
www.manaraa.com

www.manaraa.com

COMPUTER-AIDED
MECHANICAL

ASSEMBLY PLANNING

www.manaraa.com

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

ROBOTICS: VISION, MANIPULATION AND SENSORS

Consulting Editor: Takeo Kanade

SHADOWS AND SILHOUE77'ES IN COMPUTER VISION, S. Shafer
ISBN: 0-89838-167-3

PERCEPTUAL ORGANIZATION AND VISUAL RECOGNITION, D. Lowe
ISBN: 0-89838-172-X

ROBOT DYNAMICS ALGORITHMS, F. Featherstone
ISBN: 0-89838-230-0

THREE- DIMENSIONAL MACHINE VISION, T. Kanade (editor)
ISBN: 0-89838-188-6

KINEMA TIC MODELING, IDENTIFICATION AND CONTROL OF ROBOT MA­
NIPULATORS, H.W. Stone

ISBN: 0-89838-237-8
OBJECT RECOGNITION USING VISION AND TOUCH, P. Allen

ISBN: 0-89838-245-9
INTEGRATION, COORDINATION AND CONTROL OF MULTI-SENSOR ROBOT

SYSTEMS, H.F. Durrant-Whyte
ISBN: 0-89838-247-5

MOTION UNDERSTANDING: Robot and Human Vision, W.N. Martin and J. K.
Aggrawal (editors)

ISBN: 0-89838-258-0
BAYESIAN MODELING OF UNCERTAINTY IN LOW-LEVEL VISION, R. Szeliski

ISBN: 0-7923-9039-3
VISION AND NA VIGATION: THE CMU NA VLAB, C. Thorpe (editor)

ISBN: 0-7923-9068-7
TASK-DIRECTED SENSOR FUSION AND PLANNING: A Computational Approach,

G. D. Hager
ISBN: 0-7923-9108-X

COMPUTER ANALYSIS OF VISUAL TEXTURES, F. Tomita and S. Tsuji
ISBN: 0-7923-9114-4

DATA FUSION FOR SENSORY INFORMATION PROCESSING SYSTEMS, J. Clark
and A. Yuille

ISBN: 0-7923-9120-9
PARALLEL ARCHITECTURES AND PARALLEL ALGORITHMS FOR INTEGRATED

VISION SYSTEMS, A.N. Choudhary, J. H. Patel
ISBN: 0-7923-9078-4

ROBOT MOTION PLANNING, J. Latombe
ISBN: 0-7923-9129-2

DYNAMIC ANALYSIS OF ROBOT MANIPULATORS: A Carlesian Tensor Approach,
C.A Balafoutis, R.V. Patel

ISBN: 0-7923-9145-4
PERTURBATION TECHNIQUES FOR FLEXIBLE MANIPULATORS: A. Fraser and

R. W. Daniel
ISBN: 0-7923-9162-4

www.manaraa.com

COMPUTER-AIDED
MECHANICAL

ASSEMBLY PIANNING

edited by

Luiz S. Homem de Mello
Jet Pro pulsion Laboratory

California Institute of Technology

SukhanLee
Department of Electrical Engineering Systems

University of Southern Calijornia
and

Jet Pro pulsion Laboratory
California Institute ofTechnology

~.

" Springer Science+Business Media, LLC

www.manaraa.com

Library of Congress Cataloging-in-Publication Data

Computer-aided mechanical assemb1y p1anning I edited by Luiz S. Homem
de Mello, Sukhan Lee.

p. cm. -- (The Kluwer international series in engineering and
computer science: SECS 148)

Includes bibliographica1 references and index.
ISBN 978-1-4613-6806-9 ISBN 978-1-4615-4038-0 (eBook)
DOI 10.1007/978-1-4615-4038-0
1. Computer-aided engineering. 1. Assembling machines. I. Homem

de Mello, Luiz S. II. Lee, Sukhan. III. Series.
TA345.C6424 1991
670.427--dc20 91-21667

CIP

Copyright© 1991 Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers,New York in 1991
Softcover reprint ofthe hardcover 1st edition 1991

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer
Science+Business Media, LLC.

Printed on acid-free paper.

www.manaraa.com

To my parents, Ligia and Fabio Romem de Mello.

To my parents, Anna and Ryung-Ki Lee.

www.manaraa.com

Contents

Foreword
George A Bekey

1. Introduction 1
Luiz S. Homem de Mello and Sukhan Lee

Pari I -ASSEMBLY MODELING

2. Representations for assemblies 15
Aristides A G. Requicha and Timothy W. Whalen

3. Representation of solid objects by a modular
boundary model 41
Leila De Floriani, Amitava Maulik and George Nagy

4. Graphs of kinematic constraints 81
Federico Thomas

5. Relative positioning of parts in assemblies using
mathematical programming 111
Joshua U. Turner

Part II - ASSEMBLY PLANNING

6. Representations for assembly sequences 129
Luiz S. Homem de Mello and Arthur C. Sanderson

7. A basic algorithm for the generation of
mechanical assembly sequences 163
Luiz S. Homem de Mello and Arthur C. Sanderson

www.manaraa.com

viii

8. LEGA: a computer-aided generator of assembly plans 191
Jean-Michel Henrioud and Alain Bourjault

9. Maintaining geometric dependencies in assembly
planning 217
Randall H. Wilson and Jean-FraTtfOis Rit

10. Efficiently partitioning an assembly 243
Randall H. Wilson

11. On the automatic generation of assembly plans 263
Jan D. Wolter

12. A common sense approach to assembly sequence
planning 289
Richard Hoffman

13. Assembly coplanner: cooperative assembly planner
based on subassembly extraction 315
Sukhan Lee and Yeong Gil Shin

14. Backward assembly planning with DFA analysis 341
SukhanLee

15. Computer aids for finding, representing, choosing
amongst, and evaluating the assembly sequences
of mechanical products 383
Thomas E. Abell, Guillaume P. Amblard, Daniel F. Baldwin,
Thomas L. De Fazio, Man-Cheung Max Lui and Daniel E.
Whitney

Contributors 437

Index 439

www.manaraa.com

Foreword

Some twenty years have elapsed since the first attempts at planning were made
by researchers in artificial intelligence. These early programs concentrated
on the development of plans for the solution of puzzles or toy problems, like
the rearrangement of stacks of blocks. These early programs provided the
foundation for the work described in this book, the automatic generation of
plans for industrial assembly.

As one reads about the complex and sophisticated planners in the current gen­
eration, it is important to keep in mind that they are addressing real-world
problems. Although these systems may become the "toy" systems of tomor­
row, they are providing a solid foundation for future, more general and more
advanced planning tools. As demonstrated by the papers in this book, the
field of computer-aided mechanical assembly planning is maturing. It now may
include:

• geometric descriptions of parts extracted from or compatible with CAD
programs;

• constraints related to part interference and the use of tools;

• fixtures and jigs required for the assembly;
• the nature of connectors, matings and other relations between parts;

• number of turnovers required during the assembly;

• handling and gripping requirements for various parts;
• automatic identification of subassemblies.

