COMPUTER-AIDED
MECHANICAL
ASSEMBLY PIANNING

Luiz S. Homem de Mello
SukhanLee
Jet Propulsion Laboratory

2 Springer

COMPUTER-AIDED
MECHANICAL
ASSEMBLY PLANNING

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

ROBOTICS: VISION, MANIPULATION AND SENSORS

Consulting Editor: Takeo Kanade

SHADOWS AND SILHOUETTES IN COMPUTER VISION, S. Shafer
ISBN: 0-89838-167-3
PERCEPTUAL ORGANIZATION AND VISUAL RECOGNITION, D.Lowe
ISBN: 0-89838-172-X
ROBOT DYNAMICS ALGORITHMS, F. Featherstone
ISBN: 0-89838-230-0
THREE- DIMENSIONAL MACHINE VISION, T. Kanade (editor)
ISBN: 0-89838-188-6
KINEMATIC MODELING, IDENTIFICATION AND CONTROL OF ROBOT MA-
NIPULATORS, H.W. Stone
ISBN: 0-89838-237-8
OBJECT RECOGNITION USING VISION AND TOUCH, P. Allen
ISBN: 0-89838-245-9
INTEGRATION, COORDINATION AND CONTROL OF MULTI-SENSOR ROBOT
SYSTEMS, H.F.Durrant-Whyte
ISBN: 0-89838-247-5
MOTION UNDERSTANDING: Robot and Human Vision, W.N. Martin and J. K.
Aggrawal (editors)
ISBN: 0-89838-258-0
BAYESIAN MODELING OF UNCERTAINTY IN LOW-LEVEL VISION, R. Szeliski
ISBN: 0-7923-9039-3
VISION AND NAVIGATION: THE CMU NAVLAB, C. Thorpe (editor)
ISBN: 0-7923-9068-7
TASK-DIRECTED SENSOR FUSION AND PLANNING: A Computational Approach,
G. D. Hager
I%BN: 0-7923-9108-X
COMPUTER ANALYSIS OF VISUAL TEXTURES, F.Tomita and S. Tsuji
ISBN: 0-7923-9114-4
DATA FUSION FOR SENSORY INFORMATION PROCESSING SYSTEMS, 1. Clark
and A. Yuille
ISBN: 0-7923-9120-9
PARALLEL ARCHITECTURES AND PARALLEL ALGORITHMS FOR INTEGRATED
VISION SYSTEMS, A.N. Choudhary, J. H. Patel
ISBN: 0-7923-9078-4
ROBOT MOTION PLANNING, J. Latombe
ISBN: 0-7923-9129-2
DYNAMIC ANALYSIS OF ROBOT MANIPULATORS: A Cartesian Tensor Approach,
C.A Balafoutis, R.V. Patel
ISBN: 0-7923-9145-4
PERTURBATION TECHNIQUES FOR FLEXIBLE MANIPULATORS: A. Fraser and
R. W. Daniel
ISBN: 0-7923-9162-4

COMPUTER-AIDED
MECHANICAL
ASSEMBLY PLANNING

edited by

Luiz S. Homem de Mello
Jet Propulsion Laboratory
California Institute of Technology

Sukhan Lee
Department of Electrical Engineering Systems
University of Southern California
and
Jet Propulsion Laboratory
California Institute of Technology

hd
()

Springer Sciencet+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Computer-aided mechanical assembly planning / edited by Luiz S. Homem
de Mello, Sukhan Lee.
p.- cm. -- (The Kluwer international series in engineering and
computer science: SECS 148)
Includes bibliographical references and index.
ISBN 978-1-4613-6806-9 ISBN 978-1-4615-4038-0 (eBook)
DOI 10.1007/978-1-4615-4038-0
1. Computer-aided engineering. 1. Assembling machines. I. Homem
de Mello, Luiz S. 1II. Lee, Sukhan. III. Series.
TA345.C6424 1991

670.42'7--dc20 91-21667

CIP

Copyright© 1991 Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers,New York in 1991
Softcover reprint of the hardcover 1st edition 1991
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,

or otherwise, without the prior written permission of the publisher, Springer
Science+Business Media, LLC.

Printed on acid-free paper.

To my parents, Ligia and Fabio Homem de Mello.

To my parents, Anna and Hyung-Ki Lee.

Contents

Foreword
George A. Bekey

1. Introduction 1
Luiz S. Homem de Mello and Sukhan Lee

Part I - ASSEMBLY MODELING

2. Representations for assemblies 15
Aristides A. G. Requicha and Timothy W. Whalen

3. Representation of solid objects by a modular
boundary model 41
Leila De Floriani, Amitava Maulik and George Nagy

4. Graphs of kinematic constraints 81
Federico Thomas

5. Relative positioning of parts in assemblies using
mathematical programming 111
Joshua U. Turner

Part IT - ASSEMBLY PLANNING

6. Representations for assembly sequences 129
Luiz S. Homem de Mello and Arthur C. Sanderson

7. A basic algorithm for the generation of
mechanical assembly sequences 163
Luiz S. Homem de Mello and Arthur C. Sanderson

viii

8. LEGA: a computer-aided generator of assembly plans 191
Jean-Michel Henrioud and Alain Bourjault

9. Maintaining geometric dependencies in assembly
planning 217
Randall H. Wilson and Jean-Frangois Rit

10. Efficiently partitioning an assembly 243
Randall H. Wilson

11. On the automatic generation of assembly plans 263
Jan D. Wolter

12. A common sense approach to assembly sequence
planning 289
Richard Hoffman

13. Assembly coplanner: cooperative assembly planner
based on subassembly extraction 315
Sukhan Lee and Yeong Gil Shin

14. Backward assembly planning with DFA analysis 341
Sukhan Lee

15. Computer aids for finding, representing, choosing
amongst, and evaluating the assembly sequences
of mechanical products 383
Thomas E. Abell, Guillaume P. Amblard, Daniel F. Baldwin,
Thomas L. De Fazio, Man-Cheung Max Lui and Daniel E.
Whitney

Contributors 437

Index 439

Foreword

Some twenty years have elapsed since the first attempts at planning were made
by researchers in artificial intelligence. These early programs concentrated
on the development of plans for the solution of puzzles or toy problems, like
the rearrangement of stacks of blocks. These early programs provided the
foundation for the work described in this book, the automatic generation of
plans for industrial assembly.

As one reads about the complex and sophisticated planners in the current gen-
eration, it is important to keep in mind that they are addressing real-world
problems. Although these systems may become the “toy” systems of tomor-
row, they are providing a solid foundation for future, more general and more
advanced planning tools. As demonstrated by the papers in this book, the
field of computer-aided mechanical assembly planning is maturing. It now may
include:

e geometric descriptions of parts extracted from or compatible with CAD
programes;

e constraints related to part interference and the use of tools;

o fixtures and jigs required for the assembly;

o the nature of connectors, matings and other relations between parts;

¢ number of turnovers required during the assembly;

e handling and gripping requirements for various parts;

e automatic identification of subassemblies.
This is not an exhaustive list, but it serves to illustrate the complexity of
some of the issues which are discussed in this book. Such issues must be

considered in the design of the modern planners, as they produce desirable
assembly sequences and precedence relations for assembly.

As with other Al-based planning programs, the fundamental issues include
knowledge representation and acquisition, search algorithms and inference tech-
niques. Hence, several of the chapters of the book include discussions of model-

ing and representation of parts, liaisons between them and the processes which
produce them. The basic approach to problem solving is systematic search in
the problem space, which immediately raises the possibility of an explosion in
the number of possible solutions. Hence, many current programs include edit-
ing provisions to eliminate undesirable branches of the search tree, or prune the
tree in the process of developing the plans. Yet, there are situations in which
the enumeration and examination of all feasible assembly orders has advan-
tages, as demonstrated in some of the approaches discussed here. The amount
of knowledge required for the intelligent determination of feasible assembly se-
quences and the subsequent editing and sorting is clearly enormous. Hence,
some of the methods discussed in this book include interactive features, which
enable users to assist in the process by means of question answering and other
computer aids.

While it is evident that the automation of assembly planning is a maturing
area of research, it is also evident that it is still in the research phase. Most
of the authors of the papers in this book are associated with academia or with
research centers. Computer-aided mechanical assembly planning is still largely
an academic discipline. Its application in industry is still in the early stages.
Among the reasons why its use in industry is not yet extensive are the following:

1. The computational efficiency of the today’s planners limits them to assem-
blies with a relatively small number of parts. To handle products consisting
of 60 or 80 parts, which occur in industry, current systems still need the
help of a human operator.

2. The measures for the selection of desirable assembly sequences in exist-
ing planners are not yet wide enough. Cost, ease of assembly and robot
gripping requirements are among the commonly used evaluation criteria.
Fixturing and tooling requirements and the related issue of partial assem-
bly turnovers are seldom discussed. Even less frequent are such practical
production criteria as assembly line layout. Furthermore, many assembly
processes incorporate various testing steps, which should be considered in
the evaluation. Evaluation and rejection of candidate assembly sequences
on the basis of such multiple criteria is clearly more difficult, but it would
contribute to the perception of real world relevance of the assembly plan-
ners. Since the time associated with alternative plans and the related issues
of tool change and fixture adjustment are of great industrial significance,
it will also be important to integrate scheduling with planning in future
systems.

3. There is a natural delay in the transfer of research knowledge from academia
to industry. Industry is somewhat conservative in the introduction of new
technology, which must be justified on the basis of both scientific and eco-
nomic criteria.

The authors of the chapters in this book report on work that addresses these
problems.

I indicated earlier that assembly planning is a maturing discipline. Perhaps it
is more fair to say that it has reached adolescence. It has given up the toys
of childhood, but it is not quite ready to assume all the responsibilities of the
rough and tumble adult world of industry. This is perhaps the most exciting
time to be associated with a new technology. Readers of this book will be ready
for the developments to come.

George A. Bekey

Computer Science Department and

Center for Manufacturing and Automation Research
University of Southern California

Los Angeles, California

COMPUTER-AIDED
MECHANICAL
ASSEMBLY PLANNING

Chapter 1
Introduction

Luiz S. Homem de Mello and Sukhan Lee

Intensifying competition in manufacturing has brought about redoubled pres-
sure for cutting down costs, for improving product quality, and for minimizing
the time from concept to production. These requirements, coupled with the
ever growing complexity of products and of production systems, have con-
tributed to a rising interest in concurrent engineering, or simultaneous engi-
neering. These terms have been used to refer to the idea of integrating the
design of a product and the design of its production system. Being able to
take manufacturing considerations into account early in the development of
a new artifact can greatly simplify its fabrication. Even a small change in
the design of a product can have a large impact on the assembly alternatives.
Where adopted, the concurrent engineering approach has led to more efficient
production systems and therefore to lower costs compared to where design and
production planning are separated. In addition, development times are shorter,
and redesign due to manufacturing constraints is greatly reduced.

The introduction of the concurrent engineering approach has been facilitated
by the recent progress in digital electronic technology. As computers become
faster, more powerful, and less expensive, and as software engineering matures,
industrial designers and engineers have had increased access to software tools
that help them improve their productivity. Computer-aided design (CAD) pro-
grams, for example, are already well established and substantially improve the

efficiency of the design process. Another field in which the use of computers is
becoming widespread is process planning, that is, the generation of a sequence
of machining cuts for the production of a part. Still another manufacturing do-
main in which computer aids are being introduced is the scheduling of factory
resources.

This book focus on yet another area for software tools that has emerged more
recently namely mechanical assembly planning. The use of computers for plan-
ning the assembly of mechanical products originated in the research on planning
within artificial intelligence.

There are many reasons for the systematization and the computerization of
assembly planning, some of which are listed below.

o Industrial designers will benefit from having a tool with which they can
quickly assess their designs for ease of assembly.

e The planning and programming chores in manufacturing are time consum-
ing and error prone. Moreover, the time spent in planning and program-
ming may excessively delay the actual production. The automation of these
chores expedites their execution, reduces their cost, and improves their qual-
ity.

e The tailoring of products for market niches is becoming more common. For
small batches, the cost of manual planning and programming can weigh
heavily in the total production cost.

o Although many experienced industrial engineers have a knack for devising
efficient ways to assemble a given product, systematic procedures are nec-
essary to guarantee that no good assembly plan has been overlooked. For
complex products, the number of different assembly alternatives may be so
large that even skillful engineers fail to notice many possibilities.

o In some cases, it is necessary to adapt the assembly process to different sets
of machines. The need to produce different products in the same shop may
lead to the choice of an assembly plan for a product that may not be the
most efficient on ideal conditions, but uses the idle equipment. Likewise,
when the same product is assembled in different sites, the plan that is more
suitable to the available equipment may be different from one shop to the
next. Automation allows the actual planning to be delayed until it is clear
what machines will execute the assembly.

e In many applications of autonomous systems, it is impracticable to pre-
program all tasks they might face. Such systems must have the ability to
generate assembly or disassembly plans that fit the particular situation they
encounter. Similarly, an opportunistic scheduler can be more effective if it
is able to generate, in real time, the assembly plan that is more suitable for
the order in which parts arrive or are picked from a bin.

A number of technical issues must be addressed for the automation of assembly
planning. They include the following:

e The representation of assemblies

A computer representation of mechanical assemblies is necessary in order to
automate the generation of assembly plans. The main issues here are deciding
what information about assemblies is required, and how the information can
be represented inside the computer.

Of course the shape of the parts and the geometric relationship between parts
are crucial for assembly planning. Therefore, they must be represented, along
with their tolerances, in any assembly model. But although the geometric
aspects are very important, assembly models must also represent a number
of other aspects such as the attachments that secure two parts together, or
the chemical treatments (e.g., painting, lubrication) that must be applied after
parts are joined.

A relational scheme seems ideal for representing assemblies since it can capture
the geometric and mechanical relations between parts. However, for assem-
blies with large number of parts, a hierarchical scheme may be more efficient
since many products are designed with natural hierarchies of subassemblies. In
practice, a combination of the two schemes may attain the advantages of both.

¢ The representation of assembly plans

A computer system for assembly planning must have a way to represent the
assembly plans it generates.

Several methodologies for representing assembly plans have been utilized.
These include representations based on directed graphs, on AND/OR graphs, on
establishment conditions, and on precedence relationships. A clear understand-
ing of these alternative representations and of how one maps into the others is
very important in developing an assembly planner. As later chapters will show,
the ability to go back and forth from one representation scheme to another can
lead to efficiency gains in the planning process.

In addition to representing the joining of parts or subassemblies, the represen-
tation schemes must also be able to represent the other operations such as the
chemical treatments that must be applied after parts are put together.

e The correctness and completeness of the planning process

Clearly, to be an useful tool, an assembly planning system must only generate
correct assembly plans. Furthermore, to solve problems that require optimiza-
tion, such as the selection of the best assembly alternative, one must be able
to traverse the space of all candidate solutions, regardless of the method used
to solve the problem. It should be noted that the solution procedure does not
need to go over all possibilities. What is important is that the method has the
potential to generate all assembly plans.

e The efficiency of the planning process

Assembly planning is a computationally intensive task. Therefore, it is impera-
tive that we seek new approaches that can reduce the computation required to
generate assembly plans. Some approaches to improve the planning efficiency
may sacrifice completeness. This happens, for example, when subassemblies
are treated as units, in order to artificially reduce the number of parts. In
these cases, it is important to ascertain that no good plan is being missed, that
is, that the alternatives being pruned would not be among the preferred ones.

e The selection of assembly plans

The number of distinct feasible assembly plans can be very large even for assem-
blies made up of a small number of parts. Therefore, a complete enumeration
of assembly plans is prohibitive in most real applications. Finding systematic
ways to narrow down the alternatives is crucial for the automatic planning
of assembly. Two kinds of approaches are currently being tried. One, more
qualitative, is the development of rules that can be used to eliminate assem-
bly plans that include difficult tasks or awkward intermediate subassemblies.
Another approach, more quantitative, is to devise an evaluation function that
computes the merit of assembly plans based, for example, on the cost of the
resources needed to perform the assembly, on the total time required, and on
the difficulty of execution. It seems likely that a combination of the qualitative
and the quantitative approaches will attain the advantages of both.

e The integration with CAD programs

A mechanical assembly is a composition of interconnected parts. As mentioned
above, more and more frequently the parts are being designed using CAD pro-
grams. Therefore, the shape of each part as well as other relevant information
are already stored in computer databases. The assembly planning will be more
efficient if those CAD databases can be directly input to the program that
generates the assembly models.

e The integration with task and motion planners

Another result of the recent progress in digital electronics is the introduction
of programmable robots in manufacturing. These machines can be adapted
to execute different operations by changing their internal programs. Task and
motion planners that will facilitate robot programming are currently being
developed. With a view towards future integration, the output of assembly
planners should be compatible with what is required by task and motion plan-
ners. Moreover, it is also desirable that assembly planners take into account
the capabilities and limitations of task and motion planners.

All the above issues are active areas of research. The main goal of this book is
to consolidate in one volume the main approaches to solving these problems.
It has been divided into two parts: assembly modeling, and assembly planning.
The next two sections present an overview of the book.

1.1 Assembly modeling

Part I contains four chapters which cover important issues in modeling assem-
blies.

Chapter 2 discusses the mathematical modeling of the geometric aspects of
assemblies. Assembly models are defined in terms of configuration spaces whose
elements correspond to collection of solid mechanical parts and their poses
(i.e., positions and orientations.) A range of increasingly complex notions of
assemblies is introduced. It includes the following:

1. rigid assemblies in which the relative positions of parts remains the same;
2. articulated mechanisms in which the relative positions of parts can change;
3. variational assemblies in which the shape of the parts can vary;

4. stochastic assemblies in which the relative positions of parts can vary.

Representation schemes previously developed for modeling individual parts can
be readly extended for modeling the geometric aspects of these four notions of
assemblies. Chapter 2 discusses these extensions. It also points to issues that
are still open to research, such as the establishment of a sharp characterization
for the subsets of configurations that correspond to physical assemblies.

Chapter 3 introduces a modular boundary class of models for solid objects.
These models describe objects as the pairwise combination of face-adjacent
parts. Compared with conventional boundary representation and constructive
solid geometry, such models offer the putative advantages of locality of ma-
nipulation, capability of describing form features, and possibility of attaching
tolerance information.

A specific model of that class, the Face-to-Face Composition (FFC) model,
which was developed for an experimental geometric modeler, is presented. This
model contains explicit information about interference among the components
of an object. Juxtaposition and interference are represented in a hypergraph

in which the nodes are component objects and the hyperarcs are connection
and interference facets.

The data structure for the FFC mirrors a cellular decomposition of the modular
object into non-overlapping, arbitrarily shaped cells. The FFC model can be
constructed either by adding a single component at a time or by combining
two composite objects represented by FFCs. An FFC can be readily evaluated
to yield the boundary of the complete object.

An application of the FFC is the Production Graph, which represents alter-
native sequences of combining components. Valid sequences can be obtained
using the validity checks developed for complete FFCs.

Chapter 4 presents a characterization of the spatial relationships between bod-
ies in assemblies as trivial kinematic constraints. A kinematic constraint is
defined as a set of displacements that can be expressed as a composition of
cosets of Euclidean subgroups. A constraint is said to be trivial when it can
be reduced to a single coset.

A graph of kinematic constraints is defined as a graph whose nodes correspond
to workpieces and whose directed arcs are labeled with trivial kinematic con-
straints. The problem of how to find equivalent constraints between two bodies
is addressed. By relying on the composition and intersection of subgroups, it is
possible to carry out a topological analysis of the motion possibilities for a set
of bodies linked by a set of trivial kinematic constraints. A basic algorithm for
constraint propagation is presented. This algorithm computes the equivalent
constraint between two bodies in a graph of kinematic constraints with arbi-
trary topology. An assembly example illustrates the algorithm’s computation.

Chapter 5 formulates a mathematical programming approach to the solution
of the problem of specifying the position of each part relative to the position
of the other parts in an assembly.

The position of each part is specified based on geometric relationships between
various features of the part and mating features of its neighboring parts. These
feature relationships are treated as inequalities, and mathematical program-
ming is used to find the optimal configuration of the parts.

The approach is amenable to both sequential and simultaneous strategies for
computing the part positions. The computations are tractable and robust.
Thus a variational assembly model can be constructed and evaluated at rea-
sonable cost, and the assembly model will be compliant with part variations.
This approach is particularly useful for solving problems in tolerancing.

1.2 Assembly planning

Part II contains ten chapters which address important issues in the systemati-
zation and computerization of mechanical assembly planning.

Chapter 6 discusses four of the most commonly used representations for as-
sembly sequences. These are based on directed graphs, on AND/OR graphs, on
establishment conditions and on precedence relationships. The correspondence
between these representations as well as their correctness and completeness are
established and are illustrated with two assembly examples.

Chapter 7 presents a basic algorithm for the generation of all mechanical assem-
bly sequences for a given product. The algorithm employs a relational model
of assemblies. In addition to the geometry of the assembly, this model includes
a representation of the attachments that bind one part to another.

The problem of generating the assembly sequences is transformed into the prob-
lem of generating disassembly sequences in which the disassembly tasks are the
inverse of feasible assembly tasks. This transformation leads to a decomposition
approach in which the problem of disassembling one assembly is decomposed
into distinct subproblems, each being to disassemble one subassembly. It is as-
sumed that exactly two parts or subassemblies are joined at each time, and that
whenever parts are joined forming a subassembly all contacts between the parts
in that subassembly are established. The algorithm returns the AND/OR graph
representation of assembly sequences. Bounds for the amount of computation
involved are presented.

The correctness of the algorithm is based on the assumption that it is always
possible to decide correctly whether or not two subassemblies can be joined,
based on geometrical and physical criteria. An approach to compute this de-
cision is presented. An experimental implementation for the class of products
made up of polyhedral and cylindrical parts having planar or cylindrical con-
tacts among themselves is described.

Chapter 8 presents a systematic method for the determination of assembly
plans, described by assembly trees (or part trees). This method involves a re-
cursive definition of the assembly process, a model of the end product defining
all the actions which have to take place in the assembly process, and a formal-
ization of assembly constraints. An assembly example illustrates the method.

The assembly process includes not only the mating and securing of parts but
also all the other operations, referred to as complementary, such as inspection,
test, cleaning and labeling. Accordingly, the model for the end product includes
information about the required complementary operations.

The assembly constraints are divided into two classes: operative constraints,
which define whether or not any candidate assembly operation is feasible; and
strategic constraints which prune the awkward assembly plans. A resulting
interactive software named LEGA has been implemented. LEGA is written in
PROLOG and uses a database of constraints.

The strategic constraints are introduced in the product model. One kind of
strategic constraint is to impose an intermediate subassembly. Another kind
is to group parts that have to be assembled in sequence. These include stacks
and ordered layers, two types of configurations that are common in practice.

Although there is some degree of subjectivity in the choice of the strategic
constraints, their use have lead to large gains in planning efficiency. It is also
possible to run LEGA with two or more distinct sets of strategic constraints
and analyze the outcomes.

The operative constraints are of three types: geometric, stability and material.
The latter corresponds to the availability of tools or other equipment and their
capability to execute the assembly operations. The specification of stability
and material constraints also involves some degree of subjectivity. Operative
constraints are determined as the assembly plans are generated based on infor-
mation supplied (interactively) by the user.

