection combinations. Assembly sequence 
editing software cooperates by accepting commands of a few keystrokes that 
excise from all choices any noted simultaneous combination of connections. 

a subassembly; and refixturing a subassembly. 

These simple ideas and an observation about the role of fixturing in assembly 
suggest that considerations of ease of part mating have a greater expected 
economic impact than considerations of minimizing non-productive moves, and 
should be considered earlier. Fixtures are often used when their usage cost is 
less than that of suffering the part-mating difficulties fixturing avoids. There 
is no cost associated with using the results of screening assembly sequences to 
find the physically easiest sequence, and much to be gained. Fixturing does 
have associated costs, and is often a needed palliative for any remaining difficult 
assembly moves. 

Ease of application of editing basis suggests the same order for the three broad 
editing bases as does economic impact: screening for assembly ease and conve­
nience first; minimizing non-productive assembly tasks next; and screening on 
a calculated economic basis, last. 

A major determinant of ease of application of editing basis is the quality and 
quantity of data that must be supplied to accomplish editing on a basis. Data 
needs for these broad editing bases grow as the bases are traversed in the stated 
order. 

Screening for assembly ease and convenience requires engineering knowledge 
of the product design and of the mechanics of part mating. The user makes 
yes/no decisions based on that knowledge but without any need to supply or en-
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ter characterizations of that knowledge. Minimizing non-productive assembly 
tasks across an assembly sequence implies both a knowledge and a counting of 
those tasks. The common non-productive tasks are subassembly reorientation, 
refixturing, and conveyance transfer. None of these are represented on the basic 
assembly sequence diagram. Subassembly fixturing and orientation (as well as 
assembly tests or measurements) are associated with assembly states; reorien­
tation and refixturing with assembly moves. Assembly system design engineers 
draw on knowledge of the product design, of mechanics of part mating, and of 
assembly customs and practices, to supply to a data-base the state-associated 
information of fixturing and orientation needs and options. 

Similarly, information for economic screening of candidate sequences is not 
represented on a basic assembly sequence diagram; it must be supplied by the 
user or from a data base. The needed information includes characterizations 
of appropriate assembly technology, related fixed and variable candidate ma­
chine, tooling, and labor costs, and task times; and is associated with assembly 
moves. Assembly system design engineers must draw on market and vendor 
cost and performance data, as well as product design and part mating mechan­
ical knowledge, to supply data for economic screening of candidates. 

Within the broad editing basis that is pruning the awkward states or difficult 
moves while retaining the graceful states and easy moves, the following editing 
sequence is recommended: apply any assembly line topological constraints; 
assure any needed subassemblies or states; enforce any needed partial assembly 
sequences; excise any awkward assembly paradigms; and finally excise any 
individual awkward assembly states. 

A model editing strategy based on the combined considerations is presented as 
Figure 15.20. 

15.4 Conclusions 

Assembly sequence is a major consideration and a component of the issue of 
finding the most favorable means of assembling a product from parts. Different 
assembly sequences have different needs for assembly fixturing, for number of 
orientation changes, for convenience of access, for time of assembly, and for 
assembly skill level; different sequences have different possibilities and proba-

. bilities of part-damage during assembly. The importance of considering these 
and other consequences of chosen assembly sequence increase with production 
run size, with product parts-count, and with rising quality standards. 

Considerations have so far concerned applying liaison-sequence analysis to es­
tablished, or stationary, designs. Product design and assembly system require­
ments are intimately coupled, and product design, materials, manufacturing 
means, and assembly system design are properly considered concurrently. Prod­
uct designs typically evolve through many revisions and small changes in prod-
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uct design can cause radical changes in assembly sequence. Liaison-sequence 
analysis as a tool is capable of addressing the issues of interactions between 
product design and assembly-system design, but of course there is a substan­
tial increase in effort required if many designs are to be analyzed. A liaison­
sequence analysis, done before a design is frozen, and showing one or more 
obviously favorable assembly sequences, can itself be examined to extract the 
salients allowing the superior assembly sequence choices. The responsible pro­
duction engineer is then in a position to participate in reviews of the evolving 
design, now having a knowledge of which design features or changes have little 
or no effect on ease of assembly, and which features or changes have a major 
influence on assembly convenience. Liaison-sequence analysis provides a solid 
and tangible basis for consideration and discussion of production engineering 
matters during design evolution and at design reviews. See Figure 15.I. 

Consideration of assembly sequence issues was informal and heuristic in the 
past. An assembly engineer devised and compared enough assembly sequences 
to find one or more acceptable ones, but had no way of knowing whether a 
better one remained unknown and unconsidered. Formal means for exhaustive 
consideration of assembly sequence issues exist now. Means involve finding all 
sequences and reducing that number to the best few candidates by rational 
editing consideration. Assembly engineers may now consider assembly issues 
more quickly or more deeply. 

The assembly sequence generation and editing software shown does all book­
keeping and algorithmic operations but usurps none of the engineering func­
tions. It is not an expert system which embodies only the parts of the observed 
behavior of past practitioners, but an engineering aid which responds to all of 
the skills of the using engineer. All editing decisions of choice are made by cog­
nizant engineers for considered reasons. No editing decision is independently 
invoked by the computer software. An engineer is involved at all levels of edit­
ing, giving complete insight into editing issues. Editing decisions and reasons 
are easily documented and reconsideration of editing actions is conveniently 
possible. 

Application of editing bases is hierarchical, and the heirarchical sequence may 
be chosen by the engineer for technical and convenience reasons. There are 
rational bases for choice of editing sequence. Experience in use indicates that 
for many carefully-considered designs there are few good sequences and that 
they are usually revealed quickly by any rational editing sequence. 

The newly found speed of technique provided by the editing software allows 
rapid response to design changes in a concurrent design environment. See 
Figure 15.1. Past experience includes the example of a product functional 
designer assessing performance impact of redesign of a complicated assembly 
in a matter of hours, while assembly system engineers, working without use of 
the described technique, needed about a week to assess the impact of the same 
design change on the preliminarily designed assembly system. The observation 
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was made during design, manufacturing, and assembly studies of a conventional 
automotive automatic transmission. The noted redesign addressed geometry 
and fastening of the major fixed element within the cases so as to explore 
casting draft options. There was not a major functional redesign, but there 
was a major disruption of assembly sequence choices and assembly system 
consideration and design. 

In another instance during a similar study of an automatic automotive 
transaxle, a redesign addressed a minor functional change affecteing design 
of the gearbox portion. Taking full advantage of the new assembly sequence 
determination and editing techniques allowed the product redesign impact as­
sessment on a preliminarily designed assembly system to be completed in about 
a day. While this period does not quite approach the performance assessment 
time we have experienced, it is a substantial improvement over past perfor­
mance and a major enabler of a concurrent engineering environment (Nevins 
and Whitney[24]). 
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