This is not an exhaustive list, but it serves to illustrate the complexity of
some of the issues which are discussed in this book. Such issues must be
considered in the design of the modern planners, as they produce desirable
assembly sequences and precedence relations for assembly.

As with other AI-based planning programs, the fundamental issues include
knowledge representation and acquisition, search algorithms and inference tech­
niques. Hence, several of the chapters of the book include discussions of model-

www.manaraa.com

x

ing and representation of parts, liaisons between them and the processes which
produce them. The basic approach to problem solving is systematic search in
the problem space, which immediately raises the possibility of an explosion in
the number of possible solutions. Hence, many current programs include edit­
ing provisions to eliminate undesirable branches of the search tree, or prune the
tree in the process of developing the plans. Yet, there are situations in which
the enumeration and examination of all feasible assembly orders has advan­
tages, as demonstrated in some of the approaches discussed here. The amount
of knowledge required for the intelligent determination of feasible assembly se­
quences and the subsequent editing and sorting is clearly enormous. Hence,
some of the methods discussed in this book include interactive features, which
enable users to assist in the process by means of question answering and other
computer aids.

While it is evident that the automation of assembly planning is a maturing
area of research, it is also evident that it is still in the research phase. Most
of the authors of the papers in this book are associated with academia or with
research centers. Computer-aided mechanical assembly planning is still largely
an academic discipline. Its application in industry is still in the early stages.
Among the reasons why its use in industry is not yet extensive are the following:

1. The computational efficiency of the today's planners limits them to assem­
blies with a relatively small number of parts. To handle products consisting
of 60 or 80 parts, which occur in industry, current systems still need the
help of a human operator.

2. The measures for the selection of desirable assembly sequences in exist­
ing planners are not yet wide enough. Cost, ease of assembly and robot
gripping requirements are among the commonly used evaluation criteria.
Fixturing and tooling requirements and the related issue of partial assem­
bly turnovers are seldom discussed. Even less frequent are such practical
production criteria as assembly line layout. Furthermore, many assembly
processes incorporate various testing steps, which should be considered in
the evaluation. Evaluation and rejection of candidate assembly sequences
on the basis of such multiple criteria is clearly more difficult, but it would
contribute to the perception of real world relevance of the assembly plan­
ners. Since the time associated with alternative plans and the related issues
of tool change and fixture adjustment are of great industrial significance,
it will also be important to integrate scheduling with planning in future
systems.

3. There is a natural delay in the transfer of research knowledge from academia
to industry. Industry is somewhat conservative in the introduction of new
technology, which must be justified on the basis of both scientific and eco­
nomic criteria.

The authors of the chapters in this book report on work that addresses these
problems.

www.manaraa.com

xi

I indicated earlier that assembly planning is a maturing discipline. Perhaps it
is more fair to say that it has reached adolescence. It has given up the toys
of childhood, but it is not quite ready to assume all the responsibilities of the
rough and tumble adult world of industry. This is perhaps the most exciting
time to be associated with a new technology. Readers of this book will be ready
for the developments to come.

George A. Bekey
Computer Science Department and
Center for Manufacturing and Automation Research
University of Southern California
Los Angeles, California

www.manaraa.com

COMPUTER-AIDED
MECHANICAL

ASSEMBLY PLANNING

www.manaraa.com

Chapter 1

Introduction

Luiz S. Homem de Mello and Sukhan Lee

Intensifying competition in manufacturing has brought about redoubled pres­
sure for cutting down costs, for improving product quality, and for minimizing
the time from concept to production. These requirements, coupled with the
ever growing complexity of products and of production systems, have con­
tributed to a rising interest in concurrent engineering, or simultaneous engi­
neering. These terms have been used to refer to the idea of integrating the
design of a product and the design of its production system. Being able to
take manufacturing considerations into account early in the development of
a new artifact can greatly simplify its fabrication. Even a small change in
the design of a product can have a large impact on the assembly alternatives.
Where adopted, the concurrent engineering approach has led to more efficient
production systems and therefore to lower costs compared to where design and
production planning are separated. In addition, development times are shorter,
and redesign due to manufacturing constraints is greatly reduced.

The introduction of the concurrent engineering approach has been facilitated
by the recent progress in digital electronic technology. As computers become
faster, more powerful, and less expensive, and as software engineering matures,
industrial designers and engineers have had increased access to software tools
that help them improve their productivity. Computer-aided design (CAD) pro­
grams, for example, are already well established and substantially improve the

www.manaraa.com

2

efficiency of the design process. Another field in which the use of computers is
becoming widespread is process planning, that is, the generation of a sequence
of machining cuts for the production of a part. Still another manufacturing do­
main in which computer aids are being introduced is the scheduling of factory
resources.

This book focus on yet another area for software tools that has emerged more
recently namely mechanical assembly planning. The use of computers for plan­
ning the assembly of mechanical products originated in the research on planning
within artificial intelligence.

There are many reasons for the systematization and the computerization of
assembly planning, some of which are listed below.

• Industrial designers will benefit from having a tool with which they can
quickly assess their designs for ease of assembly.

• The planning and programming chores in manufacturing are time consum­
ing and error prone. Moreover, the time spent in planning and program­
ming may excessively delay the actual production. The automation of these
chores expedites their execution, reduces their cost, and improves their qual­
ity.

• The tailoring of products for market niches is becoming more common. For
small batches, the cost of manual planning and programming can weigh
heavily in the total production cost.

• Although many experienced industrial engineers have a knack for devising
efficient ways to assemble a given product, systematic procedures are nec­
essary to guarantee that no good assembly plan has been overlooked. For
complex products, the number of different assembly alternatives may be so
large that even skillful engineers fail to notice many possibilities.

• In some cases, it is necessary to adapt the assembly process to different sets
of machines. The need to produce different products in the same shop may
lead to the choice of an assembly plan for a product that may not be the
most efficient on ideal conditions, but uses the idle equipment. Likewise,
when the same product is assembled in different sites, the plan that is more
suitable to the available equipment may be different from one shop to the
next. Automation allows the actual planning to be delayed until it is clear
what machines will execute the assembly.

• In many applications of autonomous systems, it is impracticable to pre­
program all tasks they might face. Such systems must have the ability to
generate assembly or disassembly plans that fit the particular situation they
encounter. Similarly, an opportunistic scheduler can be more effective if it
is able to generate, in real time, the assembly plan that is more suitable for
the order in which parts arrive or are picked from a bin.

A number of technical issues must be addressed for the automation of assembly
planning. They include the following:

www.manaraa.com

3

• The representation of assemblies

A computer representation of mechanical assemblies is necessary in order to
automate the generation of assembly plans. The main issues here are deciding
what information about assemblies is required, and how the information can
be represented inside the computer.