LEGA first tries to deduce whether or not a candidate operation is feasible from
the constraints in its database. This kind of deductive inference is well suited
to PROLOG. Optionally, a program connected to a CAD database is activated.
If no deduction can be made automatically, then LEGA queries the user. When
this occurs, new constraints are created and added to the database. Typically,
the user is queried frequently at the beginning of the planning process and
sporadically at the end.

LEGA has been effectively applied to products or subassemblies having up to
20 components.

Chapter 9 describes the GRASP assembly planner. The input to GRASP are
three-dimensional models of parts and their locations. The output is an AND/OR
graph representing the set of all geometrically feasible assembly sequences in
which exactly one part is added at each assembly task, and it follows a straight
line trajectory.

GRASP follows an approach similar to the algorithm described in chapter 7.
It also transforms the problem of generating the assembly sequences into the
problem of generating disassembly sequences in which the disassembly tasks
are the inverse of feasible assembly tasks. GRASP, however, minimizes the
geometric reasoning needed to test candidate assembly tasks. Whenever it does
a geometric reasoning computation to find whether or not a part is movable,
GRASP stores an expression encoding the conditions under which the given
part would be movable. The subsequent analysis of candidate tasks will first
try to deduce whether or not a part is movable from these expressions in order
to avoid lengthy geometric reasoning computations.

Three types of conditions of increasing complexity are used in GRASP. The
first, called simple, corresponds to the fact that if a part p is movable in an
assembly A, then it is also movable in any subassembly of A. The second,
called contact, corresponds to the fact that if a part p is not movable because
it collides with one or more of the parts in S, then p is not movable in any
subassembly that includes all those obstructing parts. The third condition,
called local is more elaborate. The parts of an assembly A in contact with
a given part p are clustered in a way that all parts in a group constrain the
freedom of p in the same way. In a subassembly of A, p will not be movable
unless none of the parts in one such group are present.

Chapter 9 also discusses the computational complexity of GRASP and presents
its performance for two assembly examples.

Chapter 10 describes an extension to GRASP aimed at eliminating the restric-
tion that only one part be added in any assembly task. It presents a new algo-
rithm for solving an important subproblem of the assembly planning problem,
namely the generation of all the ways in which an assembly can be partitioned
into two subassemblies.

Instead of generating all cut sets of the assembly’s graph of connection, the
algorithm presented in chapter 10 uses the geometry information to prune
this search and to avoid the generation of many of the cut sets that do not
correspond to feasible assembly tasks. An assembly example illustrates the
approach. This new algorithm is shown to be sound and complete. Chapter 10
also presents an analysis of its complexity.

Chapter 11 describes the XAP/1 assembly planning system. It begins by com-
paring the version of the assembly planning problem addressed by the XAP/1
system to other systems along four major dimensions: range of operations al-
lowed in the plans produced; degree of detail in which the plans are described;
type of input data required; and degree of optimization done on plans.

The XAP/1 system is oriented toward plan optimization rather than toward
generating all feasible plans. Due to this orientation, XAP/1 plans to somewhat
greater detail than other planners. The plans it generates are such that only
one part is moved at a time and no operation separates parts already joined.
Those plans include not only the sequence in which parts are put together but
also, for each part, the mating trajectory. In fact, plans produced by XAP/1
are a sequence of insertion operations each of which consists of inserting a part
or subassembly into a fixture by following a specified trajectory.

XAP/1 generates plans by successively adding sequencing and trajectory as-
sertions to a set until it describes only one plan. The geometric feasibility of
the resulting plan is enforced by a single form of constraint. The search for
an optimal plan is guided by advice from a set of plug-in criteria modules and
an arbitration module. These criteria provide not only estimates of the qual-
ity of partially formed plans, they provide advice on which planning decisions
should be considered next. Three criteria are discussed: fizture complerity,
directionality and manipulability.

The chapter ends showing the performance of XAP/1 on some sample problems
and discussing, briefly, extensions to the system’s approach.

Chapter 12 presents BRAEN, a system that generates a disassembly sequence
for a product from the boundary representations of its parts and other objects
involved in the assembly process such as table-top and wall. The reverse of
this sequence is the assembly plan. BRAEN assumes a single robot. The plans
it produces are sequences of motions, each motion being a translation or a
rotation of a component or multi-component subassembly.

In addition to planning at the level of motion specification, BRAEN is oriented
towards generating a good sequence quickly rather than generating all feasible

10

sequences. The use of a detailed geometric description for the objects enables
the system to compute whether or not a motion is feasible.

The planning technique is centered on two modules. A freedom determination
module uses an iterative surface subdivision technique to identify movable com-
ponents and multi-component subassemblies. A disassembly module searches
for a sequence of motions that will break one assembly into two subassemblies.

BRAEN uses three common sense techniques to enhance system performance.
One technique deduces the feasibility or infeasibility of a motion in one con-
figuration from the feasibility or infeasibility of the same motion in another
configuration. Another technique involves trying first the motions that are
more likely to be feasible. Yet another technique uses simple physics to model
the effects of gravity and the stability of subassemblies.

Chapter 13 presents COPLANNER, an assembly planning system organized un-
der the Cooperative Problem Solver paradigm. In this system, planning is
carried out by the cooperation of several modules namely: the plan coordina-
tor, the heuristic advisor, the geometric reasoner, the physical reasoner, the
resource manager, and the blackboard.

COPLANNER operation is also based on a recursive decomposition of the as-
sembly into subassemblies. In order to increase the planning efficiency, the
system avoids the analysis of decompositions that do not correspond to feasi-
ble assembly tasks. This is achieved by clustering the parts that have to be
assembled together. Chapter 13 introduces a systematic formulation to con-
struct an abstract liaison graph representation of the assembly which merges
sets of mutually inseparable parts, that is, those parts that must be assembled
independently in any feasible assembly sequence.

The approach is then extended to cluster parts into preferred subassemblies
based on a weighed abstract liaison graph. This graph is similar to the abstract
liaison graph, but has weights assigned to its edges. These weights reflect the
stability of part interconnection and the directional constraints of the motion
that brings the two parts together. The degree of part aggregation can be ad-
justed by changing some heuristic coefficients. This kind of clustering sacrifices
completeness since the sequences that interleave parts of different subassemblies
cannot be generated. However, there are manufacturing gains in assembling
these preferred subassemblies independently. The advantages include the better
stability of the intermediate subassemblies, the less difficulty of the assembly
tasks, and the greater cohesion of the parts in the preferred subassemblies.

COPLANNER has been implemented in Common Lisp and C on a Sun 260 work-
station. The plans it generates include assembly instructions which schemati-
cally describe how to execute the joining of subassemblies.

Chapter 14 shows an assembly planning system that uses Design for Assembly
(DFA) analysis to guide the generation of the preferred assembly plans.

11

Like the assembly planner described in chapter 13, the operation of this plan-
ning system is also based on a recursive decomposition of the assembly into
subassemblies and on the use of an abstract liaison graph. In addition, the
planning in this system incorporates the special processes, such as cleaning,
testing or labeling, that must occur during the assembly. These special pro-
cesses are taken into account in the assembly planning by the introduction
of special precedence constraints. Furthermore, this planner can distinguish
reversible from non reversible assembly tasks.

Chapter 14 also establishes methods of evaluating alternative assembly plans in
terms of DFA criteria such as subassembly stability, directionality, subassembly
poses, special process requirements, and parallelism in assembly. The number of
fixtures, or holding devices, and the number of reorientations during assembly
are identified through the analysis of stability and directionality. All these
factors are used in defining cost and heuristic functions for an AO* search for
an optimal plan.

Chapter 15 shows a system developed at the Charles Stark Draper Laboratory
over the last five years. It is an integrated computer aid useful for assembly-line
design and concurrent design of mechanical products.

First, a simple technique for generating assembly sequences on which the initial
version of the system was based is presented. At the time of its development,
the technique was a great help, and for many applications it was adequate and
practical. The liaison diagram representation of assembly that was used as well
as the technique itself still provide quick insight into product assembly. The
simple technique can be invoked mentally and need not depend on computer
aid. The potential role and form of computer aid, however, was immediately
recognized and efforts toward devising computer aids were started at once.

The algorithms used in the current version of the system take advantage of the
methodology presented in chapters 7 and 8, including: an efficient organization
of interference questions based on cut-sets of all subassemblies; a disassembly
(instead of assembly) paradigm to avoid the work of creating and discarding
assembly dead ends; and the coding of part-interference data already at hand
to screen subsequent part-interference questions and often infer answers, dra-
matically reducing question-count. The plan for this version of the system was
to have the computer to work from a design solid-model data-base to answer
the remaining necessary assembly interference questions. But consideration of
the volume of computation needed combined with the great success in having
an engineer familiar with the design answer the interference questions aided by
simple screen characterizations of the subassemblies lead to the implementation
of an interactive program for finding sequences.

The current system’s algorithms and interactive programs for editing product
assembly sequences are also described. Editing means and criteria are user-
exercised and may be based on assembly-state and assembly-move issues; on
assembly-line layout and topology issues; and on consideration of fixturing,

12

orientation, and fixturing-change and reorientation counts. The on-line visual
aids provided during generation and evaluation of sequences are illustrated with
examples.

Various physical and economic criteria exist. These criteria evolved from and
are related to the work on industrial assembly system design and product de-
sign. They include: pass-through of a particular assembly state; executing a
particular partial sequence; avoiding a difficult assembly move; avoiding an
awkward assembly state; choice of assembly line topology; minimizing non-
productive line tasks like refixturing and reorientation; minimizing various eco-
nomic parameters. The criteria vary in editing power, need for an augmented
information base, and ease of application. Knowledge of the power, informa-
tion needs, ease of application, and the logical rules of sequence representation
suggest the use of an application sequence strategy for the criteria.

Part 1

Assembly Modeling

Chapter 2

Representations for
assemblies

Aristides A. G. Requicha and Timothy W. Whalen

Mechanical, electrical and electronic products typically are assemblies of many
component solid parts. The components of a product may be joined so as to
form either (1) a rigid assembly, (2) an articulated collection of rigid bodies that
may move relative to one another (often called a mechanism), or (3) a flexible,
non-rigid assembly. No solid is perfectly rigid, and sometimes non-rigidity
must be acknowledged explicitly, for example when two parts are press-fitted,
or when one of the components is a spring.

The term assembly is commonly used in two senses, to denote either the action
of joining several components, or the resulting artifact. This chapter is con-
cerned primarily with assemblies as physical artifacts. We focus on two related
issues: what information about assemblies must be captured, and how can such
information be represented computationally in a form suitable for integrated,
computer-aided systems that support the entire life-cycle of a product, from
requirements analysis and design, through manufacturing and assembly, to field
maintenance and disposition.

First we discuss mathematical models for assemblies, and introduce a range
of increasingly complex notions of assembly. Next we consider schemes for

16

representing assemblies computationally, and we show that one must be able
to represent solid parts and their associated tolerances, plus mating relations
between parts, and attributes of such relations. Part representations, mat-
ing relations, and tolerances are then discussed in more detail. The chapter
concludes with a summary and discussion of open issues.

2.1 Mathematical models for assemblies

An assembly specification includes geometric as well as non-geometric informa-
tion. Examples of the latter are the torques required to tighten the bolts in
an engine block, and the characteristics of a welding join between two parts.
In this section we ignore non-geometric aspects of assemblies, and we focus on
geometry.

Individual components of an assembly can be modelled mathematically as
r-sets, that is, as compact, regular, semi-algebraic subsets of E2, the 3-D Eu-
clidean space [31, 32]. But which mathematical objects correspond to assem-
blies? This is the major issue addressed in the remainder of this section.

A mathematical model for an assembly instance is a set of mathematical mod-
els for n solids S;, plus associated geometric transformations (i.e., mappings
from E® to E®) T; that define the solids’ relative poses (i.e., locations and ori-
entations). For non-rigid assemblies, for example those involving press-fit or
flexible components, the T; correspond to suitable deformations concatenated
with the rigid motions that establish the objects’ poses. For simplicity, in the
remainder of this section we consider only assemblies of rigid components, and
we assume that there is an agreed coordinate frame in which all the poses are
measured. Also, throughout the chapter we often refer to mathematical models
for solids or assemblies simply as “solids” or “assemblies”, when no confusion is
likely to arise between abstractions (mathematical entities) and their physical
counterparts.

Denote by M, the mathematical modelling space for solids, that is, the space
of all rsets in E3. (Sometimes a smaller class of rsets suffices as a mod-
eling space, as we will see later.) A collection of n solids (S1,Ss,...,S5,) is
an element o of the solid configuration space C,, which is the direct prod-
uct of n copies of M,. Similarly, a set of n transformations is a point 7 in
the transformation configuration space C;, which is the direct product of n
copies of M;, the modeling space for transformations. For assemblies of rigid
components the T; are rigid motions in E3, M; is a 6-D space, and C; is the
pose configuration space. An assembly instance « is a pair (o, 7), that is, an
element of the assembly configuration space C, = C, x C;. Equivalently, «
is a 2n-tuple (S1,S53,...,54, 11, T%,..., Tn), and we often write a(o,) with
0=(51,52,...,8,) and 7= ([}, T, ..., T3,)-

Intuitively, an assembly instance is simply a collection of parts in fixed poses. If

17

there is no shape uncertainty associated with the parts, and these are attached
rigidly to one another, then there is only one assembly instance. But in general
there may be many instances associated with an assembly. For example, a
shaft may rotate through an entire (0,2x) range with respect to a bushing.
The poses of the parts in a mechanism vary continuously, and physical motions
correspond to curves or higher-dimensional subsets of C;. To cater to moving
parts we define a mathematical model for a nominal assembly as a pair (7, ©),
where o is a point of C,, and © is a subset of C;. Equivalently,

A(0,0) = {a(o, 7)|T € O},

where A denotes a nominal assembly and a one of its instances. We use the
term “nominal” to emphasize that part variability is not taken into account —
there is a given set of parts that may move in space in the manner prescribed by
the poses in the set ©. (However, we do not imply that parts in the assembly
must have the “nominal dimensions” defined in their tolerance specifications.)
The pose of a part may depend in complicated ways on the poses of several
other parts, and therefore it is not sufficient to define independent subsets of
M, for each part. The set © captures the pose relationships for all the parts.

Much of the past research on assembly modeling has focused on nominal assem-
blies. But parts cannot be manufactured with perfect forms and dimensions,
and the associated geometric uncertainties are important because they often
determine whether an assembly is physically realizable, or whether an assembly
plan will succeed. To take part variability into account we define a mathemat-
ical model for a variational assembly as a subset of C,, or, equivalently, as the
union of a set of nominal assemblies

A= | 4(s,0(0)),

o€ED

where X is a subset of C,. In a general variational assembly many groups (n-
tuples) o of parts are admissible, and for each group there is an associated set
of poses corresponding to relative motions of the parts. The admissible motions
may depend on the specific o being considered.

Typically, ¥ = V3 X V5 X --- X V,,, where each V; is a subset of M, called a
variational class [33, 34] associated with a part. This means that each admis-
sible part is a solid S; selected from its corresponding class V;, independently
of the selection of other parts in the assembly. Independent selection reflects
the modern principle of part interchangeability. Note, however, that even in
modern manufacturing practice sometimes parts must be “matched”. This im-
plies that interchangeability no longer applies at the part level, but rather at
the level of certain subassemblies.

Not all a(e, 7) correspond to realizable assemblies. The following conditions
must be satisfied.

18

o Non-interference — Two parts of the assembly in their specified poses
must not occupy simultaneously a 3-dimensional region of space. This
can be formulated mathematically by requiring that the regularized in-
tersections [31, 32] (denoted by N*) between all pairs of distinct parts be
empty:

[

Vi, j(i £ j) = Sin* S; = &

(Regularized set operations are the topological closures of the interiors
of their conventional counterparts [31, 32].) Note that standard, non-
regularized intersection is not appropriate because parts in contact inter-
sect over a region of their boundaries.

e Path-existence — It must be possible to move the parts continuously
and without collision from a pose configuration in which they are suffi-
ciently apart to the specified configuration. That is, there must exist a
continuous trajectory 7(r),r € [0,1] in C; such that (1) a(o,7(r)) is a
non-interfering assembly for all r € [0, 1], (2) a(e, 7(0)) corresponds to a
situation where the distances between the solids are large compared to the
solids’ dimensions, and (3) a(o, 7(1)) is the specified assembly instance.

These conditions must be modified slightly when an assembly involves a press
fit or another joining technique that causes a limited amount of interference.
We will assume in the sequel that such modifications have been incorporated
in the definitions of non-interference and path-existence when necessary.

Nominal and variational assemblies must not include instances that fail the
non-interference or path-existence criteria. Path existence clearly implies non-
interference, because the specified configuration (o, 7(1)) must be non-interfer-
ing. The converse is not true, as shown in Figure 2.1, which depicts a non-
interfering assembly that does not satisfy the path-existence criterion. The
shaft is a single part, and cannot be assembled to the bracket. Assembly in-
stances that satisfy the path-existence condition (and hence both criteria) are
called geometrically feasible or geometrically realizable. Nominal and variational
assemblies also are called geometrically realizable if all of their associated in-
stances are geometrically realizable. Later chapters of this book will show that
an assembly instance may be geometrically feasible and yet fail other criteria.

For example, it may be impossible to reach a component with the tool necessary
to fasten it.

The mathematics of assembly modeling has not been fully worked out. We
understand reasonably well the characteristics of M, and M;, and hence of
C,. The pose configuration space M, typically is 6-D since general rigid bodies
have 3 degrees of freedom of translational motion and 3 of rotational motion.
Therefore C; is 6n-dimensional. M, typically is not a finite-dimensional space.
But if the solids in the represented domain can be described by a finite number

19

Figure 2.1: A non-interfering but geometrically infeasible assembly instance

of parameters, then M,, and also C, and C,, are finite-dimensional. For exam-
ple, if all solids of interest are cuboids, the length, width and height completely
define a solid, and M, is 3-D.

Some issues remain unresolved. For example, is any subset © of C; acceptable
in an assembly model? And any ©? We suspect that the answers may be “no”.
For example, not all subsets of M, are acceptable as variational classes. Some of
them correspond to objects that are overconstrained, in the sense that portions
of the objects’ boundaries must be of perfect form or in a perfect relationship
to others, and therefore are not manufacturable with physical processes, which
have inherent uncertainties. A sharp characterization of variational classes
is still evolving, but current thinking is that they must be regular sets in a
topology related to that induced by the Hausdorff metric in M, [5]. Analogous
results may apply to assembly modeling. We will ignore these issues in the
sequel, and assume that feasibility is the only geometric condition that must
be satisfied by mathematical models of assemblies.

The previous definitions are purely deterministic. But manufacturing and as-
sembly processes have inherent uncertainties of a stochastic nature. Random-
ness can be introduced in our models by defining a stochastic assembly configu-
ration space §, that consists of C, with a probability density function ¥ (o, 7)
defined on it.

Random variations between parts sometimes compensate one another, leading
to functionally acceptable assemblies of relatively imperfect components. It
is often more economic to have loosely toleranced parts that sometimes (in-
frequently) cannot be assembled, than tightly toleranced parts guaranteed to
always assemble. This implies that the geometric realizability requirements

20

for stochastic assemblies should be relaxed. A stochastic assembly may con-
tain infeasible instances, if the probability associated with such instances is
sufficiently small.

The mathematics of stochastic assemblies is more complex and not as well
developed as its deterministic counterpart.

2.2 Overview of assembly
representation schemes

Let us focus initially on the geometric aspects of assembly representation. The
notion of representation scheme and associated properties introduced in [32] for
individual solids can be readily extended to assemblies by exploiting the math-
ematical models discussed in the previous section. A representation scheme for
assemblies is simply a mathematical relation between the appropriate mathe-
matical models and symbol structures called (computational) representations.
(Here we are using the term “assembly” to encompass assembly instances, as
well as variational and nominal assemblies.) The domain of a representation
scheme is the set of mathematical models to which it applies. A representation
is valid if it corresponds to at least one (geometrically feasible) assembly, and
is unambiguous if it corresponds to only one assembly.

An assembly instance can be represented unambiguously by a collection of
solid models (i.e., unambiguous representations for rigid solids) for its com-
ponents, plus the associated geometric transformations that define the parts’
poses. Solid modeling is a relatively mature technology (reviewed briefly in
Section 2.3), and the representation of transformations by 4 x 4 matrices in
homogeneous coordinates or by other means is well understood.

A representation for an assembly instance in terms of solid models and, say, 4x 4
matrices of numerical elements is valid if the solid models and transformations
are themselves valid, and if the corresponding configuration is geometrically
realizable. Non-interference can be tested through pairwise regularized inter-
sections between all of the components. Regularized intersections are provided
in most of the modern solid modelers, although substantial amounts of compu-
tation are involved. Testing for path existence is much more complicated. We
do not know of general algorithms capable of establishing that no path exists.
In the current state of the art an assembly planner must be invoked. If it fails
to find a path, one concludes that the assembly is likely to be unrealizable.
Because extant assembly planners make a variety of restrictive assumptions
(e.g., assembly paths must be straight lines, only one part is moved in each op-
eration, and so on), planner failure does not guarantee geometric infeasibility.
Success does ensure path existence.

Most of the commercially-available Computer Aided Design (CAD) systems

21

provide facilities for defining assemblies through direct, explicit specification of
poses. This approach has two major drawbacks:

e Assembly representations typically are constructed by human designers,
and it is difficult to define explicitly the required transformations.

e A specific transformation defines a single point in pose configuration
space. Therefore, the approach cannot describe articulated assemblies
with moving parts.

A better approach is to define the poses indirectly, through mating relations
between surface features, which are subsets of the parts boundaries. Mating
relations establish geometric constraints between parts, and are closely related
to the mechanical behavior of assemblies. Designers typically find mating re-
lations a natural way of specifying assemblies. (Mating relations and similar
concepts have been called in the literature “joints”, “connections”, “liaisons”,
“technologically and topologically related surfaces”, and so forth.)

Indirect, constraint-based definition of assemblies raises delicate issues. For
example: is a representation unambiguous? Whereas directly-specified poses
obviously correspond to unambiguous representations, an indirect specification
may correspond to a single pose configuration, to several, or to none at all. A
constraint satisfaction, or constraint evaluation problem must be analyzed to
determine if there are solutions, and if these are unique. Mating relations and
constraint satisfaction are discussed in more detail in Section 2.4.

Variational, and even nominal, assemblies are complex mathematical objects
that may involve complicated subsets of high-dimensional configuration spaces.
How can such entities be represented computationally? Again, mating relations
provide an answer. A mating relation may specify, for example, that two planar
surfaces remain in contact. This constraint can be expressed in terms of a 4 x 4
matrix that defines the pose of one surface relative to the other. The matrix
contains symbolic variables corresponding to the degrees of freedom not fixed by
the constraint. In the example cited above three variables are needed, because
there are two translational and one rotational degrees of freedom in a planar
contact relation.

The validity of a nominal assembly representation is difficult to establish com-
putationally, because it implies that all the corresponding assembly instances
must be geometrically realizable. Even non-interference is difficult to test.
If there is only one rigid body moving with respect to another, the motion
is collision-free when the volume swept by the moving object does not inter-
sect the other. (However, swept volumes are difficult to compute for complex,
curved objects.) If several objects move simultaneously, ordinary swept-volume

analysis is insufficient, and 4-D space-time sweeps or “extrusions” must be con-
sidered [7].