Of course the shape of the parts and the geometric relationship between parts
are crucial for assembly planning. Therefore, they must be represented, along
with their tolerances, in any assembly model. But although the geometric
aspects are very important, assembly models must also represent a number
of other aspects such as the attachments that secure two parts together, or
the chemical treatments (e.g., painting, lubrication) that must be applied after
parts are joined.

A relational scheme seems ideal for representing assemblies since it can capture
the geometric and mechanical relations between parts. However, for assem­
blies with large number of parts, a hierarchical scheme may be more efficient
since many products are designed with natural hierarchies of subassemblies. In
practice, a combination of the two schemes may attain the advantages of both .

• The representation of assembly plans

A computer system for assembly planning must have a way to represent the
assembly plans it generates.

Several methodologies for representing assembly plans have been utilized.
These include representations based on directed graphs, on AND/OR graphs, on
establishment conditions, and on precedence relationships. A clear understand­
ing of these alternative representations and of how one maps into the others is
very important in developing an assembly planner. As later chapters will show,
the ability to go back and forth from one representation scheme to another can
lead to efficiency gains in the planning process.

In addition to representing the joining of parts or subassemblies, the represen­
tation schemes must also be able to represent the other operations such as the
chemical treatments that must be applied after parts are put together .

• The correctness and completeness of the planning process

Clearly, to be an useful tool, an assembly planning system must only generate
correct assembly plans. Furthermore, to solve problems that require optimiza­
tion, such as the selection of the best assembly alternative, one must be able
to traverse the space of all candidate solutions, regardless of the method used
to solve the problem. It should be noted that the solution procedure does not
need to go over all possibilities. What is important is that the method has the
potential to generate all assembly plans.

www.manaraa.com

4

• The efficiency of the planning process

Assembly planning is a computationally intensive task. Therefore, it is impera­
tive that we seek new approaches that can reduce the computation required to
generate assembly plans. Some approaches to improve the planning efficiency
may sacrifice completeness. This happens, for example, when subassemblies
are treated as units, in order to artificially reduce the number of parts. In
these cases, it is important to ascertain that no good plan is being missed, that
is, that the alternatives being pruned would not be among the preferred ones.

• The selection of assembly plans

The number of distinct feasible assembly plans can be very large even for assem­
blies made up of a small number of parts. Therefore, a complete enumeration
of assembly plans is prohibitive in most real applications. Finding systematic
ways to narrow down the alternatives is crucial for the automatic planning
of assembly. Two kinds of approaches are currently being tried. One, more
qualitative, is the development of rules that can be used to eliminate assem­
bly plans that include difficult tasks or awkward intermediate subassemblies.
Another approach, more quantitative, is to devise an evaluation function that
computes the merit of assembly plans based, for example, on the cost of the
resources needed to perform the assembly, on the total time required, and on
the difficulty of execution. It seems likely that a combination of the qualitative
and the quantitative approaches will attain the advantages of both.

• The integration with CAD programs

A mechanical assembly is a composition of interconnected parts. As mentioned
above, more and more frequently the parts are being designed using CAD pro­
grams. Therefore, the shape of each part as well as other relevant information
are already stored in computer databases. The assembly planning will be more
efficient if those CAD databases can be directly input to the program that
generates the assembly models.

• The integration with task and motion planners

Another result of the recent progress in digital electronics is the introduction
of programmable robots in manufacturing. These machines can be adapted
to execute different operations by changing their internal programs. Task and
motion planners that will facilitate robot programming are currently being
developed. With a view towards future integration, the output of assembly
planners should be compatible with what is required by task and motion plan­
ners. Moreover, it is also desirable that assembly planners take into account
the capabilities and limitations of task and motion planners.

www.manaraa.com

5

All the above issues are active areas of research. The main goal of this book is
to consolidate in one volume the main approaches to solving these problems.
It has been divided into two parts: assembly modeling, and assembly planning.
The next two sections present an overview of the book.

1.1 Assembly modeling

Part I contains four chapters which cover important issues in modeling assem­
blies.

Chapter 2 discusses the mathematical modeling of the geometric aspects of
assemblies. Assembly models are defined in terms of configuration spaces whose
elements correspond to collection of solid mechanical parts and their poses
(Le., positions and orientations.) A range of increasingly complex notions of
assemblies is introduced. It includes the following:

1. rigid assemblies in which the relative positions of parts remains the same;

2. articulated mechanisms in which the relative positions of parts can change;

3. variational assemblies in which the shape of the parts can vary;

4. stochastic assemblies in which the relative positions of parts can vary.

Representation schemes previously developed for modeling individual parts can
be readly extended for modeling the geometric aspects of these four notions of
assemblies. Chapter 2 discusses these extensions. It also points to issues that
are still open to research, such as the establishment of a sharp characterization
for the subsets of configurations that correspond to physical assemblies.

Chapter 3 introduces a modular boundary class of models for solid objects.
These models describe objects as the pairwise combination of face-adjacent
parts. Compared with conventional boundary representation and constructive
solid geometry, such models offer the putative advantages of locality of ma­
nipulation, capability of describing form features, and possibility of attaching
tolerance information.

A specific model of that class, the Face-to-Face Composition (FFC) model,
which was developed for an experimental geometric modeler, is presented. This
model contains explicit information about interference among the components
of an object. Juxtaposition and interference are represented in a hypergraph
in which the nodes are component objects and the hyperarcs are connection
and interference facets.

The data structure for the FFC mirrors a cellular decomposition of the modular
object into non-overlapping, arbitrarily shaped cells. The FFC model can be
constructed either by adding a single component at a time or by combining
two composite objects represented by FFCs. An FFC can be readily evaluated
to yield the boundary of the complete object.

www.manaraa.com

6

An application of the FFC is the Production Graph, which represents alter­
native sequences of combining components. Valid sequences can be obtained
using the validity checks developed for complete FFCs.

Chapter 4 presents a characterization of the spatial relationships between bod­
ies in assemblies as trivial kinematic constraints. A kinematic constraint is
defined as a set of displacements that can be expressed as a composition of
cosets of Euclidean subgroups. A constraint is said to be trivial when it can
be reduced to a single coset.

A graph of kinematic constraints is defined as a graph whose nodes correspond
to workpieces and whose directed arcs are labeled with trivial kinematic con­
straints. The problem of how to find equivalent constraints between two bodies
is addressed. By relying on the composition and intersection of subgroups, it is
possible to carry out a topological analysis of the motion possibilities for a set
of bodies linked by a set of trivial kinematic constraints. A basic algorithm for
constraint propagation is presented. This algorithm computes the equivalent
constraint between two bodies in a graph of kinematic constraints with arbi­
trary topology. An assembly example illustrates the algorithm's computation.

Chapter 5 formulates a mathematical programming approach to the solution
of the problem of specifying the position of each part relative to the position
of the other parts in an assembly.

The position of each part is specified based on geometric relationships between
various features of the part and mating features of its neighboring parts. These
feature relationships are treated as inequalities, and mathematical program­
ming is used to find the optimal configuration of the parts.

The approach is amenable to both sequential and simultaneous strategies for
computing the part positions. The computations are tractable and robust.
Thus a variational assembly model can be constructed and evaluated at rea­
sonable cost, and the assembly model will be compliant with part variations.
This approach is particularly useful for solving problems in tolerancing.

1.2 Assembly planning

Part II contains ten chapters which address important issues in the systemati­
zation and computerization of mechanical assembly planning.

Chapter 6 discusses four of the most commonly used representations for as­
sembly sequences. 'These are based on directed graphs, on AND/OR graphs, on
establishment conditions and on precedence relationships. The correspondence
between these representations as well as their correctness and completeness are
established and are illustrated with two assembly examples.

www.manaraa.com

7

Chapter 7 presents a basic algorithm for the generation of all mechanical assem­
bly sequences for a given product. The algorithm employs a relational model
of assemblies. In addition to the geometry of the assembly, this model includes
a representation of the attachments that bind one part to another.

The problem of generating the assembly sequences is transformed into the prob­
lem of generating disassembly sequences in which the disassembly tasks are the
inverse of feasible assembly tasks. This transformation leads to a decomposition
approach in which the problem of disassembling one assembly is decomposed
into distinct subproblems, each being to disassemble one subassembly. It is as­
sumed that exactly two parts or subassemblies are joined at each time, and that
whenever parts are joined forming a subassembly all contacts between the parts
in that subassembly are established. The algorithm returns the AND/OR graph
representation of assembly sequences. Bounds for the amount of computation
involved are presented.

The correctness of the algorithm is based on the assumption that it is always
possible to decide correctly whether or not two subassemblies can be joined,
based on geometrical and physical criteria. An approach to compute this de­
cision is presented. An experimental implementation for the class of products
made up of polyhedral and cylindrical parts having planar or cylindrical con­
tacts among themselves is described.

Chapter 8 presents a systematic method for the determination of assembly
plans, described by assembly trees (or part trees). This method involves a re­
cursive definition of the assembly process, a model of the end product defining
all the actions which have to take place in the assembly process, and a formal­
ization of assembly constraints. An assembly example illustrates the method.

The assembly process includes not only the mating and securing of parts but
also all the other operations, referred to as complementary, such as inspection,
test, cleaning and labeling. Accordingly, the model for the end product includes
information about the required complementary operations.

The assembly constraints are divided into two classes: operative constraints,
which define whether or not any candidate assembly operation is feasible; and
strategic constraints which prune the awkward assembly plans. A resulting
interactive software named LEGA has been implemented. LEGA is written in
PROLOG and uses a database of constraints.

The strategic constraints are introduced in the product model. One kind of
strategic constraint is to impose an intermediate subassembly. Another kind
is to group parts that have to be assembled in sequence. These include stacks
and ordered layers, two types of configurations that are common in practice.

Although there is some degree of subjectivity in the choice of the strategic
constraints, their use have lead to large gains in planning efficiency. It is also
possible to run LEGA with two or more distinct sets of strategic constraints
and analyze the outcomes.

www.manaraa.com

8

The operative constraints are of three types: geometric, stability and material.
The latter corresponds to the availability of tools or other equipment and their
capability to execute the assembly operations. The specification of stability
and material constraints also involves some degree of subjectivity. Operative
constraints are determined as the assembly plans are generated based on infor­
mation supplied (interactively) by the user.

LEGA first tries to deduce whether or not a candidate operation is feasible from
the constraints in its database. This kind of deductive inference is well suited
to PROLOG. Optionally, a program connected to a CAD database is activated.
If no deduction can be made automatically, then LEGA queries the user. When
this occurs, new constraints are created and added to the database. Typically,
the user is queried frequently at the beginning of the planning process and
sporadically at the end.

LEGA has been effectively applied to products or subassemblies having up to
20 components.

Chapter 9 describes the GRASP assembly planner. The input to GRASP are
three-dimensional models of parts and their locations. The output is an AND/OR

graph representing the set of all geometrically feasible assembly sequences in
which exactly one part is added at each assembly task, and it follows a straight
line trajectory.

GRASP follows an approach similar to the algorithm described in chapter 7.
It also transforms the problem of generating the assembly sequences into the
problem of generating disassembly sequences in which the disassembly tasks
are the inverse of feasible assembly tasks. GRASP, however, minimizes the
geometric reasoning needed to test candidate assembly tasks. Whenever it does
a geometric reasoning computation to find whether or not a part is movable,
GRASP stores an expression encoding the conditions under which the given
part would be movable. The subsequent analysis of candidate tasks will first
try to deduce whether or not a part is movable from these expressions in order
to avoid lengthy geometric reasoning computations.

Three types of conditions of increasing complexity are used in GRASP. The
first, called simple, corresponds to the fact that if a part p is movable in an
assembly A, then it is also movable in any subassembly of A. The second,
called contact, corresponds to the fact that if a part p is not movable because
it collides with one or more of the parts in S, then p is not movable in any
subassembly that includes all those obstructing parts. The third condition,
called local is more elaborate. The parts of an assembly A in contact with
a given part p are clustered in a way that all parts in a group constrain the
freedom of p in the same way. In a subassembly of A, p will not be movable
unless none of the parts in one such group are present.

Chapter 9 also discusses the computational complexity of GRASP and presents
its performance for two assembly examples.

www.manaraa.com

9

Chapter 10 describes an extension to GRASP aimed at eliminating the restric­
tion that only one part be added in any assembly task. It presents a new algo­
rithm for solving an important subproblem of the assembly planning problem,
namely the generation of all the ways in which an assembly can be partitioned
into two subassemblies.

Instead of generating all cut sets of the assembly's graph of connection, the
algorithm presented in chapter 10 uses the geometry information to prune
this search and to avoid the generation of many of the cut sets that do not
correspond to feasible assembly tasks. An assembly example illustrates the
approach. This new algorithm is shown to be sound and complete. Chapter 10
also presents an analysis of its complexity.

Chapter 11 describes the XAP /1 assembly planning system. It begins by com­
paring the version of the assembly planning problem addressed by the XAP /1
system to other systems along four major dimensions: range of operations al­
lowed in the plans produced; degree of detail in which the plans are described;
type of input data required; and degree of optimization done on plans.

The XAP /1 system is oriented toward plan optimization rather than toward
generating all feasible plans. Due to this orientation, XAP /1 plans to somewhat
greater detail than other planners. The plans it generates are such that only
one part is moved at a time and no operation separates parts already joined.
Those plans include not only the sequence in which parts are put together but
also, for each part, the mating trajectory. In fact, plans produced by XAP /1
are a sequence of insertion operations each of which consists of inserting a part
or subassembly into a fixture by following a specified trajectory.