22

A variational assembly may be represented by a collection of toleranced parts
connected through mating relations. Tolerancing (discussed in Section 2.5) is
a method for representing variational classes through geometric constraints on
part features. There are national (ANSI) and international (ISO) tolerancing
standards. These are sometimes ambiguous, but roughly equivalent mathemat-
ical tolerancing theories have been proposed [33, 34], and ANSI has recently
appointed committee Y14.5.1, charged with the task of defining mathematically
the meaning of tolerance specifications.

When part variability is taken into account, it makes sense to consider mating
relations that also involve geometric uncertainty. For example, specifying that
a shaft and a bearing have two concentric cylindrical surfaces in contact is not
an accurate description of the assembly for detailed analysis. Perfect contact
would prevent the shaft from turning because of friction. Also, two imperfect
cylinders in general can neither be in perfect contact nor be perfectly concen-
tric. (What does concentricity mean for imperfect cylinders?) The functional
requirements are for concentricity within some tolerance, and for a clearance
(instead of contact) within some range. We do not know of standard means
for representing geometric uncertainty between different parts in an assembly,
but direct extensions of single-part tolerancing methods may be adequate.

Consider a variational assembly representation consisting of a set of variational
classes, defined by toleranced solids, and of mating relations. Is the repre-
sentation valid? For validity each possible combination of acceptable parts,
that is, each o in ¥ = V] x V3 X - -+ X V,,, must correspond to a geometrically
realizable assembly for every pose configuration r that satisfies the mating re-
lations. Non-interference testing for a variational assembly is an exercise in
worst-case tolerance analysis, discussed in Section 2.5. Path-existence testing
involves assembly planning in the presence of geometric uncertainties.

Representations for stochastic and variational assemblies are similar. Stochas-
tic assemblies require the additional specification of p.d.f.’s (probability density
functions) to define Q,. Typically, p.d.f.’s are associated to the characteristic
parameters of each of the parts in the assembly. (This is not the most general
approach possible, but it is the only one used in current practice, insofar as
we know.) P.d.f. specification is done by selecting a specific statistical distri-
bution (e.g., Gaussian) and assigning numeric values to its parameters (e.g.,
mean and standard deviation). Testing for (probable) geometric realizability
involves statistical tolerance analysis, discussed in Section 2.5, and assembly
planning under uncertainty.

In current industrial practice, a designer considers a critical requirement of
an assembly (for example, a certain clearance between a pin and a hole) and
converts it into tolerances associated with each of the mating parts through a
process usually called tolerance allocation or tolerance synthesis [8]. The com-
ponent tolerances are represented in engineering drawings or their electronic
counterparts, but the critical assembly requirements usually are not. We be-

23

lieve that assembly representations should contain both assembly and compo-
nent requirements, for the following reasons. The assembly requirements are
insufficient. For example, a pin/hole clearance can be achieved by tolerancing
the pin tightly and the hole loosely, or vice-versa, or by distributing the toler-
ances approximately equally between the two components. It is important to
distinguish the three approaches because they have significant manufacturing
and cost implications. The component tolerances also are insufficient. Without
the explicit representation of the assembly-level requirements it is impossible
to verify if they are indeed satisfied. Furthermore, should the component al-
locations need to be changed because of manufacturing or other life-cycle con-
siderations, it is impossible to modify them automatically without knowledge
of the assembly requirements.

If a representation contains both assembly-level tolerances (typically associ-
ated with mating relations), and component-level tolerances, it is important to
keep the two sets logically separate. Together with untoleranced solid repre-
sentations and mating relations, assembly-level tolerances define a variational
assembly A,, whereas the component-level tolerances define another varia-
tional assembly A.. If A, = A. the representation is redundant, and the
assembly-level information is useful primarily when the design is modified, for
example by changing the allocation of tolerances between individual compo-
nents. But, in practice, the two sets of constraints often are not equivalent.
A representation containing both assembly and component tolerances defines
a variational assembly A, N A.. It is useful to introduce a notion related to
validity, called internal consistency, to characterize assembly representations
whose component-level constraints suffice to ensure that the assembly-level re-
quirements are satisfied. A representation is worst-case internally consistent
if A, O A, and statistically internally consistent if the probability associ-
ated with A, — A, is below a specified threshold. Internal consistency can be
assessed by worst-case or statistical tolerance analysis, discussed in Section 2.5.

The concept of internal consistency may be enlarged so as to encompass other
relationships between component-level and assembly-level data. For exam-
ple, an assembly representation in which a square pin and a square hole mate
through a kinematic revolute joint is internally inconsistent.

Not all assembly requirements are of a spatial nature, and even those which
are geometric may not be expressible directly through mating relations. For
example, one of the main requirements for a pick-and-place mechanism is that
the end effector follow a specified trajectory, within a band of acceptable er-
ror. Another requirement is that the velocity have some specified range. This
example shows that there is a fine line between assembly requirements and
behavioral or functional characteristics of a product, and that it is not clear
where the line should be drawn. We believe that all this information should
be captured in the representation of a product, but not necessarily as part of
what we are calling an assembly representation.

24

Let us turn now to non-geometric information that is directly relevant to assem-
bling operations and cannot reasonably be inferred from other characteristics
of the assembly. There are many examples: presence of adhesives or lubricants;
welding data; fastener types; torques and forces required; special tools. We be-
lieve that all such information can be represented through atiributes associated
with mating relations.

We do not have mathematical models that encompass the non-geometric as-
pects of assemblies, and therefore formal definitions of unambiguity, validity,
and so on, are not applicable. But an informal notion of validity is still useful.
Establishing the validity of non-geometric data is a complex problem that may
involve physical reasoning and an extensive base of experiential knowledge. For
example, how are we to decide if the specification of a certain adhesive is valid?

2.3 Solid models and surface features

A solid model is an unambiguous computer representation for a physical solid
object, modeled mathematically as an mset [32]. Although many schemes exist
for representing solids, the most useful are Constructive Solid Geometry (CSG)
and Boundary Representation (BRep). Much has been written, rightly and
wrongly, about the virtues of each of these schemes. We believe that both
are important and have complementary characteristics. The modelers we build
contain both.

Solids are represented in CSG by directed, rooted, acyclic graphs whose internal
nodes correspond to regularized set operators or rigid motions, and whose ter-
minal nodes correspond to primitive solids such as blocks, cylinders, or “sculp-
tured”, “free-form” solids. The primitives themselves typically are represented
by a “type code” (for example, “block” or “cylinder”) plus an n-tuple of pa-
rameters. For example, the parameters for a cylinder might be 7 real numbers,
2 defining the cylinder’s size (i.e. height and radius) and the rest defining its
position, with 3 corresponding to the coordinates of the center of a base, and
the other 2 defining the direction of a vector aligned with the cylinder’s axis.

The PADL-2 modeler [6] and some of the modern commercial systems can ac-
commodate unevaluated, symbolic parameters for primitives and rigid motions.
AM, an experimental assembly modeler under development at the University
of Southern California’s Programmable Automation Laboratory, admits as pa-
rameters arbitrary LISP expressions and functions. Symbolic parameters con-
stitute a powerful representational capability. They can be used to establish
constraints between objects’ surfaces, to define object families, and to represent
nominal assemblies through symbolic rigid-motion parameters. A specific in-
stance of a solid in a parameterized family defined through CSG is constructed
by binding numeric values to the symbolic variables, and evaluating the pa-
rameter expressions. Under very simple conditions (e.g., the size parameters

25

for the primitives must be positive) the instantiated object is valid, that is,
it has a corresponding r-set. This makes CSG-based parameterizations very
attractive.

A BRep represents the topological boundary of an object through a graph
whose nodes correspond to faces, edges and vertices, and whose arcs corre-
spond to adjacency relations. BReps also can be parameterized, but this raises
delicate problems. For example, certain combinations of parameter values may
be inconsistent with the BRep structure. New faces, edges or vertices may have
to be introduced or old ones deleted for the representations of certain object
instances to be valid.

Mating relations and tolerance specifications are associated with constraints on
subsets of the boundaries of solids. Most of these constraints apply to surface
features of objects, although lower-dimensional entities are sometimes needed.
A surface feature usually is a face, or a union of faces, and in rare cases it may
be a subset or union of subsets of faces. For example, a flatness tolerance may
apply only to a small region of a planar face because a mating part will contact
the face only on that region. (Edge or vertex features can be defined in terms
of surface features, and will be ignored in the sequel.)

BReps represent faces explicitly, and therefore can easily be extended to cater
to surface features. But surface features also can be represented in CSG. The
boundary of a CSG solid is a subset of the union of the boundaries of the
primitives in the CSG representation. This implies that an object’s (BRep)
faces can always be associated with one or more primitive faces. Instead of
representing a surface feature directly through a BRep node, we can represent
it indirectly by the primitive face or faces that give rise to it. We need meth-
ods for representing faces of primitives, and for combining these, through a
union operation, into larger features when necessary. A specific scheme, called
VGraph, for representing surface features in terms of CSG and assigning them
tolerances is discussed in [36], and has been implemented in an experimental
version of PADL-2 and also in the AM system. Surface feature representations
based on CSG are more complicated than their BRep counterparts, but offer
advantages in dealing with parameterized families of objects.

2.4 Mating relations and
constraint satisfaction

To support the computations needed to display assemblies, test them for in-
terference, assess their stability, and for other applications, assembly instances
must be represented by their component solids plus explicit, numerically-valued
transformations with respect to a common or “lab” coordinate frame. A pose
representation scheme based on 4 x 4 matrices, quaternions, or other methods,
defines a set of natural parameters (e.g., Euler angles, rotation angles about the

1 0 0 0 c(gy) 0 -s(6y) O

0 c(8,) s(By) Ay 0 1 0 4
0 -s(8,) <(8,) A, s(8,) 0 c(8;) O
0 0 01 00 0 1

=)

(a) - (b)

Figure 2.2: Coplanarity (a) and coaxiality (b) constraints and corresponding
matrices with rotational (e.g. 6;) and translational (e.g. A,) free variables.

(c(8) and s(6) denote cos 6 and sin 6.)

principal axes) that characterize unambiguously the poses of the components of
an assembly in lab coordinates. But direct specification of natural pose param-
eters of parts or their surface features has drawbacks, as noted earlier. Indirect
specification through relative distances, angles, and geometric constraints such
as coplanarity, parallellism, and coaxiality is much more attractive. Some of
these constraints (e.g., parallelism) are applied primarily to surface features of
a single part, whereas others (e.g., coplanarity) correspond to mating relations
between parts. All of these geometric constraints can be expressed as (often
non-linear) equations on the natural pose parameters of surface features.

Mating relations between surface features can be described by static geometric
constraints such as those just discussed. For example, “against” and “fits”
conditions, which are equivalent to coplanarity and coaxiality for planar and
cylindrical features, have been used in the RAPT system [1, 29] and in [21,
22]. Static constraints typically do not fix all of the degrees of freedom of a
feature. For example, coaxiality between the cylindrical surfaces of a pin and
a hole allows rotary motion about the axis, and translational motion along the
axis direction. Static constraints between features of known geometry can be
expressed as transformations with symbolic parameters that correspond to the
degrees of freedom. Examples are provided in Figure 2.2. Each transformation
maps a coordinate frame attached rigidly to one feature onto another frame
attached to the other feature.

Mating relations also may be defined by kinematic constraints, which specify
explicitly the desired relative motion between two features [19, 20, 27, 44]. For

27

example, one might specify a translational or prismatic joint between a square
bar and a square “hole”. Kinematic constraints can be converted directly into
symbolic-parameter relative transformations, and therefore are mathematically
equivalent to their static counterparts. Nevertheless, we favor assembly repre-
sentation schemes that support both static and kinematic constraints, because
they help in capturing design intent, and therefore should make it easier to
design an assembly or to reason about it. A kinematic constraint is closely
related to the mechanical function and behavior a designer wants to achieve.
In fact, a designer is likely to think first about the type of joint he or she wants
to specify, and only later consider the detailed geometry of the surface features
that “implement” the joint. Clearly, kinematic constraint information is avail-
able at the design stage, and can be easily captured if suitable user interfaces
are provided. Note, however, that kinematic constraint specification raises the
issue of consistency with features’ geometry. For example, a rotary joint is
incompatible with a square pin and hole geometry. The poses of components
in a rigid assembly also can be defined through kinematic constraints, but a
static-constraint specification is more natural, because no motion is intended.

We have been discussing bi-directional constraints. For example, coaxiality
between a pin and a hole is a symmetric relation. If the pin’s position were
to change, the hole would have to move for the constraint to be maintained;
similarly, a hole positional change would cause a corresponding change in the
pin’s pose. Alternatively, one can consider uni-directional constraints, which
are akin to sequential operations, and sometimes are called relative positioning
operations [13, 38, 45]. Uni-directional geometric constraints often can be cap-
tured by assigning to the pose parameters of a “target” feature the values of
symbolic expressions involving the parameters of previously-defined “source”
features. Figure 2.3 shows a very simple example. The left face of the small
block B can be constrained to be coplanar with the middle face of the L-shape
A if the position of B is determined by evaluating the expression ¢ = a — b.
Observe that changes in a or b are correctly propagated to block B, and the
constraint is enforced. However, a direct change in ¢ will not be reflected back
to object A, and will produce a configuration that does not satisfy the copla-
narity constraint. Expressions such as ¢ = a — b are not treated as equations,
and it is not possible in this scheme to solve for a given values for the other two
parameters. Relative positioning via parameter expressions was implemented
in the PADL-1 solid modeler through “distance chains” relating surfaces or
half-spaces of objects defined by CSG [47], and is supported in PADL-2 [6] and
some commercial modelers.

Unidirectional constraints are computationally convenient and surprisingly pow-
erful, but have several drawbacks: (1) a sophisticated interface is needed to
make the approach palatable to human users; (2) because constraints apply
sequentially, previously-established relations may be broken unless special pre-
cautions are taken [19, 20, 38]; (3) complex constraints that correspond to
systems of simultaneous equations are difficult, if not impossible to accommo-

28

a -
Figure 2.3: Uni-directional constraints and parameter expressions

date.

There is a substantial amount of additional literature on geometric constaints
in the computer graphics area, from Sutherland’s Sketchpad [41] to object-
oriented approaches such as Borning’s ThingLab [3]—see [38], which contains
many references.

Consider now rigid assemblies defined through networks of mating relations.
Constraint satisfaction methods analyze the networks to determine if they de-
fine a unique solution in pose configuration space, or if there are many solutions,
or perhaps none, and to compute the solutions. The geometric constraints can
be converted into a set of equations on the pose parameters of the surface fea-
tures involved. An elegant technique for finding the relevant equations involves
extracting cycles from the constraint network [1, 29]. In essence, constraint
satisfaction amounts to studying the roots of a set of (nonlinear) equations.

Numerical solutions may be sought by using, for example, modified versions
of Newton-Raphson iteration [21, 25, 37]. Modifications are needed because
the number of equations often is larger than the number of unknowns, and
redundant equations must be identified. Numerical solution of large systems
of nonlinear equations raises several delicate issues, which include: (1) the pro-
cess may fail to converge; (2) only one solution may be found when several
exist; (3) the algorithm’s behavior depends on the initial guess for the solu-
tion; and (4) the computation may be costly. Furthermore, if an assembly is
articulated, the solutions contain higher-dimensional sets that correspond to
the motions of the mechanism, and numerical equation solvers do not provide
much useful information about the degrees of freedom of the assembly or about
its motions.

29

An alternative approach consists of manipulating the equations symbolically
[1, 29]. Casting the problem in algebraic terms enables powerful techniques to
be deployed, for example Grobner basis computation [16]. These techniques
provide information about the entire set of solutions, its dimensionality, and so
forth. Symbolic elimination and simplification methods produce results con-
taining symbolic parameters that correspond to the degrees of freedom of an
assembly. Unfortunately, Grobner basis calculation and related symbolic alge-
bra algorithms use rational arithmetic and are notoriously slow.

To mitigate some of the drawbacks of numerical and symbolic constraint satis-
faction algorithms, a variety of heuristics and special-case short cuts have been
proposed [1, 18, 29]. Sequential, uni-directional constraint satisfaction methods
[38, 46] are computationally attractive, and the parameter expression approach
is by far the fastest, since no equations are solved. But these methods have
their own drawbacks, discussed earlier.

Recently, group theoretic methods have been applied to study the degrees of
freedom of assemblies [26, 30, 43]. The key observation is that contact between
two surfaces is maintained when the surfaces undergo rigid motions only if
the rigid motions leave the surfaces invariant. For example, two cylinders
in contact permit rotations around the axis and translations along the axis
direction. These are precisely the rigid motions that map a cylinder onto
itself, that is, the motions under which a cylinder is invariant—and therefore
correspond to the symmetries of the cylinder. The symmetries of a feature are
associated with a subgroup of the group of all rigid motions in Euclidean space.
When parts are connected by several mating relations, their degrees of freedom
may be computed by intersecting the corresponding symmetry groups. All the
possible mating relations among a set of parts can be inferred by reasoning
about symmetry groups. However, in our opinion, it is more reasonable to
capture such relations at the design stage, since they are known to a designer
even before the detailed geometry of the parts is specified.

In summary, assembly representations through mating relations give rise to
networks of spatial constraints, and these are intimately associated with sys-
tems of non-linear equations, with all their inherent difficulties. Recent work
by Kramer illustrates the current state of the art [19, 20]. Kramer combines
symbolic and numerical methods, and converts bi-directional constraints into
uni-directional relations for efficient solution. Finally, note that most of the
research on geometric constraint satisfaction has been devoted to equality con-
straints (but see [28, 46]). Inequalities are important for dealing with geometric
uncertainty.

30

2.5 Variational classes and tolerance analysis

Tolerances define permissible variations in the geometry of parts. A variational
class is the set of solids that satisfies a given tolerance specification [33, 34].
(Note that other authors use these terms with a different meaning [45].) All
the solids in a variational class should be “almost equal” in a suitable metric
[5], functionally equivalent, and interchangeable in assembly operations.

Tolerance specifications amount to geometric constraints on the size, pose and
form of subsets of a part’s boundary. Typically they apply to surface features.
The precise meaning of tolerance specifications is a topic of active research.
There are two main approaches for defining tolerancing semantics:

e Shape and pose parameterization.

e Tolerance zone specification, which may be parametric or non-parametric.

We will explain these approaches with the help of a very simple 2-D example.
Consider a planar quadrilateral polygon. If we assume that adjacent sides meet
precisely at right angles, we have a perfect rectangle, which can be characterized
completely by two parameters, its length L and height H. We have thus defined
a family of objects with an associated 2-D parameter space, which we can
identify with M,, the solid modeling space for this example. A pair (L, H) is
a point in this space and therefore it defines a specific rectangle instance. A
tolerance specification corresponds to a subset of M,. Typically, the subset is
an interval (L — AL, L+ AL) x (H — AH,H + AH). But other, more complex
subsets may be defined indirectly, through constraints on entities that depend
on the two parameters [45).

For a richer variational class we may relax the assumption of perfect orthog-
onality, and introduce four more parameters 6;,...,6;, which are the angles
between adjacent sides. The “length” and “width” must be redefined as dis-
tances between specified vertices. A variational class now corresponds to a
subset of a 6-D parameter space. This variational class includes quadrilat-
erals similar to that shown in Figure 2.4, which does not satisfy the earlier,
perfect-orientation specification.

What we have done in both examples is to parameterize the poses of four
straight lines, and constrain the poses through their associated parameters. The
form of the lines is assumed perfectly straight. Perfect form is a reasonable first
approximation, but a more refined tolerance specification must acknowledge
that surfaces cannot be manufactured with perfect shapes. Imperfect form
can be accommodated by using higher-order approximations. For example, we
can replace the straight lines by second-degree curves (conics), and introduce
additional parameters to define the conics. Alternatively a spline can be used.
A tolerance specification still corresponds to a subset of parameter space, but
the space’s dimensionality has increased. Shape and pose parameterization is a

31

04

02

Figure 2.4: A quadrilateral with non-orthogonal sides

reasonable approach for perfect-form tolerancing, but its extension to imperfect
form leads to a large number of parameters of dubious physical significance.

In contrast, the tolerance zone approach makes extremely mild assumptions
about the nature of the surfaces involved. They are required only to “vary
slowly” at the scale of the tolerance values specified [4, 33]. Tolerancing con-
straints in this approach are translated into set inclusion relations. Typi-
cally, a surface feature of an object is required to lie in a region of space
called a tolerance zone. These zones may be constructed parametrically or
non-parametrically [34]. We illustrate the two possibilities with an imperfect
rectangle—see Figure 2.5. First we parameterize the rectangle by its length and
height, as before, and specify an admissible range for each of the parameters.
Next we construct the largest and smallest rectangles in the specified parameter
range, and define a tolerance zone as their set difference, shown in Figure 2.5-a.
Any object with a (slowly-varying) boundary in the tolerance zone is consid-
ered acceptable. In the non-parametric approach illustrated in Figure 2.5-b,
we grow and shrink a perfect rectangle by specified amounts, and subtract the
results to define the tolerance zones. The main distinction between parametric
and non-parametric zones is the growing and shrinking method used. Instead
of considering maximal and minimal values for parameters, expansion and con-
traction are achieved in the non-parametric approach through solid offsets [39],
which are special cases of Minkowski operations or sweeps. The two approaches
produce slightly different tolerance zones, as shown in the figure, but the dif-
ferences do not seem to be practically important. Constructing tolerance zones
for all the specifications used in practice is non-trivial, but an adequate theory
is emerging [9, 17, 33, 40]. Note also that a tolerance zone specification may
be converted into a set of constraints on parameters, if we assume that the

32

h+Ah {®*— 1+Al—/™ hiAn 1+ Al —>
h-Ah r—]-Al—>| h-Ah 1-Al
| |
A 4
. 7
7/";“',-"/;”,-"/)
Y FFFFIrrrer Ny
(a) (b)

Figure 2.5: Parametric (a) and non-parametric (b) tolerance zones

surfaces of actual parts have specific, parameterized shapes.

Representations for variational classes depend on the specific approach adopted
for tolerance semantics. The non-parametric theory requires representations
for nominal solids, surface features, and attributes that constrain such features
[36]. Shape parameterization, as well as parametric tolerance zones, have an
additional requirement: feature and object representations must be parameter-
ized.

Almost all of the extant tolerance analysis algorithms assume a semantics for
tolerances in terms of shape and pose parameterizations. Typically, range or
limit specifications are given for a few parameters or dimensions d;, and the
corresponding range is computed for a resulting dimension d, = f(d;). Figure
2.6 shows a simple example. The resulting dimension is d = a — (b+ ¢). Given
limits for a,b and ¢, what are the corresponding limits for d? Observe that
the relative location of the right face of the slot in the figure with respect to
the left face of the slot can be defined either as the single distance d or by the
“chain” —b+ a — c¢. (To construct this chain go left from the left face of the
slot, then right to the rightmost face of the part, and then left to the right
face of the slot.) In tolerancing jargon, two chains of dimensions associated
with a feature constitute a loop. More generally, the given dimensions need not
be aligned along a single direction, and a more complicated vector loop must
be constructed to relate the relevant parameters. However, most systems deal
only with linear loops of dimensions.