XAP /1 generates plans by successively adding sequencing and trajectory as­
sertions to a set until it describes only one plan. The geometric feasibility of
the resulting plan is enforced by a single form of constraint. The search for
an optimal plan is guided by advice from a set of plug-in criteria modules and
an arbitration module. These criteria provide not only estimates of the qual­
ity of partially formed plans, they provide advice on which planning decisions
should be considered next. Three criteria are discussed: fb;ture complexity,
directionality and manipulability.

The chapter ends showing the performance of XAP /1 on some sample problems
and discussing, briefly, extensions to the system's approach.

Chapter 12 presents BRAEN, a system that generates a disassembly sequence
for a product from the boundary representations of its parts and other objects
involved in the assembly process such as table-top and wall. The reverse of
this sequence is the assembly plan . BRAEN assumes a single robot. The plans
it produces are sequences of motions, each motion being a translation or a
rotation of a component or mUlti-component subassembly.

In addition to planning at the level of motion specification, BRAEN is oriented
towards generating a good sequence quickly rather than generating all feasible

www.manaraa.com

10

sequences. The use of a detailed geometric description for the objects enables
the system to compute whether or not a motion is feasible .

The planning technique is centered on two modules. A freedom determination
module uses an iterative surface subdivision technique to identify movable com­
ponents and mUlti-component subassemblies. A disassembly module searches
for a sequence of motions that will break one assembly into two subassemblies.

BRAEN uses three common sense techniques to enhance system performance.
One technique deduces the feasibility or infeasibility of a motion in one con­
figuration from the feasibility or infeasibility of the same motion in another
configuration. Another technique involves trying first the motions that are
more likely to be feasible. Yet another technique uses simple physics to model
the effects of gravity and the stability of subassemblies.

Chapter 13 presents COPLANNER, an assembly planning system organized un­
der the Cooperative Problem Solver paradigm. In this system, planning is
carried out by the cooperation of several modules namely: the plan coordina­
tor, the heuristic advisor, the geometric reasoner, the physical reasoner, the
resource manager, and the blackboard.

COPLANNER operation is also based on a recursive decomposition of the as­
sembly into subassemblies. In order to increase the planning efficiency, the
system avoids the analysis of decompositions that do not correspond to feasi­
ble assembly tasks. This is achieved by clustering the parts that have to be
assembled together. Chapter 13 introduces a systematic formulation to con­
struct an abstract liaison graph representation of the assembly which merges
sets of mutually inseparable parts, that is, those parts that must be assembled
independently in any feasible assembly sequence.

The approach is then extended to cluster parts into preferred subassemblies
based on a weighed abstract liaison graph. This graph is similar to the abstract
liaison graph, but has weights assigned to its edges. These weights reflect the
stability of part interconnection and the directional constraints of the motion
that brings the two parts together. The degree of part aggregation can be ad­
justed by changing some heuristic coefficients. This kind of clustering sacrifices
completeness since the sequences that interleave parts of different subassemblies
cannot be generated. However, there are manufacturing gains in assembling
these preferred subassemblies independently. The advantages include the better
stability of the intermediate subassemblies, the less difficulty of the assembly
tasks, and the greater cohesion of the parts in the preferred subassemblies.

COPLANNER has been implemented in Common Lisp and C on a Sun 260 work­
station. The plans it generates include assembly instructions which schemati­
cally describe how to execute the joining of subassemblies.

Chapter 14 shows an assembly planning system that uses Design for Assembly
(DFA) analysis to guide the generation of the preferred assembly plans.

www.manaraa.com

11

Like the assembly planner described in chapter 13, the operation of this plan­
ning system is also based on a recursive decomposition of the assembly into
subassemblies and on the use of an abstract liaison graph. In addition, the
planning in this system incorporates the special processes, such as cleaning,
testing or labeling, that must occur during the assembly. These special pro­
cesses are taken into account in the assembly planning by the introduction
of special precedence constraints. Furthermore, this planner can distinguish
reversible from non reversible assembly tasks.

Chapter 14 also establishes methods of evaluating alternative assembly plans in
terms of DFA criteria such as subassembly stability, directionality, subassembly
poses, special process requirements, and parallelism in assembly. The number of
fixtures, or holding devices, and the number of reorientations during assembly
are identified through the analysis of stability and directionality. All these
factors are used in defining cost and heuristic functions for an AO* search for
an optimal plan.

Chapter 15 shows a system developed at the Charles Stark Draper Laboratory
over the last five years. It is an integrated computer aid useful for assembly-line
design and concurrent design of mechanical products.

First, a simple technique for generating assembly sequences on which the initial
version of the system was based is presented. At the time of its development,
the technique was a great help, and for many applications it was adequate and
practical. The liaison diagram representation of assembly that was used as well
as the technique itself still provide quick insight into product assembly. The
simple technique can be invoked mentally and need not depend on computer
aid. The potential role and form of computer aid, however, was immediately
recognized and efforts toward devising computer aids were started at once.

The algorithms used in the current version of the system take advantage of the
methodology presented in chapters 7 and 8, including: an efficient organization
of interference questions based on cut-sets of all subassemblies; a disassembly
(instead of assembly) paradigm to avoid the work of creating and discarding
assembly dead ends; and the coding of part-interference data already at hand
to screen subsequent part-interference questions and often infer answers, dra­
matically reducing question-count. The plan for this version of the system was
to have the computer to work from a design solid-model data-base to answer
the remaining necessary assembly interference questions. But consideration of
the volume of computation needed combined with the great success in having
an engineer familiar with the design answer the interference questions aided by
simple screen characterizations of the subassemblies lead to the implementation
of an interactive program for finding sequences.

The current system's algorithms and interactive programs for editing product
assembly sequences are also described. Editing means and criteria are user­
exercised and may be based on assembly-state and assembly-move issues; on
assembly-line layout and topology issues; and on consideration of fixturing,

www.manaraa.com

12

orientation, and fixturing-change and reorientation counts. The on-line visual
aids provided during generation and evaluation of sequences are illustrated with
examples.

Various physical and economic criteria exist. These criteria evolved from and
are related to the work on industrial assembly system design and product de­
sign. They include: pass-through of a particular assembly state; executing a
particular partial sequence; avoiding a difficult assembly move; avoiding an
awkward assembly state; choice of assembly line topology; minimizing non­
productive line tasks like refixturing and reorientation; minimizing various eco­
nomic parameters. The criteria vary in editing power, need for an augmented
information base, and ease of application. Knowledge of the power, informa­
tion needs, ease of application, and the logical rules of sequence representation
suggest the use of an application sequence strategy for the criteria.

www.manaraa.com

Part I

Assembly Modeling

www.manaraa.com

Chapter 2

Representations for
assemblies

Aristides A. G. Requicha and Timothy W. Whalen

Mechanical, electrical and electronic products typically are assemblies of many
component solid parts. The components of a product may be joined so as to
form either (1) a rigid assembly, (2) an articulated collection of rigid bodies that
may move relative to one another (often called a mechanism), or (3) a Hexible,
non-rigid assembly. No solid is perfectly rigid, and sometimes non-rigidity
must be acknowledged explicitly, for example when two parts are press-fitted,
or when one of the components is a spring.