In most tolerance analysis programs the function f that relates resulting and
given dimensions must be specified by a user, either as a closed-form expression
or by a procedure for computing d, from the other d;. In some systems f is

33

[a —

Figure 2.6: An indirectly-toleranced slot

defined implicitly by a simulation procedure that generates representations of
parts in tolerance, “assembles” them, and “measures” the resulting dimensions
[45].

Worst case analysis involves finding the minimal and maximal values for pa-
rameters, and therefore is an optimization problem. The equations that relate
the resulting dimension to the given ones may be non-linear, when angular rela-
tionships are involved. Because the variations in the parameters are small, the
equations often can be linearized, and the optimization carried out by linear
programming [15, 42, 45].

Specific analysis problems must be formulated by human users so as to reflect
critical assembly requirements, and the results of the analysis also must be in-
terpreted by humans in most of the existing tolerance analysis programs. For
example, the slot size in the example above may preclude assembly with a mat-
ing part, but such an inference is beyond the capabilities of typical industrial
systems. Increasing automation is being demonstrated in research systems [45].

The same vector-loop considerations can be used for statistical tolerance anal-
ysis. Now the part dimensions are viewed as random variables. P.d.f.’s for
the given dimensions are specified by a user, and the statistics of the resulting
dimension are computed by using analytic statistical methods [2, 8, 23], or nu-
merically, by Las Vegas techniques (which are the U.S. equivalent of old-world
Monte Carlo analysis) [14, 45]. The traditional approach to tolerance analysis
is well described in [2], which is a revised version of a report dating from the
mid 1970’s.

Judicious formulation of resulting dimensions coupled with worst-case or statis-
tical tolerance analysis can go a long way towards establishing non-interference

34

or internal consistency of assembly representations. In essence, traditional tol-
erance analysis seeks to show that constraints on components suffice to guar-
antee that assembly requirements are met, and therefore is closely related to
internal consistency issues.

Tolerance analysis algorithms based on the tolerance zone approach are still
at the research stage. The most interesting results thus far are reported in
(10, 11, 12]. Work under way at the University of Southern California seeks
to compute tolerance zones and verify clearance and fit conditions by using
the ideas outlined in [35]. The tolerance zone approach deals naturally with
imperfect form. Coupled with assembly representations that contain the critical
assembly requirements, it is expected to lead to highly automated and powerful
tolerance analysis systems.

2.6 Summary and open issues

This chapter introduced mathematical models for (the geometric aspects of)
assemblies in terms of configuration spaces whose elements correspond to col-
lections of solid mechanical parts and their poses (positions and orientations).
Rigid assemblies were considered, as well as articulated mechanisms, with and
without part variability, and with and without randomness. Sharp charac-
terizations for the subsets of configuration space that correspond to physical
assemblies are unknown.

Computational representations for assemblies proposed in the literature con-
sist essentially of (toleranced) solid models for the component parts, mating
relations between surface features, and attributes of such relations. Attributes
establish geometric and non-geometric constraints on the assembly.

The validity and internal consistency of assembly representations raise a host
of very complex problems, many of which require substantial mathematical and
algorithmic development. These problems include interference calculations and
path planning, to establish geometric realizability; constraint satisfaction, to
find static poses and allowed motions of sets of parts connected by mating
relations; and worst-case and statistical tolerance analysis, to check if part-
level tolerance specifications ensure that assembly requirements are met.

Assembly representations should capture design requirements such as assembly
clearances and desired motions. Some of this information can be inferred from
the assembly geometry, but it seems more reasonable to capture requirements
at the design stage, since they are known to the designer, than to re-create
them later, in a process akin to reverse engineering. Computer aided design
of assemblies was not considered in detail in this chapter but a good survey
is available [24]. Two interesting issues raised by assembly design are the
following.

35

1. Designers may proceed bottom-up, by constructing new part represen-
tations or using existing ones, and establishing mating relations and at-
tributes. But they also may operate top-down. The first approach can be
supported through relatively straightforward extensions of current solid
modeling technology. The second, top-down approach is more challeng-
ing, because one must be able to ignore low-level details and establish
relations between features of incompletely specified objects.

2. Assemblies are naturally decomposed by designers into subassemblies,
typically through functional considerations. Subassemblies are not dif-
ficult to represent, and hierarchical structures can be combined with
mating-relation graphs. However, the subassembly structure imposed
by designers need not correspond to a desirable sequence of assembly
tasks. In fact, some of the planners discussed in the following chapters
assume a flat, non-hierarchical assembly structure and infer a suitable set
of subassemblies associated with assembly operations.

The main conclusions of this chapter may be summarized as follows. The
mathematical aspects of assembly modeling are not fully understood. Assembly
representations through mating relations and attributes are reasonably well
established, although most of the associated constraint satisfaction methods
suffer from lack of generality, efficiency, or robustness (or all of the above).
Properties of assembly representations such as validity and internal consistency
involve a variety of complex, open issues. Algorithms for converting assembly
representations into sequences of assembly operations are discussed in later
chapters of this book.

Acknowledgements

The authors were supported by the National Science Foundation under grants
DMC-87-15404 and CDR-87-17322, by the industrial members of the Institute
for Manufacturing and Automation Research (IMAR), and by the Industrial
Associates of the Programmable Automation Laboratory, Institute for Robotics
and Intelligent Systems (IRIS) of the University of Southern California.

References

[1] A. P. Ambler and R. J. Popplestone, “Inferring the positions of bodies
from specified spatial relationships”, Artificial Intelligence, Vol. 6, No. 2,
pp. 157-174, Summer 1975.

[2] @. Bjgrke, Computer-Aided Tolerancing. New York: ASME Press, 2nd ed.,
1989.

36

(3]

4

[5]

(6]

[12]

[13]

[14]

[15]

[16]

A. Borning, “ThingLab — A constraint-oriented simulation laboratory”,
Ph.D. Dissertation, Dept. of Computer Science, Stanford University, July
1979.

M. Boyer and N. F. Stewart, “Modelling spaces for toleranced objects”,
Départment d’informatique et de recherche opérationnelle, Université de
Montréal, July 1990.

M. Boyer and N. F. Stewart, “Modelling spaces for toleranced objects:
R-classes suitable for practical use”, Départment d’informatique et de
recherche opérationnelle, Université de Montréal, November 1990.

C. M. Brown, “PADL-2: A technical summary”, IEEE Computer Graphics
and Applications, Vol. 2, No. 2, pp. 69-84, March 1982.

S. A. Cameron, “Modelling solids in motion”, Ph.D. Dissertation, Univer-
sity of Edinburgh, 1984.

K. W. Chase and W. H. Greenwood, “Design issues in mechanical tolerance
analysis”, Manufacturing Review, Vol. 1, No. 1, pp. 50-569, March 1988.

F. Etesami, “Tolerance verification through manufactured part modeling”,
Journal of Manufacturing Systems, Vol. 7, No. 3, pp. 223-232, September
1988.

A. Fleming, “Analysis of uncertainties in a structure of parts”, Proc. 9th
Intl. Joint Conf. on Artificial Intelligence, Los Angeles, CA, pp. 1113-1115,
August 18-23, 1985.

A. D. Fleming, “Analysis of uncertainties and geometric tolerances in as-
semblies of parts”, Ph.D. Dissertation, Dept. of Artificial Intelligence, Uni-
versity of Edinburgh, 1987.

A. Fleming, “Geometric relationships between toleranced features”, Arti-
ficial Intelligence, Vol. 37, No. 1-3, pp. 403-412, December 1988.

D. C. Gossard, R. P. Zuffante and H. Sakurai, “Representing dimensions,
tolerances, and features in MCAE systems”, IEFE Computer Graphics &
Applications, Vol. 8, No. 2, pp. 51-59, March 1988.

D. D. Grossman, “Monte Carlo simulation of tolerancing in discrete parts
manufacturing and assembly”, Computer Science Report Number STAN-
CS-76-555, Stanford University, May 1976.

P. Hoffman, “Analysis of tolerances and process inaccuracies in discrete
part manufacturing”, Computer-Aided Design, Vol. 14, No. 2, pp. 83-88,
March 1982.

C. M. Hoftmann, Geometric and Solid Modeling. San Mateo, CA: Morgan
Kaufmann Publishers, 1989.

37

[17] R. Jayaraman and V. Srinivasan, “ Geometric tolerancing: I. Virtual
boundary requirements”, IBM Journal of Research and Development, Vol.
33, No. 2, pp. 90-104, March 1989.

[18] H. Ko, “Empirical assembly planning: A learning approach”, Ph.D. Dis-
sertation, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, 1989.

[19] G. A. Kramer, “Solving geometric constraint systems”, Proc. 8th National
Conf. on Artificial Intelligence, Boston, MA, pp. 708-714, July 29-August
3, 1990.

[20] G. A. Kramer, “Geometric reasoning in the kinematic analysis of mecha-
nisms”, Ph.D. Dissertation (draft), University of Sussex, October 1990.

[21] K. Lee and G. Andrews, “Inference of the positions of components in an
assembly: Part 2”, Computer Aided Design, Vol. 17, No. 1, pp. 20-24,
January/February 1985.

[22] K. Lee and D. C. Gossard, “A hierarchical data structure for representing
assemblies: Part 17, Computer Aided Design, Vol. 17, No. 1, pp. 15-19,
January/February 1985.

[23] W.-J. Lee and T. C. Woo, “Tolerances: Their analysis and synthesis”,
Journal of Engineering for Industry, Vol. 112, No. 2, pp. 113-121, May
1990.

[24] E. C. Libardi, J. R. Dixon and M. K. Simmons, “Computer environments
for the design of mechanical assemblies: A research review”, Engineering
with Computers, Vol. 3, No. 3, pp. 121-136, Winter 1988.

[25] R. A. Light and D. C. Gossard, “Modification of geometric models through
variational geometry”, Computer-Aided Design, Vol. 14, No. 4, pp. 209-
214, July 1982.

[26] Y. Liu and R. J. Popplestone, “Assembly feature-mating inference from
solid models using symmetry groups”, COINS Tech. Report 90-34, Com-
puter and Information Science Dept., University of Massachusetts at
Ambherst, 1990.

[27] G. H. Morris and L. S. Haynes, “Robotic assembly by constraints”, Proc.
1987 IEEE Intl. Conf. on Robotics and Automation, Raleigh, NC, pp.
1481-1486, March 31-April 3, 1987.

[28] G. Mullineaux, “Optimization scheme for assembling components”,
Computer-Aided Design, Vol. 19, No. 1, pp. 35-40, January/February 1987.

[29] R. J. Popplestone, A. P. Ambler and I. M. Bellos, “An interpreter for a
language for describing assemblies”, Artificial Intelligence, Vol. 14, No. 1,
pp. 79-107, August 1980.

38

[30] R. J. Popplestone, Y. Liu and R. Weiss, “A group theoretic approach to
assembly planning”, AI Magazine, Vol. 11, No. 1, pp. 82-97, Spring 1990.

[31] A. A. G. Requicha, “Mathematical models of rigid solid objects”, Tech.
Memo. No. 28, Production Automation Project, Univ. of Rochester,
November 1977.

[32] A. A. G. Requicha, “Representations for rigid solids: Theory, methods,
and systems”, ACM Computing Surveys, Vol. 12, No. 4, pp. 437-464, De-
cember 1980.

[33] A. A. G. Requicha, “Toward a theory of geometric tolerancing”, Intl. Jour-
nal of Robotics Research, Vol. 2, No. 4, pp. 45-60, Winter 1983.

[34] A. A. G. Requicha, “Representation of tolerances in solid modeling: Issues
and alternative approaches”, in M. S. Pickett and J. W. Boyse, Eds., Solid
Modeling by Computers. New York: Plenum Press, 1984, pp. 3-22.

[35] A. A. G. Requicha, “Solid modeling and its applications: Progress in tol-
erancing, inspection, and feature recognition”, IRIS Tech. Report No. 259,
Institute for Robotics and Intelligent Systems, University of Southern Cal-
ifornia, November 1989.

[36] A. A. G. Requicha and S. C. Chan, “Representation of geometric features,
tolerances, and attributes in solid modelers based on constructive geom-
etry”, IEEE Journal of Robotics and Automation, Vol. RA-2, No. 3, pp.
156-186, September 1986.

[37] D. N. Rocheleau and K. Lee, “System for interactive assembly modelling”,
Computer-Aided Design, Vol. 19, No. 2, pp. 65-72, March 1987.

[38] J. R. Rossignac, “Constraints in constructive solid geometry”, Proc. 1986
Workshop on Interactive 8D Graphics, Chapel Hill, NC, pp. 93-110, Oc-
tober 23-24, 1986.

[39] J. R. Rossignac and A. A. G. Requicha, “Offsetting operations in solid
modelling”, Computer-Aided Geometric Design, Vol. 3, No. 2, pp. 129-
148, August 1986.

[40] V. Srinivasan and R. Jayaraman, “Geometric tolerancing: II. Conditional
tolerances”, IBM Journal of Research and Development, Vol. 33, No. 2,
pp. 105-124, March 1989.

[41] 1. E. Sutherland, “Sketchpad: A man-machine graphical communica-
tion system”, Ph.D. Dissertation, Dept. of Electrical Engineering, Mas-
sachusetts Institute of Technology, January 1963.

[42] R. H. Taylor, “A synthesis of manipulation control programs from task
level specifications”, Ph. D. Dissertation, Dept. of Computer Science, Stan-
ford University, July 1976.

[43]

44]

[45]

[46]

[47]

39

F. Thomas and C. Torras, “A group theoretic approach to the computation
of symbolic part relations”, IEEE Journal of Robotics and Automation,
Vol. 4, No. 6, pp. 622-634, December 1988.

R. B. Tilove, “Extending solid modeling systems for mechanism design
and kinematic simulation”, JEEE Computer Graphics and Applications,
Vol. 3, No. 3., pp. 9-19, May/June 1983.

J. U. Turner, “Tolerances in computer-aided geometric design”, Ph.D. Dis-
sertation, Dept. of Computer and System Engineering, Rensselaer Poly-
technic Institute, May 1987.

J. U. Turner, “Relative Positioning of parts in assemblies using mathe-
matical programming”, Tech. Report TR-89046, Rensselaer Polytechnic
Institute, 1989.

H. B. Voelcker, A. A. G. Requicha, E. E. Hartquist, W. B. Fisher, J.
Metzger, R. B. Tilove, N. K. Birrell, W. A. Hunt, G. T. Armstrong, T. F.
Check, R. Moote and J. McSweeney, “The PADL-1.0/2 system for defining
and displaying solid objects”, Computer Graphics (Proc. Siggraph ’87),
Vol. 12, No. 3, pp. 257-263, August 1978.

Chapter 3

Representation of solid
objects by a modular
boundary model

Leila De Floriani, Amitava Maulik, and George Nagy

The geometric representation of man-made objects has always been considered
essential for their design and construction. It is inconceivable that cathedrals,
catapults, caravels and clockworks could have reached their level of perfection
without the concurrent development of graphic tools as the lingua franca be-
tween designers, clients (“end-users”), and artisans. Drafting conventions were
gradually refined and formalized according to the requirements of different dis-
ciplines (sheet metal, piping, trusses, part and assembly drawings, renderings).
Till recently, “mechanical drawing” formed an important component of engi-
neering and architectural education.

Early computer-aided drafting tools bore the same relation to engineering draw-
ing as word processors to typing: they facilitated the preparation of neat, error-
free prints, allowed storage and transmission in digital form, and speeded up
immensely the updating of existing designs. Ancillary information, such as
parts lists, machining directions, and surface finish, were kept in separate files
and dimensions were treated as mere annotations. Electronic drawings con-

42

tained the minimum amount of structural information: no other views could
be displayed than those entered by the draftsman, and few additional proper-
ties (such as weight) could be calculated. This remained the case even after
the introduction of wireframe models.

In the second phase of computerization, integral methods were developed to
represent three-dimensional rigid objects themselves, rather than specific 2-D
views of such objects. It was soon discovered that purely geometric coordi-
nate information and surface equations left unresolved certain ambiguities: in
particular, such location information is insufficient to differentiate the inside
from the outside. This led to the introduction of data structures for repre-
senting simple topological concepts and relations. However, the integrity and
consistency of 3-D representations could not be verified as easily as 2-D repre-
sentations. It was therefore necessary to define transformations that, applied
to a topologically valid object, guaranteed yielding another valid object. The
computer models developed along these lines were sufficient to allow the ma-
nipulation and display of well-formed objects of arbitrary complexity, and form
the basis of the current commercial systems.

The third phase of computerization, which includes the research reported here
on modular boundary models, extended the above techniques to families of
objects. The ability to combine objects has implications both in design, where
the combination is conceptual, and in manufacturing, where the combination
is physical. Useful combinations include not only juxtapositions, where objects
do not spatially overlap, but combinations of interpenetrating components. In
the latter case, voids (such as holes) are also considered objects, and multiple
positive and negative objects may share the same space. One may equivalently
consider a hole as the complement of the corresponding solid, or simply as a
negative object. Naturally, the representation and verification of the validity
of such modular objects becomes more complicated.

Another major limitation of classical CAD models has been their inability to
describe form features and their relations. Pure solid modelers cannot be used
for assembly and machining planning because they do not contain essential
information that is most naturally associated with form features (i.e., tolerances
and dimensions, materials, surface finish). Modular boundary models (MBMs)
bridge the gap between the design and manufacturing phases through their
ability to represent form features as model components [13,15]. Moreover, the
MBM description of the object produced by the designer, in which components
represent design features, can be locally modified (because of the modular
nature of the model) to yield an MBM description in terms of manufacturing
features.

Since modular boundary models are rooted in the boundary representation of
monolithic objects, we first review alternative representation schemes for indi-
vidual objects. Then, we introduce definitions for a class of modular boundary
models for compound objects, and develop a specific model of that class, the

43

Face-to-Face Composition (FFC) model. The essential characteristics of this
model are the explicit graph representation of the abutting and interpenetrat-
ing faces of the constituent object components, and the detailed representation
of the resulting object in terms of a mutually exclusive, completely exhaustive,
irregular cellular structure, called the cellular model.

Our high-level conceptual model (called the FFC Graph) allows the application
of graph-theoretic tools to validity issues, including those that arise when the
object is decomposed into its constituent components. In discussing validity
issues, we find that the locality of information due to modularity assists greatly
in establishing geometric as well as topological validity. A direct representation
of the FFC graph in the form of adjacency relations is, however, too cumber-
some for the complete low-level vertex, edge and facet information necessary
for building and manipulating the model. This latter is thus relegated to the
cellular representation.

Since boundary evaluation is a common requirement for any model, we first
suggest an algorithm to evaluate the boundary of the final object. Then we
describe a data structure appropriate for the cellular representation, which is
an extension of Weiler’s radial-edge structure [54], and show how the FFC
model of an arbitrary compound object can be constructed. Finally, we intro-
duce the Production Graph (based on the AND/OR assembly graph described
in [14,25,48]), which shows the alternative sequences of material-removal and
assembly operations for manufacturing the modeled object.

We conclude that modular boundary models fit in the long-established trend
from human to programmatic computer utilization of models. First generation
models could be used only for direct screen or plotter output. Wireframe mod-
els could be projected and, with some human intervention, generate numerical
machine tool control code. Second-generation models were adequate for 3-D
surface display under varying lighting and viewing conditions. The current
generation of models is intended for the computer-integrated manufacturing
paradigm, linking automated (feature-based) design, production engineering,
and quality control.

However, before the ideas presented can be applied in an actual design and
manufacturing environment, a number of additional problems must be solved.
These include issues related to the numerical robustness of the various opera-
tions, the cost of the suggested data structure for objects typical of given ap-
plications, and the introduction of additional essential criteria for pruning the
production graph to obtain feasible and economical manufacturing sequences.
These issues are discussed briefly in the final section.

44

3.1 Object Representation Schemes

Several object representation schemes have been developed in the past for dif-
ferent applications. Interesting classifications and discussions of such schemes
are given in [36,41,46]. Some object models are special-purpose, in the sense
that they can effectively represent only special classes of objects. Examples
of such models are sweep representations, generalized cylinders and cones, and
blob models. General-purpose models are characterized by a larger descriptive
power, and are those used in modern CAD/CAM systems.

The emphasis in object models for a CAD system used to be on the efficient
performance of operations typical of a design environment. Examples of such
operations were the creation of the object model, the visualization of the object
on a graphic display, computation of integral properties, Boolean and interfer-
ence computations. More recently, the emphasis has shifted to information for
assembly and machining planning. In other words, the model should not only
describe the geometry of a solid object, but be capable of representing infor-
mation, like dimensions and tolerances, form features or surface finish, used in
manufacturing. So, the new directions in research in solid modeling are towards
more complete models which allow an explicit representation of tolerance and
feature information.

Classical solid models for CAD/CAM applications can be broadly classified
into boundary, volumetric and hybrid schemes. Boundary schemes describe an
object in terms of the surfaces enclosing it. Volumetric schemes describe an
object in terms of solid primitives covering its volume. Hybrid schemes combine
the two approaches.

A boundary representation (B-Rep) of an object is a geometric and topological
description of its boundary. The object boundary is segmented into a finite
number of bounded subsets, called faces. Each face, in turn, is described by
its bounding edges and vertices. Two other (non-primitive) elements are used
to describe objects with multiply connected faces or internal cavities: the loop
and the shell. A loop on a face f is a closed chain of edges bounding f. A
shell is defined as any maximal connected set of object faces. In a B-Rep
a clear separation is made between geometry and topology. The geometric
description consists of the shape and location in space of each of the primitive
topological elements (vertices, edges and faces). Topological information is
concerned with the adjacency relations between pairs of individual topological
elements (25 relations, in total). Several data structures have been proposed to
encode a B-Rep: the winged-edge structure [4], the symmetric structure [57],
the face adjacency hypergraph [2]. They all store the five topological elements,
but differ in the number and kind of relations they store. The radial edge
structure, proposed and implemented by Weiler [54], is capable of describing
also solids not bounded by two-manifold surfaces.

45

The descriptive power of a B-Rep depends on the surfaces used (planes, quadric
or free-form surfaces). Boundary schemes can represent a wide variety of solid
objects at arbitrary levels of detail. They are unambiguous, but generally not
unique. Validity is quite difficult to establish. A topologically valid B-Rep
can be constructed by the use of a limited set of primitive functions, called
Euler operators [2,7,21,35,36]. Geometric validity must, however, be tested
algorithmically.

Volumetric schemes can be classified into decomposition models, which describe
an object as a collection of primitive objects combined with a single glueing
operation, and constructive models, which describe an object as the Boolean
combination of primitive point sets.

Decomposition schemes can be further subdivided into object-based and space-
based schemes. The former describe an object as the combination of pairwise
quasi-disjoint elementary cells whose union covers the object. Examples of such
models are cell decompositions, like tetrahedralizations [5] mainly used for ob-
Jject reconstruction, and finite element meshes. Space-based schemes describe
an object by subdividing the space into regular volume elements, called voz-
els. Examples are spatial enumerations and adaptive schemes, like the Octree
or the Bintree [26,38,46,47,49,50]. Adaptive subdivision schemes achieve stor-
age economy by combining neighboring voxels which are completely internal or
completely external to the object. Space-based decomposition schemes provide
only approximate object descriptions: the quality of the approximation is de-
termined by a fixed resolution. Such representations are unambiguous and also
unique, except for positional nonuniqueness: all space-based representations
vary under rigid transformations. Octrees and Bintrees are especially interest-
ing as auxiliary representations in a solid modeler, since Boolean operations
and computation of integral properties can be done very efficiently on them. A
general disadvantage of such schemes is the amount of storage required, even
if pointerless linear representations have been developed [46].

Constructive schemes (Constructive Solid Geometry, CSG) [41,42,43] are a fam-
ily of schemes for representing solids as Boolean combination of primitive com-
ponents. A CSG model is described by a binary tree, called the CSG tree, in
which internal nodes represent operators which can be either rigid motions or
regularized set operators, while the terminal nodes are subsets of E3. CSG
schemes are unambiguous, but not unique. The validity of a CSG scheme
can be checked at a purely syntactic level, provided that the primitives are
bounded. The main disadvantages of a CSG are the difficulty in computing
integral properties and extracting or describing information related to surfaces
(surface finish, tolerances, etc.). Variants of the CSG tree have also been pro-
posed. Wyvill and Kunii [58] devised the CSG-DAG, in which the Boolean
operation allowed are set addition and set subtraction. This representation fa-
cilitates the construction of a spatial index, called a PM-CSG tree, on top of a
CSG-DAG in order to speed up ray tracing on a constructive object description.

46

Hybrid models, as mentioned earlier, can be viewed as combinations of two dif-
ferent representation schemes. There are two major classes of hybrid schemes,
PM-Octrees and PM-CSG trees (which combine an Octree with a boundary
representation or a CSG model, respectively), and Modular Boundary Models
(which combine a B-Rep with a constructive approach limited to a restricted
set of Boolean operations). These latter will be discussed in the next section.

The major drawbacks of adaptive space-based decomposition models, like the
Octree or the Bintree, are that they provide only approximate object descrip-
tions, and contain a large number of nodes. Thus, several authors have pro-
posed schemes that combine the Octree with a B-Rep by using the octree as
a spatial index over the boundary description [3,8,9,12,20,23,39,46,47]. These
schemes have different names, but their underlying principle is the same. Like
an Octree, a PM-Ociree is based on the recursive subdivision of a finite cubic
universe containing the object into octants. Terminal nodes can be full or void,
as in the octree, or they can be of type face, edge or vertez. Face nodes are
crossed by a single object face, an edge node contains a portion of an edge
together with the two faces incident on it, a vertex node contains exactly one
vertex and portions of all the edges and faces incident on it. The main advan-
tage of PM-Octrees is the simplicity of the algorithms for Boolean operations.
Visualization and computation of integral properties can also be performed
efficiently on such structures. PM-CSG trees are based on the same concept
as the PM-Octree: the definition of a terminal node is changed to refer to a
primitive object rather than to a boundary element [58].

Even by considering only the modeling operations performed in a CAD system,
no representation scheme is uniformly best for all operations. So, many mod-
eling systems maintain more than one object description. Octrees, and more
recently, PM-Octrees, have been mainly used as a secondary representation to
speed up Boolean operations and computation of integral properties. In many
commercial systems, CSG has been used as an interface to the designer, while
keeping a B-Rep as internal representation. Such modelers require conversion
algorithms capable of translating data among the different schemes. A conver-
sion algorithm must guarantee that the output is always correct and consistent
with the input model. Also, ideally, the conversion should be completely in-
vertible. This cannot happen when we convert from an exact model, like CSG
or B-Rep, to any spatial enumeration model. A survey of conversion algorithms
between representations can be found in [19].

Besides the “pure” solid models discussed above, which describe only the shape
of the object, other object models containing also semantic information have
been developed for machining and assembly. In this class, we include assembly
models and feature-based models.

Generally speaking, assembly models describe an object as the composition of
parts which must be combined to form the object, and the relative position and
relations among the parts. They essentially differ in the kind of part-to-part

47

relations they describe. Braid [6] defines a tree-like assembly structure, in which
the terminal nodes are assembly components, described in a boundary form,
and non-terminal nodes represent assembly operations. Assembly operations
could be of type collective (i.e., placing components side by side), conjunctive
or disjunctive (i.e., Boolean operations).

An early attempt at modeling the assembly of components was made in the
AUTOPASS project [34]. The assembly model is a graph, in which the nodes
are geometric objects (described by polyhedra) and the arcs represent four rela-
tions: part-of, attachment, constraint and assembly-component. More recently,
an improved representation has been proposed by Lee and Gossard [32]. It is a
hierarchical representation in which an assembly consists of subassemblies and
components. Each component is described in a boundary form, and two mat-
ing relations are introduced: against (abutting planar faces) and fits (center
lines of the two parts are collinear). This structure has been improved again
by Ko and Lee [30] by adding additional mating conditions. Turner proposed
an assembly model specifically developed for tolerance-based design [52].

Sanderson and Homem de Mello [48] discuss a set of algorithms and a relational
scheme to generate a representation of all “feasible” assembly sequences. When
given as input the pairwise relations (contacts, attachments, etc.) between the
components, the scheme can handle assemblies which are constructed by com-
bining two subassemblies at a time. The input relational model is converted to
a graph. The cut-sets that correspond to feasible disassemblies are determined
from the geometric feasibility, mechanical feasibility, and stability predicates
defined by the authors. These predicates essentially test the possibility of lo-
cal incremental translations, accessibility of the attachments, and gravitational
stability. All the feasible disassemblies are then represented in the form of an
AND/OR graph. The authors propose searching this graph for solution trees
that represent either complete or partial assembly sequences. Partial sequences
are used for the replacement of failed parts, whose identity cannot be predicted.
We will make full use of these ideas in our model.

Lee and Shin [33] discuss a co-operative planning system with job-specific ad-
visor routines to determine a partial-order graph for automatic generation of
assembly sequences with a high degree of parallelism. The face-face contact
between compatible surfaces of neighboring parts, and blocking relationships,
where one part blocks the disassembly of another without actually touching it,
are provided by the designer. The constraints imposed by these relationships
are used by the Geometric Reasoner to determine the ranges of movements of
each part. Then the Heuristic Advisor uses grouping heuristics and suggests
tentative decompositions, which are checked for interference by the geometric
reasoner. The Plan Co-ordinator takes the list of accepted decompositions and
determines those tasks that can be accomplished most easily. Other advisors
determine resources and their availability. This decomposition process is per-
formed iteratively till the decompositions of all subassemblies are determined.

48

= -
’/ R Yy ’)—- — y
,”CZ -“U(C1,C2)

a) Disjoint Union of two cuboids C; and Ca.

Picin
T
:I —
Cl ==
=
I'd
4
4

b) Restricted Difference of two cuboids C; and Co.

Figure 3.1: Face-based operations on two cuboids C; and Cs.

U(G;,C;), is the solid object defined as the set addition of C; and Cj. Given
two components C; and Cj such that Cj is contained in C; and their boundaries
intersect at some faces, then the Restricted Difference of C; and Cj, denoted
D(C;, Cj), is the solid object defined as the set difference C; — C;. Thus, the
two previous operators can be applied only to pairs of components such that
their boundaries have a proper 2-D intersection. Such components are called
face-adjacent components. This ensures that the results of these operations are
objects in our domain. Figure 3.1 shows examples of the two operators using
cuboidal components (the portions of the boundary that have 2-D intersection
are shown hatched).

Note that the disjoint union operator is the glue operator defined in many
boundary modelers [2,36], and also that the restricted difference operator can
be interpreted as a glue operation applied to a positive and a negative object.
A more convenient way of looking at an MBM, for the purpose of developing
a boundary-based description, is to consider two kinds of components: positive
and negative components corresponding to the actions of adding and removing
material, respectively. Positive and negative components are then combined
along faces by means of a single glue operator. The composition rules are:

(i) if C; and Cj are both positive or both negative, then they must intersect
only along their boundaries and have portions of faces in common.

(ii) if C; is positive and Cj is negative, then C; must be contained in C;, and
they must intersect along their boundaries and share portions of faces.

49

A Hierarchical Partial Order Graph is formed whose terminal nodes represent
simple parts and non-terminal nodes represent subassemblies along with the
part relationships and parallelisms involved.

Most of the work on assembly reviewed above is based on independent repre-
sentation of individual parts and separate data structures that store the re-
lations between them. Repeated evaluations or cumbersome additions to the
data structures may be required to efficiently perform incremental interference
checks as new parts are added to the workplace or during tests for global de-
tachability of parts from the assembly. But once two faces are specified and
found to be in surface contact, the common portion of the two faces need not
be treated during interference checks. This suggests deleting all the touching
portions of the faces between different parts. Our modular description of the
assembled object with parts as individual modules does exhibit this advantage.

Another important aspect in object models for manufacturing is the need for
an explicit description of form features. In other words, as for the assembly,
the object model should be expressed as the composition of parts which corre-
spond to machining operations. Non-geometric information (which characterize
the specific machining process) should be associated with form features. The
problem of representing form features in an object model, or, equivalently, of
developing a feature-based object representation scheme, has been addressed
mainly in connection with the problem of extracting form features from the
model produced by the designer (usually from a B-Rep) [15,16,22,24,27,28 56].
Henderson produces a feature-based representation, the feature graph, in which
nodes are form features and arcs are relations among them. Woo uses a CSG
model in which primitives are convex polyhedra extracted from a B-Rep by a
recursive convex hull technique. A modular boundary model, which is a vari-
ation of the Hierarchical Face Adjacency Graph described in [13], is used in
[15,16,22] to organize the extracted form features.

3.2 Modular Boundary Models

The class of solid objects we consider are those subsets of E2 bounded by
compact, orientable, two-manifold surfaces [1]. Modular Boundary Models are
a family of object representation schemes which describe a solid object as the
Boolean combination of parts defined by their boundary under a restricted set
of Boolean operators.

Each part forming.an MBM is called a component. A component is a solid
object C; bounded by a compact orientable two-manifold surface (i.e., an ob-
ject in our domain). A component is described through a boundary model.
The Boolean operators in an MBM are a disjoint union and a restricted set
difference operation. Given two components C; and Cj such that their bound-
aries intersect only at some faces, the disjoint union of C; and Cj, denoted

50

cLA2 - RNV
T, [C2 '
,/ ! Z == < |
' —r /| AT TTTTTTT> -
7 3 §-£U(D(C1, C2), C3)

Figure 3.2: Cuboids Cj, Cs, and Cj are all face-adjacent at the hatched
connection face.

Positive and negative components are identified by the directions of their face
normals: in a positive component they are directed outwards, in a negative
component they are directed inwards.

Since an MBM is based on a Boolean combination of components represented
in a boundary form, it could be considered as a hybrid boundary-CSG repre-
sentation. The conceptual difference is that, due to the restricted operators
allowed, an MBM describes the connection between face-adjacent components
explicitly, while the two operators are implicit. Thus, the MBM is an un-
evaluated representation from which the reconstruction of the boundary of the
object requires two-dimensional set operations only (to eliminate portions of
faces).

Any face of a component which has a non-empty two-dimensional intersection
with a face of at least one other component is called a connection face. The
faces of the cuboids in Figure 3.1 to which the hatched portions belong are
examples of connection faces. Note that a component may be face-adjacent at
the same connection face to several components (see the example in Figure 3.2).

MBMs of the first generation, like the Hierarchical Face Adjacency Hypergraph
(HFAH) [13] or the Object Decomposition Graph (ODG) [15], describe only
face-adjacency relations between pairs of components in the form of a directed
graph. In such a graph, the nodes correspond to the components defining the
object decomposition. Each arc (C;, Cj) joining two face-adjacent components
C; and Cj represents the face-to-face relations between C; and C;; and is labeled
with the pairs of corresponding connection faces of C; and Cj. The orientation
associated with the arc keeps track of the object construction sequence. Fig-
ure 3.3 shows an example of ODG. In the HFAH, the relations between object
components is described as a tree, which restricts the class of modular decom-
positions which can be described. The HFAH has been developed and used [22]
as a representation of object form features at different levels of resolution.

51

a) Object.
(f11, £21)
(f12, £22) (£13, $31)

|

'

!

+ 1
cy fl1 ! . ..
= 1--== cal 121 ¢) Object Decomposition Graph.

s f12 -122

b) Exploded view of Modular Decomposition into components.

Figure 3.3: The Object Decomposition Graph and Modular Decomposition
of an object.

52

o I
EiC
\

\
~
T
)
1

\
L
1
|
[
[]
[
[

Figure 3.4:) and C3 have volumetric interference. Cs and C3 also have
volumetric interference even though they do not share a connection.

3.3 The FFC Model

The components in an MBM can have spatial interference, and this does not
only happen for a positive and negative component which are combined to-
gether (see the example of Figure 3.4). If we consider both the spatial interfer-
ence among components and the partition of the component connection faces
into subfaces shared with other face-adjacent components, we have a partition
of the boundary of each component C; into portions of its original faces, that
we call facets.

A facet of C; can be either:

(1) a maximal connected portion of the common intersection between one face
of C; and one face of any face-adjacent component C; (and, thus, it is a
subset of a connection face of C; and a connection face of Cj), or

(ii) a maximal connected portion of a face of C; defined by the intersection of
such face with the boundary of any component Cj having a volumetric
interference with C;.

A facet of a component C; is either a connection facet, when it is that subset
that represents the common portion of a connection face, or it is a boundary
facet. When two or more components are face-adjacent, only one connection
facet is used to represent the common portion of their connection faces. Let
S be a solid object and MD be a family of positive and negative components
defining a modular decomposition of S into face-adjacent components which,
when combined through a glue operator, give S. The collection of the connec-
tion and boundary facets of all components of a modular decomposition MD
of an object defines a fragmentation F of the union of the boundaries of its
components. Figure 3.5 shows the fragmentation of the faces of the modular
decomposition depicted in Figure 3.3.

Given the fragmentation F' defined by a modular decomposition MD of S, each
face f; in F' can be classified with respect to a component C; as follows:

53

s

N \

/]
P
g

Z

7

Figure 3.5: Exploded view showing facets in the fragmentation of the objects
of Figure 3.3a.

I\

N}
N
l

\d

1.2

\

(1) f; is a connection facet for C; (i.e., f; belongs to the boundary of C; and is
shared by at least another component face-adjacent to C;)

(ii) f; is a boundary facet for C; (i.e., f; belongs to the boundary of C; and is
not shared by another component)

(iii) f; is internal to Cj (i.e., fj belongs to the boundary of another component
and is contained in Cj)

(iv) f; is ezternal to C; (i.e., f; belongs to the boundary of another component
and has no interference with C;)

Figure 3.6 shows the classification of the facets of the modular decomposition
of the object in Figure 3.2 according to the four categories listed above.

A connection facet is called homogeneous if it is a connection facet for an even
number of components, otherwise it is called non-homogeneous. Figure 3.6
shows examples of homogeneous and non-homogeneous connection facets. Ho-
mogeneous connection facets do not belong to the boundary of the object.
Thus, the evaluation of the boundary of S from an MBM consists of eliminat-
ing the homogeneous connection facets.

The components in MD and the fragmentation F' of the faces of the components
in MD with the above classification define a modular boundary model that we
call the Face-to-Face Composition (FFC) model and denote M = (MD,F). A
high-level relational description of the FFC model is given by a hypergraph,
called the Face-to-Face Composition (FFC) graph. In the FFC graph the nodes

54

f4

5 Ef3 & f12
1

=

[y
f11 fl v1 /
,

C1 -
L.“-ﬁ& ;
N 7 _
.\
ae
/': : \C3

v g J Y6

f1 — f5 are boundary facets of C.

fe — fo are connection facets of C;.

fe, fz, and fo are homogeneous connection facets.
fs is a non-homogeneous connection facet.

f10, f11, and f12 are internal facets to C}.

Figure 3.6: Classifications of facets of components in Figure 3.2.

correspond to the components in M D, the hyperarcs to internal and connection
facets. More formally, if MD = {C;,C5,...,Cr}, and F = {f1, f2,..., fm},
then the FFC graph is a hypergraph G = (N,A), where

(i) each node in N corresponds to a component C; in MD (and thus can be
identified with it);

(ii) each directed hyperarc h in A is an ordered k-tuple b = (Cy1,Cra,...,Crr),
where C,;, s = 1,2,...,k, are nodes of G. It corresponds to a facet f,
in F such that f, is a connection facet for at least two components in A
or an internal facet for at least one component in h, and f, is not external
with respect to any component in h.

An attribute is associated with each hyperarc h of G. It is an ordered k-tuple
ha = (ar1,ar2,...,ar), where a,, is one of internal, connection, or boundary.
Attribute a,; denotes the relation of facet f, with respect to component C,;.

Figure 3.7 shows the FFC graph describing the modular decomposition depicted
in Figure 3.3. Note that the external relation is not represented in the hyperarcs
of the FFC graph. A facet which is only a boundary facet, and is not internal
to any other component, is not described in the FFC graph. The FFC graph
is a concise representation of the connection and interference relations among
the components in the FFC model. Depending on its attribute, a hyperarc h
in the FFC graph can be classified as a connection arc, if all the attributes
in h, are of type connection, as an interference arc, if at least one attribute

55

Figure 3.7: FFC graph for the modular decomposition shown in Figure 3.2
and Figure 3.6. (C and I denote connection and interference arcs respectively.)

in h, is of type internal, and there is no connection attribute in h,, or as a
mized arc, when h, contains attributes of both type connection and internal.
The spanning subgraph of the FFC graph G containing all the connection and
mixed arcs of G is called the connection subgraph of G).

We can obtain global interference information from the FFC graph. Two com-
ponents C; and C; have a proper volumetric interference (i.e., their intersection
is a 3-D subset of their volumes), if there exists a hyperarc A incident in both
of them such that the attribute associated with only one of them is of type
internal. A component C; is contained in another component Cj if

(i) there exists one hyperarc incident on Cj for each facet of Cj,

(ii) a connection or an internal facet in C; corresponds to each connection facet
in Cj,

(iii) and an internal facet in C; corresponds to each boundary facet in Cj (see
Figure 3.7).

3.4 Validity issues in the FFC model

The classification of the facets in a fragmentation induced by a modular de-
composition of a solid object can be used to verify validity issues related to
an FFC model. We assume that the single FFC components are single-shell
solid objects bounded by two-manifold surfaces, and they are described by a
valid boundary model. Topological validity is guaranteed by Euler operators,
while geometric validity is checked algorithmically. We want to ensure that the
boundary model of an object obtained by evaluating its FFC model is both
topologically and geometrically valid.

56

1
! .
| non-manifold

! l condition

]

N

”
-

s
|
-
<

2 S

b) S has a non-manifold condition at an edge.

Figure 3.8: Objects outside the domain of the FFC model as currently defined.

One problem is that we may obtain a representation of an object outside our
domain by combining components which are in the domain: for instance, we can
have an object composed of more than one shell (see Figure 3.8a), or an object
bounded by a non-manifold surface (see Figure 3.8b). For now, we check this
algorithmically, but it would be possible to extend our domain. Moreover, the
evaluated representation of S must describe an object without self-intersecting
parts, and thus all the volumetric interferences must be eliminated by a suitable
sequence of glue operations. A simple case illustrating this point occurs in
Figure 3.3 if only C); and C3; are combined to form S. This can clearly be
checked by building the evaluated representation of S and then looking for self-
intersecting portions. This information, however, is embedded in the relations
between the components in the modular decomposition MD and the facets of
fragmentation F'. Intuitively, the evaluated representation can describe a solid
object only if the facets lying on the boundary have one extra positive, or one
extra negative, component (depending on whether the MD describes a positive
or a negative object) on one side and no material on the other side.

The definition introduced is a static definition of validity which does not take
into account whether S can be constructed through a sequence of glue oper-
ations by starting from the given modular decomposition. In other words, an

57

Figure 3.9: If C, is lowered into Cj3, then a valid object that cannot be built
from the modular decomposition in Figure 3.3b.

FFC model of an object can be valid, but not constructible (see the example of
Figure 3.9). This is not a real problem since such a model could not be actually
constructed with validity checks being performed at each update.

Necessary and sufficient conditions for validity have been proven in [10]. The
main result for validity of the FFC representation of positive objects is the
following (an analogous result holds for negative objects). An FFC model is
a valid representation of an object if and only if each facet f; in F satisfies
one of two conditions on n;, the difference between the number of positive and
negative components in MD for which f; is an internal facet:

(1) if f; is a homogeneous connection facet, then n; is equal to —n or 1 — n,
where n is the difference between the number of positive and negative
components on either side of f; for which it is a connection facet;

(ii) if f; is either a boundary or a non-homogeneous connection facet, then
n; is equal to —r, where r is the minimum between the differences of the
number of positive and negative components for which f; is a connection
facet, computed on each side of f;.

The previous result allows a validity check which involves only boundary and
connection facets. From the classification of the facets in a fragmentation F
introduced in the previous section, it follows that the boundary of S is formed
by the non-homogeneous connection facets and by the boundary facets of the
fragmentation. The homogeneous connection facets correspond to the sets of
facets of F' inside and outside S.

3.5 Evaluating an FFC Model

The problem of converting an FFC model into a boundary representation is
termed boundary evaluation (by analogy with the well-known problem of con-
verting from CSG to B-Rep). The conversion problem is important for compat-
ibility with other modeling systems based on B-Rep, and for being able to use

58

visualization techniques developed for boundary descriptions. Further reserch
will go in the direction of designing specific algorithms for displaying objects
described by an FFC model without the need of evaluating the model.

While the evaluation of a CSG representation is a difficult task because a large
amount of information about the boundary of the object is only implicitly
encoded in a CSG (see [44,45,51]), the evaluation of an FFC model is quite
easy since the information about the object boundary is clearly represented
in the FFC. The evaluation task is even easier if we do not require that the
descriptions produced at intermediate steps be valid.

The evaluation of an FFC model M of an object S, described by a modular
decomposition MD and by a fragmentation F', consists of iteratively applying
a union operation to pairs of face-adjacent components. At each step, two
face-adjacent components C; and Cj are joined together along their common
connection facets. If a connection facet f; is homogeneous, it is eliminated
as soon as any two components sharing it are merged. If a connection facet
is non-homogeneous, it remains as part of the boundary of S. The evaluation
process can thus be regarded as the elimination of the homogeneous connection
facets from F'. Note that the resulting boundary description of S might contain
facets belonging to the same surface. In a planar-faced object environment, a
segmentation of the boundary of S into maximal connected faces could be
produced by applying a face-growing algorithm to the segmentation produced
by the evaluation process. Examples of these two situations are shown in
Figure 3.10. For clarity the face growing algorithm has been used on all figures
illustrating the object.

The boundary evaluation algorithm outlined above can produce invalid repre-
sentations at intermediate steps. To be sure that we produce valid intermediate
results, the algorithm must follow the design sequence, i.e., the sequence used
by the designer to create the object.

The boundary evaluation algorithm of an FFC model can be expressed as
a merging algorithm applied to the connection subgraph of its FFC graph.
Performing the union of two components C; and Cj is equivalent to merging
the corresponding two nodes in the connection graph, and also in the set of
extreme nodes of hyperarcs incident on both nodes. A hyperarc # is eliminated
when all its extreme nodes have been merged together. Figure 3.11 illustrates
this process on the connection subgraph of the FFC-graph shown in Figure 3.7.

The boundary evaluation algorithm can also be applied in local modifications
of the FFC model, for instance, for forming composite components from el-
ementary ones. When the boundary evaluation is applied to a single pair of
face-adjacent components, we want to be sure that the boundary description
of the resulting component is valid. Validity checks on such descriptions can
be performed through the local checks discussed in the previous section.