The term assembly is commonly used in two senses, to denote either the action
of joining several components, or the resulting artifact. This chapter is con­
cerned primarily with assemblies as physical artifacts. We focus on two related
issues: what information about assemblies must be captured, and how can such
information be represented computationally in a form suitable for integrated,
computer-aided systems that support the entire life-cycle of a product, from
requirements analysis and design, through manufacturing and assembly, to field
maintenance and disposition.

First we discuss mathematical models for assemblies, and introduce a range
of increasingly complex notions of assembly. Next we consider schemes for

www.manaraa.com

16

representing assemblies computationally, and we show that one must be able
to represent solid parts and their associated tolerances, plus mating relations
between parts, and attributes of such relations. Part representations, mat­
ing relations, and tolerances are then discussed in more detail. The chapter
concludes with a summary and discussion of open issues.

2.1 Mathematical models for assemblies

An assembly specification includes geometric as well as non-geometric informa­
tion. Examples of the latter are the torques required to tighten the bolts in
an engine block, and the characteristics of a welding join between two parts.
In this section we ignore non-geometric aspects of assemblies, and we focus on
geometry.

Individual components of an assembly can be modelled mathematically as
r-sets, that is, as compact, regular, semi-algebraic subsets of E3 , the 3-D Eu­
clidean space [31, 32]. But which mathematical objects correspond to assem­
blies? This is the major issue addressed in the remainder of this section.

A mathematical model for an assembly instance is a set of mathematical mod­
els for n solids Si, plus associated geometric transformations (i.e., mappings
from E3 to E 3) Ti that define the solids' relative poses (i.e., locations and ori­
entations). For non-rigid assemblies, for example those involving press-fit or
flexible components, the 11 correspond to suitable deformations concatenated
with the rigid motions that establish the objects' poses. For simplicity, in the
remainder of this section we consider only assemblies of rigid components, and
we assume that there is an agreed coordinate frame in which all the poses are
measured. Also, throughout the chapter we often refer to mathematical models
for solids or assemblies simply as "solids" or "assemblies", when no confusion is
likely to arise between abstractions (mathematical entities) and their physical
counterparts.

Denote by M, the mathematical modelling space for solids, that is, the space
of all r-sets in E3. (Sometimes a smaller class of r-sets suffices as a mod­
eling space, as we will see later.) A collection of n solids (Sl, S2,"" Sn) is
an element u of the solid configuration space C" which is the direct prod­
uct of n copies of M.. Similarly, a set of n transformations is a point T in
the transformation configuration space Ct, which is the direct product of n
copies of Mtl the modeling space for transformations. For assemblies of rigid
components the T. are rigid motions in E 3 , M t is a 6-D space, and Ct is the
pose configuration space. An assembly instance a is a pair (U,T), that is, an
element of the assembly configuration space Co. = C, x Ct. Equivalently, a
is a 2n-tuple (Sb S2, "" Sn, Tb T2, ... , Tn), and we often write a(u, T) with
u = (S1> S2,"" Sn) and T = (11, T2, ••• , Tn).

Intuitively, an assembly instance is simply a collection of parts in fixed poses. If

www.manaraa.com

17

there is no shape uncertainty associated with the parts, and these are attached
rigidly to one another, then there is only one assembly instance. But in general
there may be many instances associated with an assembly. For example, a
shaft may rotate through an entire (0,211") range with respect to a bushing.
The poses of the parts in a mechanism vary continuously, and physical motions
correspond to curves or higher-dimensional subsets of Ct . To cater to moving
parts we define a mathematical model for a nominal assembly as a pair (0', e),
where 0' is a point of C" and e is a subset of Ct. Equivalently,

A(O',e) = {a(O',T)IT E e},

where A denotes a nominal assembly and a one of its instances. We use the
term "nominal" to emphasize that part variability is not taken into account -
there is a given set of parts that may move in space in the manner prescribed by
the poses in the set e. (However, we do not imply that parts in the assembly
must have the "noininal dimensions" defined in their tolerance specifications.)
The pose of a part may depend in complicated ways on the poses of several
other parts, and therefore it is not sufficient to define independent subsets of
M t for each part. The set e captures the pose relationships for all the parts.

Much of the past research on assembly modeling has focused on nominal assem­
blies. But parts cannot be manufactured with perfect forms and dimensions,
and the associated geometric uncertainties are important because they often
determine whether an assembly is physically realizable, or whether an assembly
plan will succeed. To take part variability into account we define a mathemat­
ical model for a variational assembly as a subset of Ca , or, equivalently, as the
union of a set of nominal assemblies

A = U A(O', e(O')),
uE II

where E is a subset of C,. In a general variational assembly many groups (n­
tuples) 0' of parts are admissible, and for each group there is an associated set
of poses corresponding to relative motions of the parts. The admissible motions
may depend on the specific 0' being considered.

Typically, E = VI X V2 X '" X Vn , where each Vi is a subset of M, called a
variational class [33 , 34] associated with a part. This means that each admis­
sible part is a solid Si selected from its corresponding class Vi, independently
of the selection of other parts in the assembly. Independent selection reflects
the modern principle of part interchangeability. Note, however, that even in
modern manufacturing practice sometimes parts must be "matched" . This im­
plies that interchangeability no longer applies at the part level, but rather at
the level of certain subassemblies.

Not all a(0', T) correspond to realizable assemblies. The following conditions
must be satisfied.

www.manaraa.com

18

• Non-interference - Two parts of the assembly in their specified poses
must not occupy simultaneously a 3-dimensional region of space. This
can be formulated mathematically by requiring that the regularized in­
tersections [31, 32] (denoted by n*) between all pairs of distinct parts be
empty:

Vi,j(i:f:. j) => Si n* Sj = <p.

(Regularized set operations are the topological closures of the interiors
of their conventional counterparts [31, 32].) Note that standard, non­
regularized intersection is not appropriate because parts in contact inter­
sect over a region of their boundaries .

• Path-existence - It must be possible to move the parts continuously
and without collision from a pose configuration in which they are suffi­
ciently apart to the specified configuration. That is, there must exist a
continuous trajectory -r(r), r E [0,1] in Ct such that (1) a(O", -r(r)) is a
non-interfering assembly for all r E [0,1], (2) a(O",-r(O)) corresponds to a
situation where the distances between the solids are large compared to the
solids' dimensions, and (3) a(O",-r(I» is the specified assembly instance.

These conditions must be modified slightly when an assembly involves a press
fit or another joining technique that causes a limited amount of interference.
We will assume in the sequel that such modifications have been incorporated
in the definitions of non-interference and path-existence when necessary.