59

) TR i

C24 P ey
c3 L2t

a) Exploded view of the modular decomposition of S.

f2
] I
ks Pdhedbndbedl- ~ P rihmdbedbeiind
[N 11 ’ Z u t
O ERy S — | ,’n : S
f1 = A=t
- e ”
b) Intermediate object S’. ¢) Final object S.

Proceeding from S’ to S requires:
i) Deletion of the homogeneous connection facet (shown hatched).

il)Merging at edge e the two facets fi and fa, that belong to the same plane
surface.

Figure 3.10: Face-growing on an object with two positive (C; and Cs) and
one negative (Cy) components combined at their front faces.

Figure 3.11: The hyperarc corresponding to facet fg is eliminated when

components C; and Cs (Figures 3.2, 3.6, 3.7) are merged, and fg becomes an
internal facet.

60

Boundary evaluation is an irreversible process since once two components have
been joined the FFC model does no longer contains information representing
the two original components. Provisions for undo operators must be made.

3.6 Cellular representation of the FFC Model

An FFC model of an object described by a modular decomposition MD can be
represented as a partitioning of the portion of 3-D space defined by the union of
the components in MD into pairwise quasi-disjoint 3-D cells. This is a special
type of cellular decomposition [41], since the cells can be empty or full and
their union covers the union of the components in MD. Here, S is covered by
the union of only the full cells.

Given the modular decomposition MD = {C1,Cy,...,C,}, the connection and
interference information among the components of MD, represented by a frag-
mentation F', defines a cellular decomposition CD = {cy,¢ca,...,¢,} of the UC;
into cells which satisfy the following properties:

(i) Each cell ¢; is a subset of at least one component in MD.
(ii) The interiors of the cells are pairwise disjoint.

(iii) The union of the cells in CD is the same as the union of the components in
MD (each considered as a positive component); this union is called volume
occupied by MD and denoted V.

(iv) Each facet f; in F'is either a common facet to two cells or a facet bounding
V.

(v) Each vertex and each edge of the cellular representation must be common
to all the cells adjacent to it.

(vi) A cell is either empty if it describes empty space, or full, if it is a part of
the object volume.

Thus, a cellular representation of the FFC model is partially an object-based
(like tetrahedralizations, finite element meshes, etc.) and partially a space-
based (like octrees or bintrees) decomposition. If we consider only the full
cells, CD reduces to a cellular decomposition. Unlike space-based and object-
based decompositions, the cells in the cellular FFC representation have a more
complex shape. A cell can be any simply-connected solid object (cells cannot
have internal cavities). Figure 3.12 shows an exploded view of the cells in the
cellular representation of S shown earlier in Figure 3.3.

We encode the FFC model by using a data structure for its cellular representa-
tion plus a binary matrix describing the component-facet and facet-component
relations. The component-cell and cell-component relations can be obtained
from the previous ones provided that we store the cell-facet and facet-cell re-
lations in the data structure for the cellular representation.

61

Ma =l ==

1=
[== s (A - ‘.‘
, fleadee lj’__ ety '
’ ~T oo
’ N .o s
4
.
K [N 1——==

Figure 3.12: Exploded view of cells covering the union of the components in
Figure 3.3.

\

V<—> ED

Figure 3.13: There are 25 possible relations between elements in a cellular
decomposition.

A cellular decomposition CD is defined by five topological elements, namely,
cells, facets, loops, edges and vertices. We can define 25 pairwise adjacency
relations between each ordered pair of elements (arrow diagram in Figure 3.13),
and 16 adjacency relations among the elements in a single cell.

The topological elements required to represent the two manifold boundary of a
single cell and their inter-relationships are shown in Figure 3.14a. The relations
satisfy the definition of the symmetric data structure proposed by Woo and is
sufficient to describe any arbitrarily complex two-manifold surface [57].

The six stored adjacency relations (arrow diagram in Figure 3.14b) are defined
as follows:

62

cell

next_in_cell

O

facet

next_in_cell '

()

-

next_in_facet

next_around_loop

next_in_cell

vertex

O (O radial

next_around_vertex

a) Relationships between elements in the Symmetric data structure.

F

>L

>E >V

b) There are six relations stored in a cell.

Figure 3.14:

The Symmetric data structure.

63

(i) Facet-Loop (FL): loops belonging to a given facet f.

(ii) Loop-Facet (LF): facets (at most two) containing a given loop 1.

(iii) Loop-Edge (LE): ordered list of edges forming a given loop I.

(iv) Edge-Loop (EL): loops to which a given edge e belongs.

(v) Edge-Vertex (EV): extreme vertices of a given edge e.

(vi) Vertex-Edge (VE): ordered list of the edges incident in a given vertex v.

Note that the loop-facet, edge-loop and edge-vertex relations are constant, in
the sense that they involve a constant number of elements, while the remaining
three are variable relations. It can be proven that such relations are sufficient
to characterize the boundary of a single-shell solid object without errors or
ambiguities [37]. Moreover, the remaining ten relations can be retrieved from
the six stored ones in a number of operations proportional to the number of
elements involved in each relation.

The proposed data structure represents our cellular decomposition using the
symmetric data structure for each individual cell. The topological elements and
their inter-relationships are shown in Figure 3.15. It may be easily observed
that the cell-elements maintain all their relationships in the symmetric data
structure. A separate set of object elements have been defined as a framework
for the identical cell elements and to store the geometry of facets and vertices.
Adjacency relations between object elements of different types are not stored
explicitly. They are derived from the corresponding cell elements.

Figure 3.16 shows the edgelists around a cell-loop and a cell-vertex in the
symmetric data structure. It may be noted that the edgelists around a cell-
vertex and cell-loop are traversed in a counter-clockwise direction when viewed
from outside the solid. Since the same edgelists are used around cell-loops
and cell-vertices a convention is used for the orientations of the edgelists with
respect to the cell-loops and the cell-vertices. If an edgelist belongs to the
lists of cell-vertex cv; and cell-loop ¢l; then the cell-edge starts from cv; when
traversing cl;. Figures 3.17, 3.18, and 3.19 show the extensions to the cellular
data structure. The relations between the cell-elements remain the same. A
cell has to be hypothetically isolated from the cellular object and then viewed
from outside for the orientation conventions to be verified. Note that each
facet, edge, vertex and loop is represented in each cell to which it belongs and
also as an element of the decomposition.

3.7 Building an FFC Model

An FFC model of a solid object can either be constructed by combining a single
component to an existing model (which is initially null) or by combining two
separate FFC models. The first method can be considered as a specialization

object
cell
mate_in_other_object
O next_in_adj_cell
object_facet G cell_facet
next_in_object next_in_cell .
(ymate_in_other_object | next_in_adj_celly next_in_facet
object_loop cell_loop
- next_around_loop
next_in_object next_in_cell A
ate_in_other_objact |next_in_adj_cell mate
object_edge le_ % cell_edge | edgelist |
next_in_obj ect . next_in_cell | A T O i ra;dlf
mate_in_other_objeft |next in adj_cell
< - C = next_around_vertex
object_vertex cell_vertex
next_in_object next_in_cell

Figure 3.15: Relationships between elements in the cellular data structure.

65

Figure 3.16: Edgelists around a cell loop and around a cell vertex in the
Symmetric data structure.

‘o .
object_vertex

Figure 3.17: Plan view of a cell-loop as a list of cell edges.

66

o
—

(o)
o
=
—

o)
=
N

<

—

l‘
I\
|
B
|
|
|
|

<
b
oo

r
|
[}
|
|
|
|
I
|
|
|
|
|
1
|
A\

edge of vertex of
cell 1 O celll

———- cell2 <)ocell2

"""" cell 3 < cell3
object O object
— edgelist

ext_around_vertex

Figure 3.18: View of a cell-vertex as a list of cell-edges in the cellular data
structure. (Only the adjacencies of a cell-vertex of cell 1 are shown in full.)

..
Ry

¢ v edgelist
O cell_edge

O object_edge

cell_facet

objdct_facet

e—T—a)]
next_in_adj_cell

cell 1

radial
cell 2

cell 3

Figure 3.19: Cross-section of three object-facets sharing a common object-

edge and the associated cell elements. (Only the relationships between similar
elements have been labeled.)

68

of the second, since a single component is a special case of an FFC model.
For now, we have restricted our attention to FFC model construction by the
first method, and this operation, that we call COMPOSE, is currently being
implemented in our experimental geometric modeler based on the FFC model.

The steps required to perform COMPOSE are first described followed by spe-
cialized Euler operators defined to create and manipulate the cellular data
structure during COMPOSE.

3.7.1 Adding a component to an FFC model: COMPOSE

An FFC model can be constructed by a sequence of COMPOSE operations
applied to an existing model (which is initially empty). A COMPOSE operation
consists of adding a new component C; to an existing FFC model M. The
requirements are that either the new component share portions of faces with the
boundary of the object S represented by M, and have no volumetric interference
with S (if S and C; are both positive or negative), or C; be contained in S (if
S and C; have opposite sign).

In terms of the FFC graph, a COMPOSE is equivalent to adding a new node
C; and a set of connection and interference hyperarcs describing the connection
and interference relations of the new components with the existing ones. The
addition of a component C; can modify the connection facets of other compo-
nents by splitting existing connection facets. Figure 3.20 shows the modification
of existing facets and the FFC graph when adding a component.

The cellular representation of the FFC model is especially useful to enhance the
efficiency of the construction of the FFC model. Each time a new component
is added, it is intersected only with a restricted number of cells. Also, once
interferences and connections are computed, we have to check the validity of
the resulting object by checking the parity of the modified and new facets
(see section 3.4). This also ensures that, at the completion of a sequence of
COMPOSE operations, we have a valid object and a valid sequence of pairwise
face-to-face compositions of parts which produce valid components at each
intermediate step.

The inputs to the COMPOSE algorithm are as follows:
(i) The component-facet relations.

(ii) The cellular data structure of the FFC model.

(iii) The parity counters associated with each facet.
(iv) A description of the component being added.

(v) At least one pair of faces, with a face from the component and a face
of a component in the FFC model, should be specified to abut after the
specified transformations.

69

C1 -> Cl 41 —/CZ
==), S g
’/'Cs:’ /,’I y C3

=
-
xR
8
o
N

Figure 3.20: Some facets and the FFC-graph are modified when C; is added.
See Figures 3.6 and 3.7. (Arc labels C indicate connection facets.)

The outputs of the algorithm are as follows:

(i) The new component-facet relations.

(ii) The new cellular data structure.

(iii) The result of the validity check on the model.

The COMPOSE algorithm consists of the following steps:

(i) Convert component description to the symmetric data structure of a single
cell using Euler operators.

(ii) Starting from the connection facets specified detect the cells from the cur-
rent FFC model that need to be intersected with the new cell.

(iii) Intersect cells using Euler operators.

(iv) Update parity counters and perform validity checks.

(v) Update the component-facet relations.

70

3.7.2 Euler operators to manipulate
the cellular representation.

The COMPOSE operation needs to create a new cell from the component and
to manipulate the cellular data structure by creating and destroying topolog-
ical elements in it. The operators to accomplish this should have correctness
properties similar to that of the widely used Euler operators [2,21,35,53].

In a cellular decomposition the boundary of each cell is represented by a bound-
ary model for a single shell. Utilizing this property the operators can maintain
the correct topology of individual cells. Another property of the cellular decom-
position is that any two cell-elements sharing an object-element must have the
same geometry. Therefore, adding a cell-edge to a cell-loop requires adding a
cell-edge to the other cell-loop sharing the same object-loop. Similarly, splitting
a single cell-edge requires splitting all the cell-edges sharing the corresponding
object-edge. Thus, the same operations are performed on several cells. Since
their effect on the individual cells is the same as that of the traditional Euler
operators, we have retained the nomenclature and added a prefix (CD) to the
name of each operator.

The set of Euler operators defined by Mantyla [35] were implemented at first to
manipulate the symmetric data structure representing the boundary of a single
cell. These operators were extended to manipulate a cellular decomposition.
The names and actions of the operators and a few simple examples are shown
in Figures 3.21 and 3.22.

3.8 The Production Graph

The FFC model of an object S can be built by pairwise combination, through
the glue operation defined in section 3.2, of FFC models of simpler parts. This
also means that the evaluation of an FFC model can be performed by merging
pairs of object parts. We do not allow the construction of an FFC model by
combination of more than two parts at a time. If an FFC model M of an object
S can be built by adding a single component to an existing FFC model (initially
a single component) at each step, then S is called linearly constructible. The
object depicted in Figure 3.3 is an example of a linearly constructible object.

Given a modular decomposition MD associated with an FFC model M of an
object S, each sequence of pairwise combinations of face-adjacent parts, which
produces an evaluated boundary description of S, is called a composition se-
quence. A composition sequence can be described as a binary tree, called an
evaluation tree, in which the root represents the boundary model of S, the
leaves represent the components in MD, and the intermediate nodes contain
valid descriptions of parts of S. Figure 3.23 shows the evaluation tree for the
object in Figure 3.3. A composition sequence for the object is obtained by a

Figure 3.22:
cellular decomposition.

OPERATOR

CD_M_CFLV
CD_K_CFLV
CD_-M_EV
CD_K_EV
CD_M_EF
CD_K_EF
CD_M_EKL
CD_K_EML
CD_M_F

CD_K_F

CDS_E
CD.J.E

Figure 3.21:

Euler operators for the cellular decomposition.

e ...

Examples of the

ACTION

Make cell, face, loop, vertex
Kill cell, face, loop, vertex
Make edge, vertex

Kill edge, vertex

Make edge, face

Kill edge, face

Make edge, Kill loop

Kill edge, Make loop

Make face, Kill loop hole, or
Make face, cell

Kill face, Make loop hole, or
Kill face, cell

Split edge, Make vertex
Join edge, Kill vertex

71

actions of the first six Euler operators on a

72

Figure 3.23: Evaluation tree for the object (S) depicted in Figure 3.3.

postorder traversal of the evaluation tree. The preorder traversal gives a decom-
position sequence, i.e., a sequence of valid decompositions of S which produce
the components in MD.

An evaluation tree is generated during the construction process. Such a tree re-
duces to a list when we use the operator COMPOSE described in section 3.7.1.
The evaluation tree can be used to evaluate the boundary of an object from
its FFC model, and this ensures that we obtain a valid representation at each
intermediate step. There are many ways of constructing an object from its FFC
model that are different from the one chosen by the designer. All feasible eval-
uation trees are described by the AND/OR graph that we term the production
graph. OR nodes represent alternative composition/decomposition sequences,
AND nodes the combination of two face-adjacent parts. Figure 3.24b shows
the production graph of the object depicted in Figure 3.24a assuming that the
object of Figure 3.3a is placed on a large slab Cj.

The production graph is a further development of the assembly AND/OR graph
proposed by Sanderson and Homem de Mello [25,48]. It does not include all
possible component combinations, but represents only those that produce a
valid representation of a part at each intermediate step. Given a production
graph, a particular evaluation tree can be extracted by traversing the graph
from the OR node describing S and selecting one arc incident from each OR
node and both arcs incident from each AND node traversed.

The production graph must be computed by selecting all decomposition se-
quences that produce feasible intermediate results. A decomposition sequence
can be derived by recursively splitting S into two valid parts. To produce a de-
composition into valid representations of the parts, we must check the validity
of such representations by applying the results in section 3.4.

a) Object S” obtained by placing S of Figure 3 on a slab Cjy.
(The dashed arrows identify the contribution of each component.)

C1

C1C2C3¢C4

ciCc2C3

|

CiC2

b) Production graph of S”.

Figure 3.24: An object and its production graph.

73

74

C1C2C3C4

ci1C2 c1C2 C3C4

() 9 I

a) Cleavage graph of S”. b)Assembly graph of S”.

Figure 3.25: The cleavage and assembly graphs of the object S”.

Feasible assembly and machining sequences are represented in the production
graph as feasible composition sequences. In the production graph, an AND
node can describe addition of two parts with the same sign, and is called
an assembly node, or the combination of a positive and a negative part, and
is called a cleavage node. Assembly nodes describe an assembly operation,
cleavage nodes a machining (material removal) operation. Any subgraph of the
production graph entirely composed of assembly nodes is called an assembly
graph. Similarly, any subgraph made only of cleavage nodes is termed a cleavage
graph. Figures 3.25a and 3.25b show assembly and cleavage subgraphs of the
production graph of Figure 3.24b.

In those situations when it is possible to combine all negative components with
the positive ones that contain them, the production graph reduces to an as-
sembly graph, and thus it describes all feasible assembly sequences that can be
obtained by starting from such parts. In this case, we will not have any internal
facet in the fragmentation defining the FFC model, and the FFC graph will
reduce to a connection graph in which the hyperarcs describe mating relations
among components to be assembled together. In general, however, the assem-
bly and cleavage graphs cannot be separated in the production graph, since
material removal operations are usually interspersed with assembly operations
in a production sequence.

75

3.9 Concluding Remarks

We have attempted to lay the groundwork for the development of third-genera-
tion solid modeling systems. The FFC model differs from previous models in
the high-level, graph-theoretic representation of juxtaposition and interference
relations among the faces of overlapping, arbitrary components. These com-
ponents themselves constitute individual objects that are represented by their
boundaries and are guaranteed to be topologically valid through the use of
Euler operators. The proposed data structure for the resulting object contains
sufficient information to establish the adjacency relationship among the cells,
and also their relationship to the original object components. An algorithmic
method is available to construct compound objects from constituent objects
that are themselves composed of individual components and are represented
by FFCs. The recovery of the boundary of the compound object from the
cellular model is quite straightforward. A possible application of the model
is exhibited by the production graph, which shows alternative sequences of
machining and assembling the modeled object.

A number of issues remain to be solved. Foremost among them is the develop-
ment of robust geometric algorithms capable of dealing with almost coincident
vertices, almost collinear edges, and almost coplanar faces resulting from nu-
merical approximation.

The storage efficiency of the proposed data structure could undoubtedly be
improved, since edges and facets are represented more than once. A direc-
tion to investigate is extension of the data structures developed for tetrahedral
decompositions [18].

In the production graph, feasible decomposition sequences could be generated
more efficiently by exploiting graph-theoretic properties of the conditions de-
veloped in [10]. Further, more realistic constraints on machining and assembly
need to be developed in terms of specific manufacturing environments, such as
tool-path and robot-arm geometries.

So far, only the algorithm for composing a single component with an FFC model
has been developed in detail. Although feasibility is obvious, considerable work
remains to be done to fill in the steps for combining two arbitrary FFC models.

It is worth investigating combining modular boundary representation with a
PM-Octree in a solid modeler. Boolean operations and the computation of
mass properties can be accomplished efficiently on PM-Octree representations.
Furthermore, space-decomposition representations are easily generated from
multiple camera views of actual objects [40].

We are actively looking at each of these problems and continuing implementa-
tion of the FFC model for polyhedral geometries.

76

Acknowledgments

We gratefully acknowledge support under National Science Foundation grant
IRI-8704718 and INT-8714578, NATO Collaborative Research Grant 0498/87,
and the New York State Science and Technology Council through the RPI
Center for Advanced Technology. We are pleased to acknowledge Elisabetta
Bruzzone’s essential contribution to the analysis of the validity of the FFC
model, under the sponsorship of the CNR (Italy).

References

[1] M. Agoston. Algebraic Topology, Marcel Dekker, New York, 1976.

[2] S. Ansaldi, L. De Floriani, B. Falcidieno, Geometric modeling of solid ob-

jects by using a face adjacency graph representation, Computer Graphics,
19(3):131-139, July 1985.

[3] D. Ayala, P. Brunet, R. Juan, I. Navazo, Object representation by means
of non minimal division quadtrees and octrees, ACM Transaction on
Graphics, 4(1):41-59, January 1985.

[4] B. G. Baumgart, Winged-edge polyhedron representation, Technical Re-
port STAN-CS-320, Computer Science Department, Stanford University,
Stanford, CA, 1974.

[5] J. D. Boissonnat, Geometric structures for three-dimensional shape rep-
resentation, ACM Transactions on Graphics, 3(4):266-286, April 1984.

[6] I. C. Braid, On storing and changing shape information, CAD Group Doc-
ument #97, University of Cambridge, Computer Laboratory, Cambridge,
December 1977.

[7] 1. C. Braid, R. C. Hillyard, I. A. Stroud, Stepwise construction of polyhe-
dra in geometric modeling, in Mathematical Models in Computer Graph-
ics and Design, K. W. Brodlie, ed., Academic Press, New York, pages
123-141, 1980.

[8] P. Brunet, I. Navazo, Geometric modeling using exact octree represen-

tation of polyhedral objects, Proceedings EUROGRAPHICS’ 85, pages
159-169, 1985.

[9] P. Brunet, I. Navazo, Solid representation and operation using extended
octrees, ACM Transaction on Graphics, 8, 1989.

[10] E. Bruzzone, Validity issues in the Face-to-Face Composition model,
Technical Report, 89-025, Rensselaer Polytechnic Institute, Troy, NY,
October 1989.

77

[11] E. Bruzzone, A. Maulik, A cellular data structure for solid objects in the
Face-to-Face Composition model, Technical Report, 89-026, Rensselaer
Polytechnic Institute, Troy, NY, October 1989.

[12] I. Carlbom, I. Chakravarty, D. Vanderschel, A hierarchical data structure
for representing spatial decomposition of 3-D objects, IEEE Computer
Graphics and Applications, 5(4):24-31, April 1985.

[13] L. De Floriani, B. Falcidieno, A hierarchical boundary model for solid
object representation, ACM Transactions on Graphics, 7(1):42-60, 1988.

[14] L. De Floriani, A. Maulik, G. Nagy, Manipulating a modular boundary
model with a face-based graph structure, Geometric Modeling for Product
Engineering. IFIP WG 5.2, M. J. Wozny, J. U. Turner, K. Preiss, Eds.,
North-Holland, pages 131-143, 1989.

[15] L. De Floriani, Feature extraction from boundary models of three-dimen-
sional objects, IEEE Transactions on Pattern Analysis and Machine In-
telligence, 11(8):798-798, August 1989.

[16] L. De Floriani, E. Bruzzone, Building a feature-based object description
from a boundary model, Computer Aided Design, December 1989.

[17] L. De Floriani, G. Nagy, A graph-based model for face-to-face assem-
bly, Proceedings IEEE Ini. Conference on Robotics and Automation,
Scottdale, pages 75-78, 1989.

[18] L. De Floriani, A pyramidal data structure for triangle-based surface de-
scription, IEEE Computer Graphics and Applications, 9(2):67-78, March
1989. -

[19] L. De Floriani, E. Puppo, Representation and conversion issues in solid
modeling, Progress in Computer Graphics (to appear).

[20] M. J. Durst, T. L. Kunii, Integrated polytrees: a generalized model for
the integration of spatial decomposition and boundary representation,
Theory and Practice of Geometric Modeling, W. Strafler, H. P. Seidel,
Eds., Springer-Verlag, pages 329-348, 1989.

[21] C. M. Eastman, K. Weiler, Geometric modeling using Euler operators,
Proceedings of the First Conference on Computer Graphics and CAD/-
CAM Systems, Cambridge, Ma, pages 248-259, May 1979.

[22] B. Falcidieno, F. Giannini, Automatic recognition and representation of
shape-based features in a geometric modeling system, Computer Vision,
Graphics and Image Processing, 48(1):93-123, October 1989.

[23] K. Fujimura, T. L. Kunii, A hierarchical space indexing method, Proceed-
ings of Computer Graphics’85, Tokyo, TI-4:1-14, 1985.

78

[24] M. R. Henderson, Extraction of feature information from three-dimen-
sional CAD data, PhD Thesis, Purdue University, 1984.

[25] L.S. Homem de Mello, A. Sanderson, AND/OR graph representation of
assembly plans, AAAI-86 Proceedings of the Fifth National Conference

on Artificial Intelligence, American Association for Artificial Intelligence,
Morgan Kaufmann Publishers, 1986.

[26] C.L. Jackins, S. L. Tanimoto, Octrees and their use in representing three-
dimensional objects, Computer Graphics and Image Processing, 14(3):249-
270, November 1980.

[27] G. E. Jared, Shape features in geometric modeling, Solid Modeling by
Computers: from Theory to Applications, Plenum, New York, 1984.

[28] S. Joshi, T. Chary, Graph-based heuristics for recognition of mechanical
features from a 3-D solid model, Computer Aided Design, 20(2), 1988.

[29] M. Karasick, On the representation and manipulation of rigid solids, PhD
thesis, School of Computer Science, McGill University, Montreal, 1988.

[30] H. Ko, K. Lee, Automatic assembling procedure generation from mating
conditions, Computer Aided Design, 19(1):3-10, 1987.

[31] Y. T. Lee, A. A. G. Requicha, Algorithms for computing the volume and
other integral properties of solids. II. A family of algorithms based on
representation conversion and cellular approximation, Communications
of the ACM, 25(9):642-650, September 1982.

[32] K. Lee, D. Gossard, A hierarchical data structure for representing assem-
blies: Part 1., Computer Aided Design, 17(1):20-24, 1985.

[33] S. Lee, Y. G. Shin, Automatic construction of assembly partial-order
graphs, Proceedings RPI Conference on Computer Integrated Manufac-
turing, pages 383-392, 1988.

[34] L. I. Liberman, M. A. Wesley, AUTOPASS: an automatic programming
system for computer, IBM Journal of Research and Development, 21,
pages 321-333, July 1977.

[35] M. Mantyla, R. Sulonen, GWB: a solid modeler with Euler operators,
IEEE Computer Graphics and Applications, 2(7):17-31, September 1982.

[36] M. Mantyla, An Introduction to Solid Modeling, Computer Science Press,
Rockville, MD, 1987. :

[37] A. Maulik, A graph-based approach to solid modeling, PhD Thesis Pro-
posal, Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY, October 1988.

[38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

79

D. Meagher, Octree encoding: a new technique for the representation, the
manipulation, and display of arbitrary 3-d objects by computer, Techni-
cal Report, Department of Electrical, Computer, and Systems Engineer-
ing, IPL-TR-80-111, Rensselaer Polytechnic Institute, Troy, NY, October
1980.

I. Navazo, Extended octree representation of general solids with plane
faces: model structure and algorithms, Computers & Graphics, 13(1):5-
16, 1989.

H. Noborio, S. Fukada, S. Arimoto, Construction of the octree approxi-
mating three-dimensional objects by using multiple views, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 10(6):769-781,
November 1988.

A. A. G. Requicha, Representations of rigid solids: theory, methods, and
systems, ACM Computing Surveys, 12(4):437-464, December 1980.

A. A. G. Requicha, H. B. Voelcker, Solid modeling: a historical summary
and contemporary assessment, IEEE Computer Graphics and Applica-
tions, 2(2):9-24, March 1982.

A. A. G. Requicha, H. B. Voelcker, Solid modeling: current status and

research directions, IEEE Computer Graphics and Applications, 3(7):25-
37, October 1983.

A. A. G. Requicha, H. B. Voelcker, Boolean operation in solid model-
ing: boundary evaluation and merging algorithms, Proceedings IEEE,
73(1):30-44, January 1985.

J. R. Rossignac, H. B. Voelcker, Active zones in CSG for accelerating
boundary evaluation, redundancy elimination, interference detection, and
shading algorithms, ACM Transactions on Graphics, 8(1):51-87, January
1988.

H. Samet, The Design and Analysis of Spatial Data Structures, Addison-
Wesley, Reading, MA, 1990.

H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Read-
ing, MA, 1990.

A.Sanderson, L. S. Homem de Mello, Automatic generation of mechanical
assembly sequences, Geometric Modeling for Product Engineering. IFIP
WG 5.2, M. J. Wozny, J. U. Turner, K. Preiss, Eds., North-Holland,
pages 461-482, 1989.

M. Tamminen, H. Samet, Efficient octree conversion by connectivity la-
beling, Computer Graphics, 18(3):43-51, July 1984.

80

[50]

(51]

[52]

[53]

[57]

(58]

M. Tamminen, O. Karonen, M. Mantyla, Ray-casting and block model
conversion using a spatial index, CAD Journal, 16(4), 1984.

R. B. Tilove, Set membership classification: a unified approach to geomet-
ric intersection problems, IEEFE Transactions on Computers, C-29(10):874-
883, October 1980.

J. U. Turner, Tolerances in Computer-Aided Geometric Design, Ph.D.
dissertation, Department of Electrical, Computer, and Systems Engineer-
ing, Rensselaer Polytechnic Institute, Troy, NY, May 1987.

K. Weiler, Edge-based data structures for solid modeling in a curved-
surface environment, IEEE Computer Graphics and Applications, 5(1):21-
40, January 1985.

K. Weiler, Topological structures for geometric modeling, Ph.D. disser-
tation, Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY, August 1986.

P. W. Wilson, M. Pratt, Requirements for support of form features in
a solid modeling system, Technical Report, Geometric Modeling Project,

CAM-I, 1985.

T. C. Woo, Feature extraction by volume decomposition, Proceedings
Conference on CAD/CAM in Mechanical Engineering, MIT, Cambridge,
MA, March 1982.

T. C. Woo, A combinatorial analysis of boundary data structure schemata,
IEEE Computer Graphics and Applications, 5(3):19-27, March 1985.

G. Wyvill, T. L. Kunii A functional model for constructive solid geometry
The Visual Computer, 1(1):3-14, July1985.

Chapter 4

Graphs of kinematic
constraints

Federico Thomas

When a set of kinematic constraints are imposed between several rigid bodies,
finding out the set of configurations that satisfy all these constraints is a matter
of special interest. The problem is not new and has been discussed, not only in
Kinematics, but also in the design of object level robot programming languages
for assembly tasks.

This chapter deals with the problem of finding out how constrained move-
ments, or kinematic constraints, are propagated and how some workpieces in
an assembly reduce their degrees of freedom after this propagation, and how in-

consistencies between constraint movements can be found. Special attention is
paid to those problems which can be solved using a simple topological analysis
derived from the Theory of Continuous Groups of Transformations.

Part of the material presented herein has already appeared in [16]. Here impor-
tant points have been clarified and some modifications have been introduced.
Also, an important part of this chapter is devoted to the propagation of kine-
matic constraints using part of the material appeared in [17].

This chapter is structured as follows. Section 4.1 shows the important role of
kinematic constraints in the assembly domain. Secticn 4.2 provides all basic

82

theory about kinematic constraints needed in this chapter. Section 4.3 essen-
tially deals with the basic operations to be carried out on a graph of kinematic
constraints, namely composition, intersection and star-polygon transform. Sec-
tion 4.4 introduces a basic algorithm for constraint propagation, which avoids
the application of the star-polygon transform when obtaining the equivalent
constraint between any two bodies in a graph of kinematic constraints with
arbitrary topology. Section 4.5 presents an example and, finally, Section 4.6
gives a brief summary of the main points in this chapter.

4.1 The role of kinematic constraints in
the assembly domain

In the assembly domain, it does not suffice to make the workpiece models
produced by a CAD system available in the programming environment, but
a description of the way the different pieces should be fitted together is also
required. This description can be provided in full detail by either the designer
or the programmer, or rather be automatically inferred, at least in part, from
constraints derived from both the shapes of the workpieces involved in the as-
sembly, after trying to find matings of complementary subparts between them,
and the mechanics of the assembly operations themselves.

Matings of complementary subparts of different workpieces have a direct trans-
lation into constrained movements, or kinematic constraints. In general, this
translation assumes that the legal motion for compatible pairs of predefined
subparts, or features, is provided by the user and thus already known. Al-
ternatively, it would be possible to infer legal motions directly from geometric
models of predefined features. This problem has been reduced to find local
symmetries [9] or, when working with polyhedral workpieces, to find cycles of
edges [18]. The recognition and extraction of expected patterns of geometry and
topology, corresponding to particular engineering functionality, as described in
[20], will play an important role in this area in a near future.

In the assembly domain, kinematic constraints are not only relevant when
mating complementary subparts, but also when specifying relative locations
between workpieces, specially when using an interactive graphics system. Let
us look at a simple example. In order to specify the location of the block with
reference to the box in fig. 4.1, we impose that faces P, and P, of the block be
against P; and P; of the box, respectively. Then, we might ask: Is there any
configuration satisfying both constraints? In other words, are they consistent?
If the answer is yes, how many degrees of freedom remain between the block
and the box? Which are the values of the constrained degrees of freedom? It
will be shown that a directed graph of kinematic constraints, that is, a graph
whose nodes correspond to workpieces and whose arcs are labeled with a set of

83

g
‘/

Figure 4.1: Specifying the location of a block with reference to a box using a
set of kinematic constraints.

legal transformations linking the coordinate reference frame of the correspond-
ing workpieces, is a proper data structure to represent these problems.

If we want to deal with graphs of kinematic constraints with arbitrary topology
and constraints, then we must be able to find a solution to any inverse kinematic
problem. Nevertheless, no general satisfactory solution, convenient for practical
use, has been found for the general inverse kinematic problem. This problem is
highly complicated because of its non-linearity, non uniqueness of the solution
and existence of singularities. Fortunately, most kinematic graphs arising in the
assembly domain are quite simple, since most planes and axis of symmetry of
the involved geometric features are parallel and orthogonal in the final assembly.

The automatic manipulation of kinematic constraints has attracted a lot of
attention not only in Kinematics, but also in the design of object level robot
programming languages, such as RAPT [14] or LM-Geo [12]. Several algebraic
symbolic approaches have emerged, among which we will mention a system of
rewriting rules [14] and a table look-up procedure [8].

Algebraic symbolic (as opposed to a numerical) methods for dealing with kine-
matic constraints can shed light on basic aspects of the problem. For example,
as it is shown in [17], the way they propagate provide useful information on
the sequence of assembly.

84

The algebraic symbolic method used by the RAPT interpreter can be factored
into a solution for the rotation which will determine angles, followed by the for-
mation of real equations involving variables representing linear displacements
and sines and cosines of the angle variable, which, in general, are difficult to
deal with.

The approach presented herein distinguishes between topological and geometri-
cal analysis of a set of kinematic constraints. The described topological analysis,
well suited for the assembly domain, is derived from the Theory of Continuous
Groups of Transformations, and it was essentially devised by Hervé in [7] for
obtaining the number of degrees of freedom in mechanisms (see [1] for a revi-
sion). This analysis takes advantage of the fact that the legal relative motions
resulting from mating two complementary subparts, such as pegs and holes or
grooves and tongues, constitute cosets of subgroups of the Euclidean group,
leading to a procedure based on a set of look-up tables.

4.2 The Euclidean group and
kinematic constraints

It is well known that a rigid body in 3-dimensional space has 6 degrees of
freedom, and, given a reference frame, any displacement can be obtained by a
pure rotation about the origin followed by a pure translation.

The set of all displacements of a rigid body, with the composition operation, is
isomorphic to the Special Euclidean group SE(3). The decomposition SE(3) =
R x SO(3) shows the aforementioned fact that for any D € SE(3),

D = Trans(v)Rot(u,6),

where Trans(v) is a translation along the vector v € R* and Rot(u, §) € SO(3)
is a rotation of angle 6 about the axis u. Rotations about the axes x, y and
z are denoted by Twix, Twiy and Twiz, respectively. An arbitrary rotation
can be written, using Euler’s decomposition, as:

Rot(u, 0) = Twix(p)Twiz(¢) Twix(y)).

A rotation can also be expressed using only the Twix operator and constant
rotations as follows:

Rot(u,) = Twix(a) XTOY Twix(8) XTOY Twix(y)

where the constant rotation XTOY is defined as Twiz(r/2).

85

While the results presented below do not depend on a particular representation
of SE(3), we will use the well known 4 x4-matrix representation of homogeneous
transforms [13], which has become fashionable because its simplicity. Let us see
a brief overview to this representation (see [2] for alternative representations
such as screw coordinates, quaternions, dual numbers, etc.)

4.2.1 Homogeneous transformations. An overview

The representation of objects in an n-dimensional space using homogeneous
coordinates needs a space of dimension n + 1 from which the original space is
recovered by projection. For example, the vector v = z;i + y1j + 21k, where
i,j,k are unit vectors along the Cartesian coordinate axes, is represented using
homogeneous coordinates as a column vector:

T
v=| Y

z

t

so that

T = a:/t
Y1 =y/t
2 =z[t

Henceforth we will normalize ¢t = 1.

A transformation H is a 4 x 4-matrix so that, the image of a given point v
under this transformation is represented by the matrix product u = Hv.

Translations

A transformation H representing a translation by a vector d = ai + bj + ck will
be:

1 0 0 @
H = Trans (d) = Trans (a,b,c) = 8 (1) (1) I;
0 0 01

Thus, given a vector v = (z,y, z, 1)}, its image u under H will be

z+a

y+b

z+c
1

u=Hv=

86

It is easy to prove that the set of all translations constitutes a group under the
matrix product operation, which will be denoted by T'.

Rotations

The transformations representing rotations about the z, y, and z axes by angles
¥, 0 or ¢, respectively, are:

1 0 0 0
. 0 cosyp —singp O
RotxW)=| o np cosw o0
0 0 0 1
cosf 0 —singd O
0 1 0 0
Roty(6) = sinf 0 cos§ O
0 0 0 1
cos¢ —sing 0 O
Rotz()= | “3¢ %¢ 0 9
0 0 0 1

Each element ij of the 3 x 3 upper left submatrix is equal to the cosine of the

angle between the i-axis of the original coordinate frame and the j-axis of the
rotated one.

These matrices, as well as their products, are orthogonal matrices with deter-

minant equal to +1. They also constitute a group under matrix multiplication
which will be denoted by S,.

Displacements

The transformations representing rotations and translations can be multiplied,
and the resulting matrices are said to describe displacements.

The following properties must be emphasized:

- Decomposition of a displacement. Every displacement H can be decom-
posed into the product of a translation and a rotation, so that

H = Trans(d) H = Trans(e,b,c) H , VH € SE(3)

where H is the rotation component of the displacement H or, in other
words, is the matrix resulting from setting the first three elements — a, b
and c — of the last column of H to zero.

87

- Composition of n displacements.
H,---H;.---H, = Trans (d;) H;-.. Trans (dn) H, =
Trans (d, + Hydy + ...+ A A, .- A, ,d,) H; Hy--- H, ,
VH, ---H, € SE(3)

If a transformation is postmultiplied by another transformation, the latter
is applied with respect to the transformed frame described by the former.
Conversely, if a transformation is premultiplied by another one, the latter
is applied with respect to the reference frame [13]. Other authors [14], in
using the transposes of the above defined transformations, adhere to the
inverse rule.

- Inverse displacement. Because of the properties of orthogonal matrices,
the inverse displacement of H is:

H! = A Trans (—a,—b,—c) , VH € SE(3)
where H* denotes the transpose matrix of H.

A given displacement has been denoted using a upper case bold letter. Here-
after, sets of displacements, possibly subgroups, will be denote using just an
upper case letter.

4.2.2 Subgroups of the group of displacements

It is well known that a group is a set of elements closed under an associative
operation with an identity and inverse elements, as is the group SE(3) of
displacements. A subgroup S C SE(3) is a subset of SE(3) which is itself a
group under the same operation. The composition of elements of SE(3) can
be extended to the composition of elements and subgroups. If S C SE(3) and
D € SE(3), then the right coset S - D is the set {H-D | H € S}. The left
coset D - S and the two-sided coset D; - S - Dy can be similarly defined. More

generally, the composition of two subgroups S; - S; is defined as {D;-D, | D; €
S1,D9 € SQ}.

Definition 1 (Conjugation classes of subgroups of SE(3)) Every such
class is an equivalence class with respect to the relation:

S1~S IDeSEB) | S= DS D!

S1 and Sy being subgroups of SE(3).

88

Table 4.1: Classification of the subgroups of SE(8) into conjugation classes

Dimension Conjugation class | Geometric
(d.o.f) Notation and associated elements Canonical subgroup
lower pair of definition
0 1 Identity I
displacement
1 Ty Rectilinear A direction of {Trans (x,0,0) | x € &}
translation translation given
(P) Prismatic by a vector v
Ry Rotation around An axis of
an axis revolution u {Twix (¥) | ¥ € (-, +n]}
(R) Revolution
Hy, Helicoidal An axis of {Trans (x,0,0)Twix(px) |
movement revolution u and x €R, p = constant }
(H) Screw a thread pitch p
2 Tp Planar A plane P {Trans (0,y,2) | x, y € R}
translation
Cu Lock movement An axis u {Trans (x,0,0) Twix (¥) |
(C) Cylindrical x € R,y € (-7, +7]}
3 T Spatial {Trans (x,y,2) | x, 5, z € R}
translation
Gp Planar sliding A plane P {Trans (0,y,2) Twix (%) |
(E) Plane Y,z €RY € (-7, +n]}
So Spheric rotation A point o in {Twix (¢) XTOY Twix(£)
(S) Spherical the space XTOY Twix (n) |
’/", E) ne (_ﬂ! 'P’r]}
Yv, Translating A direction of {Trans (x,y,z) Twix(px) |
screw revolution v and X, ¥,z €R, p = constant }
a thread pitch p
4 Xv Translating A direction of {Trans (x,y,z) Twix(y)
gimbal revolution v X, 5,z €R, Y € (—n,+7]}

89

There exists infinite subgroups of SE(3), but they can be classified into a
finite number of conjugation classes. This suggest that we can represent each
conjugation class by a canonical subgroup, so that all subgroups of the same
class can be expressed as a conjugate of it.

An exhaustive classification of the continuous subgroups of SE(3) into con-
jugation classes can be carried out using classic methods of analysis of finite
dimension continuous groups [3]. A list of the classes thus obtained and a
canonical subgroup for each of them is shown in table 4.1 (adapted from [7]).
Note that all lower pairs are included in this classification. Let us recall that
a lower pair exists when one element is coupled to the other via a wrapping
action and contact takes place along a surface.

The notation used for these conjugation classes appears in the second column
of table 4.1. Each class can be characterized by a set of geometric elements of
definition which appear as subindices in the notation of the class. A geometric
element of definition of a given subgroup is an affine space of ®® of dimension
0, 1 or 2 (a point, line or a plane) which characterize the subgroup. A scalar is
also required to characterize the Hyp and Yy, subgroups. An instance of this
elements leads to a subgroup belonging to the class. Instances will be denoted
using numerical subindices. For example, Tp denotes the conjugation class of
planar translations and Tp, denotes a given subgroup belonging to this class.

The canonical subgroups are chosen in such a way that their geometric elements
of definition satisfy the following conditions:

- if it is a point, it coincides with the origin of the reference frame;

- if it a line, it passes through the the origin of the reference frame and the
z axis is aligned with it; and

- if it is plane, it passes through the origin of the reference frame and the
z axis is orthogonal to it.

The election of canonical subgroups is thus arbitrary. If S; is a canonical sub-

group, it will be denoted S;. Given a subgroup S1, (S1)€ denotes the canonical
subgroup in the same class.

The degree of freedom of a kinematic chain is defined as the necessary and
sufficient number of variables that define uniquely the position and orientation
of all the workpieces involved. The dimension of one of the foregoing subgroups
is defined as the degree of freedom of the constrained motion it allows. A set of
variables is thus associated with every subgroup. The dimension of a subgroup

is indicated as dim(-), where (-) denotes one of those subgroups. Obviously,
dim(SE(3)) = 6.

When the geometric elements of definition of two different subgroups satisfy
some kind of spatial relationship — such as parallelism, collinearity or perpen-

90

Table 4.2: Conditions of inclusion of one subgroup of SE(3) into another

uy L Py = ug perpendicular to Py
u; M uy = wu; and uy collinear
up || vo = up and v, parallel

T, Cu, T Gp Sop Yvom Xv,

Ty, u | P | wlu | Vu | w || A uglvp Vug
Ry, up M uy wlP | op€Eug u || v
Hugp, up X uy w=vo,po=p1 | wlwv
Tr, VR | B P Pylvy VP, Vv,
Cu, w || v

T Vvi
Gpy Pylvy
Yvo,po up || Vi

Xv,

dicularity —, one may become subgroup of the other. The conditions of inclusion
of one subgroup into another appear in table 4.2 (adapted from [7]).

Now, we can introduce a formal definition of kinematic constraint.

Definition 2 (Constraints and linking displacements) A constraint R is
a set of displacements which can be expressed as a eomposition of cosets of
canonical subgroups. That is,

R=LoS5 L8y Ly 15,Ln (4.1)

where Ly, ...,L,_1 are defined as linking displacements. A constraint is said
to be trivial when it can be reduced to a single coset.

The interest of most mechanisms is to provide a constrained motion which
cannot be expressed as a constraint in the way it has been defined here. Nev-
ertheless, we are not interested in analyzing mechanisms, but reasoning about
constrained motions in the assembly domain.

91

Hereafter, we will assume that our constraints are trivial. In this particular
case, if R; = LgS;L;, then Rf" will denote the canonical subgroup S;, thus
extending the notation introduced for subgroups.

Constraints will be denoted by R;, where 7 is a subindex that identifies it. If
R; is the set of legal transformations from the reference frame of B; to the
reference frame of B, R;' denotes the set of legal transformations in the way
around, i.e. from B to B;. Note that RS = (R;)€ for all R;.

A constraint R; has the variables and geometric elements of definition inher-
ited from S;. Given a reference frame, the subgroup with the same geometric
elements of definition as a given constraint R; will be called its associated
subgroup, which will be denoted by RA. Obviously, R ~ R¢.

4.3 Operations on a graph of
kinematic constraints

A directed graph of kinematic constraints — or GR graph, for short — is defined
as a graph whose nodes correspond to workpieces and whose directed arcs are
labeled with constraints. The two basic operations on a graph of kinematic
constraints are composition and intersection of constraints. The former (fig.
4.2a) involves finding the constraint between bodies B; and Bs that results from
composing the constraint between B; and By — say R; — with that between B,
and B — say R; —, which will be denoted by R; - R;. The latter operation
(fig. 4.2b) permits combining two given constraints, R; and R;, between the
same two workpieces into a single resulting constraint, which will be denoted by

R;,NR;. Let us analyze both operations in terms of composition and intersection
of subgroups.

4.3.1 Composition

Let us assume a universe of three bodies — B;, B2 and Bs — linked by two trivial
constraints

Riz = A151A,
Ry = B15;Bs.