Nominal and variational assemblies must not include instances that fail the
non-interference or path-existence criteria. Path existence clearly implies non­
interference, because the specified configuration a(0", -r(1» must be non-interfer­
ing. The converse is not true, as shown in Figure 2.1, which depicts a non­
interfering assembly that does not satisfy the path-existence criterion. The
shaft is a single part, and cannot be assembled to the bracket. Assembly in­
stances that satisfy the path-existence condition (and hence both criteria) are
called geometrically feasible or geometrically realizable. Nominal and variational
assemblies also are called geometrically realizable if all of their associated in­
stances are geometrically realizable. Later chapters of this book will show that
an assembly instance may be geometrically feasible and yet fail other criteria.
For example, it may be impossible to reach a component with the tool necessary
to fasten it.

The mathematics of assembly modeling has not been fully worked out. We
understand reasonably well the characteristics of M. and M t , and hence of
Ca,. The pose configuration space Mt typically is 6-D since general rigid bodies
have 3 degrees of freedom of translational motion and 3 of rotational motion.
Therefore Ct is 6n-dimensional. M. typically is not a finite-dimensional space.
But if the solids in the represented domain can be described by a finite number

www.manaraa.com

19

"" ~ -... -
.. ~ ~ -

Figure 2.1: A non-interfering but geometrically infeasible assembly instance

of parameters, then M., and also C, and Co., are finite-dimensional. For exam­
ple, if all solids of interest are cuboids, the length, width and height completely
define a solid, and M, is 3-D.

Some issues remain unresolved. For example, is any subset e of C t acceptable
in an assembly model? And any E? We suspect that the answers may be "no".
For example, not all subsets of M, are acceptable as variational classes. Some of
them correspond to objects that are overconstrained, in the sense that portions
of the objects' boundaries must be of perfect form or in a perfect relationship
to others, and therefore are not manufacturable with physical processes, which
have inherent uncertainties. A sharp characterization of variational classes
is still evolving, but current thinking is that they must be regular sets in a
topology related to that induced by the Hausdorff metric in M, [5] . Analogous
results may apply to assembly modeling. We will ignore these issues in the
sequel, and assume that feasibility is the only geometric condition that must
be satisfied by mathematical models of assemblies.

The previous definitions are purely deterministic. But manufacturing and as­
sembly processes have inherent uncertainties of a stochastic nature. Random­
ness can be introduced in our models by defining a stochastic assembly configu­
ration space nO. that consists of Co. with a probability density function w(O", T)
defined on it.

Random variations between parts sometimes compensate one another, leading
to functionally acceptable assemblies of relatively imperfect components. It
is often more economic to have loosely toleranced parts that sometimes (in­
frequently) cannot be assembled, than tightly toleranced parts guaranteed to
always assemble. This implies that the geometric realizability requirements

www.manaraa.com

20

for stochastic assemblies should be relaxed. A stochastic assembly may con­
tain infeasible instances, if the probability associated with such instances is
sufficiently small.

The mathematics of stochastic assemblies is more complex and not as well
developed as its deterministic counterpart.

2.2 Overview of assembly
representation schemes

Let us focus initially on the geometric aspects of assembly representation. The
notion of representation scheme and associated properties introduced in [32] for
individual solids can be readily extended to assemblies by exploiting the math­
ematical models discussed in the previous section. A representation scheme for
assemblies is simply a mathematical relation between the appropriate mathe­
matical models and symbol structures called (computational) representations.
(Here we are using the term "assembly" to encompass assembly instances, as
well as variational and nominal assemblies.) The domain of a representation
scheme is the set of mathematical models to which it applies. A representation
is valid if it corresponds to at least one (geometrically feasible) assembly, and
is unambiguous if it corresponds to only one assembly.

An assembly instance can be represented unambiguously by a collection of
solid models (i.e., unambiguous representations for rigid solids) for its com­
ponents, plus the associated geometric transformations that define the parts'
poses. Solid modeling is a relatively mature technology (reviewed briefly in
Section 2.3), and the representation of transformations by 4 X 4 matrices in
homogeneous coordinates or by other means is well understood.

A representation for an assembly instance in terms of solid models and, say, 4 x 4
matrices of numerical elements is valid if the solid models and transformations
are themselves valid, and if the corresponding configuration is geometrically
realizable. Non-interference can be tested through pairwise regularized inter­
sections between all of the components. Regularized intersections are provided
in most ofthe modern solid modelers, although substantial amounts of compu­
tation are involved. Testing for path existence is much more complicated. We
do not know of general algorithms capable of establishing that no path exists.
In the current state of the art an assembly planner must be invoked. If it fails
to find a path, one concludes that the assembly is likely to be unrealizable.
Because extant assembly planners make a variety of restrictive assumptions
(e.g., assembly paths must be straight lines, only one part is moved in each op­
eration, and so on), planner failure does not guarantee geometric infeasibility.
Success does ensure path existence.

Most of the commercially-available Computer Aided Design (CAD) systems

www.manaraa.com

21

provide facilities for defining assemblies through direct, explicit specification of
poses. This approach has two major drawbacks:

• Assembly representations typically are constructed by human designers,
and it is difficult to define explicitly the required transformations.

• A specific transformation defines a single point in pose configuration
space. Therefore, the approach cannot describe articulated assemblies
with moving parts.

A better approach is to define the poses indirectly, through mating relations
between surface features, which are subsets of the parts boundaries. Mating
relations establish geometric constraints between parts, and are closely related
to the mechanical behavior of assemblies. Designers typically find mating re­
lations a natural way of specifying assemblies. (Mating relations and similar
concepts have been called in the literature ''joints", "connections", "liaisons",
"technologically and topologically related surfaces", and so forth.)

Indirect, constraint-based definition of assemblies raises delicate issues. For
example: is a representation unambiguous? Whereas directly-specified poses
obviously correspond to unambiguous representations, an indirect specification
may correspond to a single pose configuration, to several, or to none at all. A
constraint satisfaction, or constraint evaluation problem must be analyzed to
determine if there are solutions, and if these are unique. Mating relations and
constraint satisfaction are discussed in more detail in Section 2.4.

Variational, and even nominal, assemblies are complex mathematical objects
that may involve complicated subsets of high-dimensional configuration spaces.
How can such entities be represented computationally? Again, mating relations
provide an answer. A mating relation may specify, for example, that two planar
surfaces remain in contact. This constraint can be expressed in terms of a 4 x 4
matrix that defines the pose of one surface relative to the other. The matrix
contains symbolic variables corresponding to the degrees of freedom not fixed by
the constraint. In the example cited above three variables are needed, because
there are two translational and one rotational degrees of freedom in a planar
contact relation.

The validity of a nominal assembly representation is difficult to establish com­
putationally, because it implies that all the corresponding assembly instances
must be geometrically realizable. Even non-interference is difficult to test.
If there is only one rigid body moving with respect to another, the motion
is collision-free when the volume swept by the moving object does not inter­
sect the other. (However, swept volumes are difficult to compute for complex,
curved objects.) If several objects move simultaneously, ordinary swept-volume
analysis is insufficient, and 4-D space-time sweeps or "extrusions" must be con­
sidered [7].

www.manaraa.com

22

A variational assembly may be represented by a collection of toleranced parts
connected through mating relations. Tolerancing (discussed in Section 2.5) is
a method for representing variational classes through geometric constraints on
part features. There are national (ANSI) and international (ISO) tolerancing
standards. These are sometimes ambiguous, but roughly equivalent mathemat­
ical tolerancing theories have been proposed [33, 34], and ANSI has recently
appointed committee Y14.5.1, charged with the task of defining mathematically
the meaning of tolerance specifications.