Then, the equivalent constraint between bodies B; and Bs, that results from
composing Rj2 and Rys, is:

Ris = RisRos = A151A2B1 5By = A1 A28 5,B: B, (4.2)

92

Ry Ry (a) Ri-R;
m
B > o T
1 82 By B, Bs
Ry (b) RiINR,
B 0B > Bl o5
R,
R, (©)
R; = fufa Ry'-R,
R,
Ry - Rs

Figure 4.2: Operations on a graph of kinematic constraints: (a) composition;
(b) intersection; and (c) star-polygon transform.

93

where
SlNgl andSzrvS'z

We will denote (Rj2Ry3)C = 815, according to 4.2.

Thus, the problem of composing two trivial constraints can be reduced to the
problem of composing two subgroups, and the outcome of the composition of
two continuous subgroups of SE(3) can be tabulated as shown in table 4.3
(adapted from [7]).

Clearly, the composition of two trivial constraints needs not be a trivial con-
straint itself, and the only information we need to find it out is the spatial
relationships between their geometric elements of definition of both constraints.

When we compose two constraints expressed in terms of canonical subgroups,
the linking displacement (A2B; in (4.2)) captures the information about the
spatial relationship between their geometric elements of definition. Taking
advantage of this fact, we can check the linking displacement to find whether
the composition of two trivial constraints can be reduced to a trivial constraint.

4.3.2 Intersection
If body B;, still in the same example above, is rigidly linked to B; forming a

closed kinematic chain, the intermediate body By will only have the possibilities
of motion given by Rjs N Ryy.

We can write,
Riz N Ry = A1$1A; N B;1S,BT! = (S) N S5B; B A AT A A =
= (S{ N SéC)AlAz

If S and S are subgroups of SE(3), then (5] N.S;C) is either null or is a coset
of Sj N S; (proposition 2 of [15]). Then, we have

Ri2N Ry = (SN S))DAA; iff RipNRy #0 (4.3)
where
D=EC,EcS), De &S], (4.4)

S} being a conjugate subgroup of S, and S} of S,.
We will denote (Ry2 N Ry!)! = S} N Sj according to 4.3 and 4.4.

94

Table 4.3: Intersection and regular representation for the composition of all
pairs of subgroups of SE(3) whose intersection is different from the identity

displacement or one is not subgroup of the other

Groups to be | Conditions on the | Conditions on the Regular
composed geometric linking Intersection representation
elements displacement
pr - T B Tvo T
vo=P NP
Tr, - Gp, Tv, Xvq
vo=Pnp volP;
Gp ' Gp Tv, Ru, T Ru,
vo=PyNnp uglPy,u LP
Yvo,pg . TPg vo AR I #+1 TV] XVo
vi | Py, vilvg
Yvom0 -Gpy vo AP L1 #£1 Tv, Xvy - Ry,
vi | Py, vilvg LRy
Yvom Yoy vo vy hy #+1 Tv, Ry, - T+ Ry,
valvy, valvy | wgllvo, w vy
Yvu,m . C“o uglvy 111 =0 Tvo YVOJ’O . Ruo
Cuy, * Cu, ug [uy L =41 Ty, Cu, * Ry,
log #0o0rlgy #0
Tpo'Cuo g "Po lu =0 Tuo Tpo-Ruo
T Cuo Tuo Xvo
vo |l vy
GPO'C“O u [P 1 =0 Tuo Gpo'Ruo
p Cuo ug fvo L1 #+£1 Tuo XVO . R“o
YVO-PO . C“O ug [vo L1 =+1 HVOPO XVU
Gpr, - Cu, uy Py 41 =+1 Ry, Xvq
volPy
Sog * Cuy op € axis up L = £1 Ru, S0 - Tug
logg =0
i3 =0
5o *Gry Rug Sog + Ty
op € axis up
uylPR
Sog * Xvg Ru, SE(3)
0p € axis uy
ug [vo
Sop * So Ry, Sop -Ru°.~ Ry,
u = y%;%r 01 € axis ug
01 € axis wp
Yvopo - YV vo [v1 L1 =41 T Polvp Xvq
(o #p1)
Yvoro - Xvy vo fv1 by #+1 Tr, Polvo Xvo - Ru,
uy || vy
Gry - Yu, pg volP h =+1 Try Xvg
Gp, * Xv, vo AP 1 #+£1 Tp, Ry, - T Ru,
ugLPy, uy || vo
Gp T Tp, Xvy volPy
Yvom - T Tr, Xvo
Xvg - Xvy vo fv1 1 #+1 T Ruy T Ry,
ug || vo, uy [vy

95

Note that, although the intersection of two subgroups is at least the identity
displacement, the intersection of two constraints may be the empty set.

When the intersection of two constraints is null, i.e. it is not possible to find a
set of displacements satisfying (4.4), it implies that both kinematic constraints
can not be simultaneously satisfied. This situation can not be detected through
the intersection of subgroups. Roughly speaking, if we state our problems
of kinematic constraints purely in terms of compositions and intersections of
subgroups, we will be unable to detect inconsistencies. As it has been pointed
out in [1], Group Theory provides the means for a topological analysis of the
behavior of a set of bodies linked by a set of kinematic constraints, but a
geomelric analysis is required if we care about dimensions.

Thus, the problem of intersecting two constraints, say A; S'1A2 and B, 1S’gBl“ 1
can be expressed, if their intersection is different from null, in terms of the
intersection of two subgroups, and the information about the spatial relation-
ships between their geometric elements of definition can be obtained either
from A, -B; or By - A;. Obviously, both information must be consistent.

The outcomes of the composition and intersection of two continuous subgroups
of SE(3), for all those cases in which the intersection is different from the
identity displacement or one subgroup is a subgroup of the other, have also been
tabulated in table 4.3. l;; denotes the element (i, j) of the 4 x 4 homogeneous
transformation representation for the linking displacement.

See [9] for deeper prospects on the intersection of, possibly not continuous,
subgroups of SE(3).

As a summary, we can say that: (a) the composition of two trivial constraints is
sometimes a trivial constraint; (b) the intersection of two trivial constraints is a
trivial constraint or null; and (c¢) the intersection of two non-trivial constraints
is not necessarily a constraint, as defined here.

Definition 3 (Independence and inconsistency) Two trivial constraints,
R; and Ry, are said to be independent iff (RiNRy)! is the identity displacement,
and they are said to be inconsistent iff Ry N Ry is the empty set.

Let us suppose that we want to find out the dimension of Ry3 = Rjs - Ra3 or,
in other words, the number of d.o.f. of the body B; with respect to B;. It can
be stated that:

dim(Ri3) = dim(Ri2) + dim(Ra3) — dim(Ri2 N Ras)

This formula can be extended to the composition of n constraints, leading to
a variation of the Chebyshev-Gribler-Kutzbach formula

n n
dim(Ryp1) = Y dim(Rij41) — > dim(Ryy N Ry 1) (4.5)
1 I=2

96

where
§-1
Rij = H Ry
=1

There are many examples of kinematic chains whose degree of freedom cannot
be determined from its sole topology, i.e., they are elusive to the application of
4.5 [1, page 86].

Definition 4 (Regular representation) The composition of two trivial con-
straints, R3 = R Ry provide a regular representation for Rs iff (RiN R) =1
Then, dim(R3) = dim(R;) + dim(Ry)

Notice that regular representations are not unique.

4.3.3 Examples

Firstly, let us analyze the composition of two constraints whose associated
subgroups are Gp, and Xy,. This composition can be expressed as:

R. = ASLSB
= A Trans(0,y,z) Twix(§) L Trans(z',y/,2") Twix(y) B

where L is the linking displacement between both constraints. On the other
hand, Gp, and Xy, can be decomposed into composition of subgroups as fol-
lows:

GPo =Tp, - Ry, = Rul - Tp,
Xu, =T -Ru,=Ru,-T

with u; L Py and uy||u,.
If up L P, then l3; # +1 (see table 4.3) and the only possible simplification for
R, is:

R. = A Trans(z",y", 2") Twix(6) L Twix(y) B

The simplified term, Trans(0, y, z), corresponds to the intersection of Gp, and
Xu,. In terms of subgroups (table 4.3), we have

GPo 'Xu° =Xu1 'R'l.h = Rul 'T'Ruz = Rul 'th

Gp,N Xy, =Tp,

97

with u; L Py and ug || up.

If ugL Py, then u; || ug, li1 = 1, and Gp, becomes a subgroup of Xy, (ta-
ble 4.2). Consequently, R, can be expressed as

R, = A Trans(z”,y",2") Twix(0)L' Twix(y) B
= A Trans(z"”,y”,2") Twix(§ +11¢) L' B

where L = L/ Trans(0, log, l34).

Notice that the necessary and sufficient condition for the equality
Twix(6;) L Twix(0;) = Twix(y) L

to hold is that l;; = %1, ls4 = 0 and l34 = 0. In this case ¥ = 6; + [1:05.

Let us see another example. Imposing that the axes of the cylinders be aligned
with the axes of their corresponding holes for the workpieces in fig. 4.3, the
following expressions for both constraints will be obtained:

Riz = Aj Trans(z;,0,0)Twix(0;1)Are, R = Cu,

Ry3 = Ay Trans(zg, 0,0)Twix(62) Ag, R'ﬁ-, = Cu,
The composition of both constraints yields:

Ri2Rp3 = Ay Trans(z;,0,0) Twix(6;) L Trans(zs,0,0) Twix(6;) Ag
where the linking displacement is:

L=ApAy.

Since uy and u; are parallel, and according to table 4.3, [;; = +1; therefore,
the composition of both constraints can be simplified leading to:

Rj2Ry3 = Ay Trans(z; + l1122,0,0) Twix(6;) L Twix(62) Ag (4.6)
or, in other words,
RipRpz=A1 51 L S Ax

where S’l € Cu and .§'2 € Ru. Expression (4.6) is a regular representation for
the composition of both constraints.

If, in addition to l;; = £1, lz4 = 0 and l34 = 0 (up X u;), a further simplification
could be carried out and Rj2Ry3 becomes a trivial constraint. In this case
(R12R23)G e Cqu.

98

u

Figure 4.3: Insertion of a clamp. Geometric elements of definition, kinematic
constraints and canonical subgroups involved.

99

Let us suppose that now we want to obtain Rjy nR,;;, the equivalent constraint
between B; and By. Then, (Ri2N Rz“‘.,,1)! can be easily obtained using table 4.3.
Observe that the simplified term in 4.6, Trans(z,0,0), is (Ri2 N R;!)!¢. This
term encompasses the remaining d.o.f. of body By with respect to B;, when B;
is kept rigidly linked, as in this case, to B;.

We have proved that the above constraints are not independent, but we have not
checked their consistency. Depending on the relative dimensions of the involved
workpieces, they may be inconsistent. The only thing we can say using this
kind of symbolic manipulation is that, if (R N R{ll) # 0, then By only have
one translational degree of freedom with reference to B;. Checking consistency
requires a geometrical analysis which requires, in turn, solving a kinematic
equation. In our example, we would have to decide whether Rj2Rp3 = I has
a solution. Thus, although the previous ideas provide a theoretical framework
within which it is easy to justify, for instance, when the composition of two
constraints can be simplified, they must be complemented with an algorithm to
obtain numerical values for the constrained d.o.f. if we care about dimensions.
See [4] for new developments in this area.

4.3.4 Star-polygon transform

The above two basic operations are not enough for obtaining the equivalent
constraint between any two bodies in an arbitrary graph of kinematic con-
straints. This fact can be easily proved by drawing a fully connected GR graph
with four nodes and trying to obtain the equivalent constraint between any two

of them through the iterative application of compositions and intersections of
constraints.

The star-polygon transform is included here to provide a complete set of op-
erations which make possible to obtain the equivalent constraint between any
two bodies in an arbitrary GR graph.

The star-polygon transform consists in removing one node of the GR graph by
fully connecting all the nodes connected to it with the equivalent constraint
between them (fig. 4.2c). This operation can be seen as a generalized compo-
sition. Actually, when this transform is applied to a node of degree two, the
result is the composition of two constraints.

The problem with this operations is that, once it has been applied, the involved
constraints share variables. Thus, when a variable is assigned somewhere in the
graph, it is necessary to take into account that it may be shared by another
constraint. In the next section, an algorithm, which represents a way around
this difficulty, is introduced. This algorithm is able to find the equivalent
constraint between any two bodies without resorting to this operation.

100

4.4 Propagation of constraints

If, as the result of intersecting two constraints between the same two workpieces,
the empty set is obtained, we say that they are inconsistent. The goal is
now to verify the consistency of entire GR graphs. This can be stated as a
problem of consistency in networks of relations. As it is pointed out in [10],
any representation of the constraints that allow composition and intersection
is sufficient for this purpose.

Informally, a GR graph is consistent if there exist configurations between work-
pieces whose defining coordinate transformations belong to the corresponding
constraints. Obviously, a GR. graph without cycles is always consistent; thus,
it is easy to realize the important role of cycles in GR. graphs.

Next, before introducing a general algorithm for propagating kinematic con-
straints, some few concepts on cycles in graphs are reminded.

4.4.1 Preliminaries on cycles

Two basic operations with cycles are the union and the ring sum. The union
of two cycles C; = (W4, E;) and Cp = (Vs, Ey) is a graph G = C; + Cp with
node set V3 = VUV, and arc set E3 = E) U Ey. The ring sum of two cycles C;
and C; (written C; @ C) is another cycle or a set of disjoint cycles consisting
of the node set V; U V2 and of arcs that are either in C; or Cs, but not in both.

A set of cycles H in a graph G = (V, E) is said to be a complete set of basic
cycles if (i) every cycle in the graph can be expressed as a ring sum of some or
all cycles in H, and (ii) no cycle in H can be expressed as a ring sum of others
in H. The cardinality of a complete set of basic cyclesis u=| E | = | V | +1,
which is called the cyclomatic number. Hence the maximum number of cycles
is 2¢ — 1.

4.4.2 TIsolation of blocks

When a kinematic constraint is posted, it can affect other workpieces different
from those it is incident to, but, in general, a constraint is limited in its scope.
In order to isolate subgraphs within which the effect of a constraint is limited,
the following operations are applied:

1 Elimination of cutlines or bridges. This includes the elimination of pen-
dant constraints (fig. 4.4a).

2 Split cutpoints or articulation nodes into two nodes to produce two dis-
joint subgraphs (fg. 4.4b).

101

(a) (®)

Figure 4.4: Operations applied for the isolation of blocks: (a) elimination of
cutlines; and (b) splitting cutpoints.

As aresult of these operations a set of subgraphs, or simply blocks, are obtained.
A GR graph is consistent if each of its blocks is consistent.

Now, we can introduce a definition for an important subclass of graphs of
kinematic constraints.

Definition 5 (Trivial GR graph) A GR graph is said to be trivial iff the
equivalent constraint between any two nodes in any of its blocks can be expressed
a trivial constraint.

It is obvious that a GR graph without cycles is always trivial.

Let us assume that the obtained blocks are planar graphs. This assumption,
while not very restrictive, simplifies the treatment given below. Anyway, the
provided results can be extended to non-planar graphs.

A plane representation of a graph divides the plane into regions. A region is
characterized by the set of arcs forming its boundary. In a plane representation
of a planar connected graph the set of cycles forming the interior regions, or
region cycles, constitutes a complete set of basic cycles. The set of region cycles
is not unique. Actually, there are (“:1) different sets of region cycles. This can
be easily seen by noting that a planar graph can be embedded on the surface
of a sphere. The number of region cycles in the surface of a sphere would be
p+ 1, which are also the shortest cycles for a planar graph.

102

Let X be the set of region cycles in a planar block G. The cycle graph of X
is the graph with vertex set X and arcs joining two distinct nodes if and only
if the corresponding cycles have an arc in common. This graph is denoted by
D(G) and it can be easily proved that D(G) is a subgraph of the dual graph
of G (see [6, page 106]). Nodes in a D(G) graph stand for cycles and arcs in
D(G), for shared arcs in G. For extension, constraints labeling a shared arc are
called shared constraints. Note that an arc can only be shared by two region
cycles.

Let C; be a region cycle whose arc set is labeled with the constraints
{R1,Rs,...,Rj,..., R}

according to fig. 4.5. Then, the constraint R; can be substituted by
R:=R;N(RjY---R{"-R;'---Rj}y)

without modifying the consistency of the corresponding GR graph (fig. 4.5b).
In order to simplify the notation, we will write

-
R =GR,

This is the basic mechanism for constraint propagation as it is shown below.

4.4.3 A filtering algorithm for
propagating kinematic constraints

A general procedure to propagate the effect of constraints in GR graphs has
been devised, either to characterize the set of configurations that satisfy all the
constraints or to find out that there exist no such configurations.

The propagation process consists in filtering all constraints, that is eliminating
from the constraints those displacements which cannot appear in any solution.
Eventually, if all constraints are reduced to only one element, a single solution
is obtained.

Global consistency in a block G is checked by eliminating local inconsistencies;
that is, by eliminating inconsistencies in region cycles — which is equivalent
to ensure node inconsistency in D(G) -, and by eliminating inconsistencies
between adjacent region cycles — which is equivalent to ensure arc consistency
in D(G) (see [10] or [11]). The following procedure implements this idea.

103

RiN(R;Y---Ri'-R'- R

Figure 4.5: The basic mechanism for constraint propagation. A constraint Rj,
labeling an arc in a cycle C;, can be substituted by NS R;.

104

procedure filter_constraints;

input: G; /* a block of a GR graph*/
output: G;

repeat

stop:= true;
/* check node consistency */

forall region cycles C; do
forall constraints R; in C; do

/%] R = (iR
J¥2*/ if R] == 0 then exit();
enddo;
enddo;

/* check arc consistency */

forall shared constraints R; do

/*3*/ Ry = ﬂka;
/*¥4%*/ if Ry == 0 then exit();
if Ry # R; then
stop:= false;
R; := Rr;
endif;
enddo;
until stop;
end.

Geometric inconsistencies can be found either when N% R; or when Ny RY be-
come the empty set. In the first case, the cycle C; becomes inconsistent; in
the second one, all the cycles sharing the constraint R; do. The problem of
obtaining the minimum set of constraints that made a given GR graph become
inconsistent is addressed in [17].

The above algorithm can be easily modified for its application for a topological
analysis, stating the problem in terms of composition and intersections of asso-
ciated subgroups instead of constraints. Then, sentences /*2*/ and /*4*/ can
be removed and, if the outcome /*1*/ is not a subgroup for a particular Cj, it
is not taken into account when computing /*3*/. In this case, the algorithm
will halt when no progress is made, either because the graph is not trivial,
or because all possible filterings have already been carried out. An example
illustrating this idea is shown in the next section.

105

If the corresponding GR graph is planar, it is presumable that the complexity
of the above algorithm is polynomial in the number of constraints [11].

The significance of the described algorithm is that it only needs to repeatedly
handle a set of short cycles. Because of domain specific attributes, node and
arc consistency provide a sufficient guarantee that there is a complete solution,
in the same way the celebrated Waltz’s filtering algorithm provides a complete
solution for polyhedral scene labeling looking only for arc consistency [19).

4.5 Example

Let the workpieces in fig. 4.6a be elements of an assembly. The matings between
complementary features of workpieces B;, Bz and Bs lead to the GR graph in
fig. 4.6b, which only contains one block with one cycle. Thus, the equivalent
constraint between any two workpieces can be obtained by simply reduction of
the graph to a single edge linking them. For example, the equivalent constraint
between By and Bs, if different from null, will be a coset of

(Tul -Tuz)ﬂTua =TulﬁTua =1,

i.e. By will remain fixed with reference to Bs. This suggest that By and B3
must be put together before B; is assembled, providing valuable information
about the assembly sequence.

Now, let us consider all the workpieces in fig. 4.6a. Given the matings between
their complementary features, the problem consists in deciding whether these
matings are enough for fixing the relative location of these four workpieces.
The corresponding GR graph appears in fig. 4.6c. Neither composition nor
intersection of constraints can be applied to reduce it.

Using the algorithm proposed in the last section, we can write the following
table:

RA G | Co |Gl results 15% || ¢, | G Cs || results 204
iteration iteration
R || Ta || Ta, Tu, T T
Re || Tu, || Tu, T j T T T
Rs || Tu, || T | 7 T T 1 T
R | Cu, 717 Cu, Cu, | Cu, Cu,
Rs || Cu, ? Cu, Cu, Cu,
Rs || Cu, 7 Cu, Cu, Cu,

taking into account that:

106

(@)
B,
S 5 :
\
(b) ©
B,
B, Ry Ry
R, R, Rs 5 ke R; By
R4
R
B, By 5
R
Bs

Figure 4.6: (a) A set of workpieces to be assembled; (b) the corresponding GR
graph involving workpieces B;, B2 and Bs; and (c) the GR graph involving all
workpieces.

107

wjup wXus
wlug uy M ug
uluy u; M ug
uzluy uslug
u3J_u5 111.L116

which can be directly inferred from the linking displacements.

The outcomes of (N Rj)A appear in row R; and column C;. In the first iteration,
some of this subgroups cannot be obtained since the corresponding constraint
is not trivial. In the third iteration no new progresses can be carried out
and, since it was possible to compute ("% R;)4 for i = 1..3 and j = 1..6, the
algorithm finishes after propagating all the constraints. Then, it can be said
that, if all introduced constraints are geometrically consistent, then the bodies
By, By and B; will remain fixed and, if they are considered as a subassembly,
then the body B; will have two d.o.f. with reference to it.

4.6 Summary

A kinematic constraint has been defined as a set of displacements which can be
expressed as a composition of cosets of Euclidean subgroups. A constraint is
said to be trivial when it can be reduced to a single coset. Trivial constraints
include all kinematic lower pairs.

A characterization of the spatial relationships between bodies in assemblies as
trivial kinematic constraints, as well as a tabulation of the outcomes of the
composition and intersection of the corresponding subgroups has been given.
The theoretical foundation for this systematization has been taken from [7].

A graph of kinematic constraints has been defined as a graph whose nodes
correspond to workpieces and whose directed arcs are labeled with trivial kine-
matic constraints.

It has been shown that it is not always possible to obtain the equivalent con-
straint between any two bodies in a graph of kinematic constraints by simply
composing and intersecting constraints, so that the graph is reduced to a single
arc linking both bodies. An algorithm that provides a way around this diffi-
culty has been proposed. This algorithm filters all the constraints in a graph of
kinematic constraints. This process consists in eliminating from the constraints
those displacements which cannot appear in any solution.

It has been shown how — relying on the composition and intersection of sub-
groups — it is possible to carry out a topological analysis of the motion possi-
bility for a set of bodies linked by a set of trivial kinematic constraints. It has
also been shown that it is not possible to derive geometric inconsistencies from
this analysis.

108

Acknowledgements

This research was funded by the Fundacion Areces, under the project
SEPETER, and the Comisién Interministerial de Ciencia y Tecnologia
(CICYT), under the project “Automatic spatial reasoning based on con-
straints.” The author was also supported by a NATO fellowship.

The author thank Yanxi Liu and Robin Popplestone, from the University of
Massachusetts at Amherst, for their useful comments during the preparation
of this chapter.

References

[1] J. Angeles, Rational Kinematics. Springer-Verlag, New York, 1988.

[2] O. Bottema and B. Roth, Theoretical Kinematics. Dover Publications,
New York, 1979.

[3] J.E. Campbell. Introductory Treatise on Lie’s Theory of Finite Contin-
uous Transformations Groups. Clarendon Press, Oxford, 1903.

[4] E. Celaya and C. Torras. Finding Ob<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>