When part variability is taken into account, it makes sense to consider mating
relations that also involve geometric uncertainty. For example, specifying that
a shaft and a bearing have two concentric cylindrical surfaces in contact is not
an accurate description of the assembly for detailed analysis. Perfect contact
would prevent the shaft from turning because of friction. Also, two imperfect
cylinders in general can neither be in perfect contact nor be perfectly concen­
tric. (What does concentricity mean for imperfect cylinders?) The functional
requirements are for concentricity within some tolerance, and for a clearance
(instead of contact) within some range. We do not know of standard means
for representing geometric uncertainty between different parts in an assembly,
but direct extensions of single-part tolerancing methods may be adequate.

Consider a variational assembly representation consisting of a set of variational
classes, defined by toleranced solids, and of mating relations. Is the repre­
sentation valid? For validity each possible combination of acceptable parts,
that is, each (7' in ~ = Vl X Va x ... X Vn , must correspond to a geometrically
realizable assembly for every pose configuration 1"' that satisfies the mating re­
lations. Non-interference testing for a variational assembly is an exercise in
worst-case tolerance analysis, discussed in Section 2.5. Path-existence testing
involves assembly planning in the presence of geometric uncertainties.

Representations for stochastic and variational assemblies are similar. Stochas­
tic assemblies require the additional specification ofp.d.f.'s (probability density
functions) to define Oa. Typically, p.d.f.'s are associated to the characteristic
parameters of each of the parts in the assembly. (This is not the most general
approach possible, but it is the only one used in current practice, insofar as
we know.) P.d.f. specification is done by selecting a specific statistical distri­
bution (e.g., Gaussian) and assigning numeric values to its parameters (e.g.,
mean and standard deviation). Testing for (probable) geometric realizability
involves statistical tolerance analysis, discussed in Section 2.5, and assembly
planning under uncertainty.

In current industrial practice, a designer considers a critical requirement of
an assembly (for example, a certain clearance between a pin and a hole) and
converts it into tolerances associated with each of the mating parts through a
process usually called tolerance allocation or tolerance synthesis [8]. The com­
ponent tolerances are represented in engineering drawings or their electronic
counterparts, but the critical assembly requirements usually are not. We be-

www.manaraa.com

23

lieve that assembly representations should contain both assembly and compo­
nent requirements, for the following reasons. The assembly requirements are
insufficient. For example, a pin/hole clearance can be achieved by tolerancing
the pin tightly and the hole loosely, or vice-versa, or by distributing the toler­
ances approximately equally between the two components. It is important to
distinguish the three approaches because they have significant manufacturing
and cost implications. The component tolerances also are insufficient. Without
the explicit representation of the assembly-level requirements it is impossible
to verify if they are indeed satisfied. Furthermore, should the component al­
locations need to be changed because of manufacturing or other life-cycle con­
siderations, it is impossible to modify them automatically without knowledge
of the assembly requirements.

If a representation contains both assembly-level tolerances (typically associ­
ated with mating relations), and component-level tolerances, it is important to
keep the two sets logically separate. Together with untoleranced solid repre­
sentations and mating relations, assembly-level tolerances define a variational
assembly A .. , whereas the component-level tolerances define another varia­
tional assembly Ac. If A.. = Ac the representation is redundant, and the
assembly-level information is useful primarily when the design is modified, for
example by changing the allocation of tolerances between individual compo­
nents. But, in practice, the two sets of constraints often are not equivalent.
A representation containing both assembly and component tolerances defines
a variational assembly A .. n Ac. It is useful to introduce a notion related to
validity, called internal consistency, to characterize assembly representations
whose component-level constraints suffice to ensure that the assembly-level re­
quirements are satisfied. A representation is worst-case internally consistent
if A .. :) A c , and statistically internally consistent if the probability associ­
ated with Ac - Aa is below a specified threshold. Internal consistency can be
assessed by worst-case or statistical tolerance analysis, discussed in Section 2.5.

The concept of internal consistency may be enlarged so as to encompass other
relationships between component-level and assembly-level data. For exam­
ple, an assembly representation in which a square pin and a square hole mate
through a kinematic revolute joint is internally inconsistent.

Not all assembly requirements are of a spatial nature, and even those which
are geometric may not be expressible directly through mating relations. For
example, one of the main requirements for a pick-and-place mechanism is that
the end effector follow a specified trajectory, within a band of acceptable er­
ror. Another requirement is that the velocity have some specified range. This
example shows ~hat there is a fine line between assembly requirements and
behavioral or functional characteristics of a product, and that it is not clear
where the line should be drawn. We believe that all this information should
be captured in the representation of a product, but not necessarily as part of
what we are calling an assembly representation.

www.manaraa.com

24

Let us turn now to non-geometric information that is directly relevant to assem­
bling operations and cannot reasonably be inferred from other characteristics
ofthe assembly. There are many examples: presence of adhesives or lubricants;
welding data; fastener types; torques and forces required; special tools. We be­
lieve that all such information can be represented through attributes associated
with mating relations.

We do not have mathematical models that encompass the non-geometric as­
pects of assemblies, and therefore formal definitions of unambiguity, validity,
and so on, are not applicable. But an informal notion of validity is still useful.
Establishing the validity of non-geometric data is a complex problem that may
involve physical reasoning and an extensive base of experiential knowledge. For
example, how are we to decide if the specification of a certain adhesive is valid?

2.3 Solid models and surface features

A solid model is an unambiguous computer representation for a physical solid
object, modeled mathematically as an r-set [32]. Although many schemes exist
for representing solids, the most useful are Constructive Solid Geometry (CSG)
and Boundary Representation (BRep). Much has been written, rightly and
wrongly, about the virtues of each of these schemes. We believe that both
are important and have complementary characteristics. The modelers we build
contain both.

Solids are represented in CSG by directed, rooted, acyclic graphs whose internal
nodes correspond to regularized set operators or rigid motions, and whose ter­
minal nodes correspond to primitive solids such as blocks, cylinders, or "sculp­
tured", "free-form" solids. The primitives themselves typically are represented
by a "type code" (for example, "block" or "cylinder") plus an n-tuple of pa­
rameters. For example, the parameters for a cylinder might be 7 real numbers,
2 defining the cylinder's size (i.e. height and radius) and the rest defining its
position, with 3 corresponding to the coordinates of the center of a base, and
the other 2 defining the direction of a vector aligned with the cylinder's axis.

The P ADL-2 modeler [6] and some of the modern commercial systems can ac­
commodate unevaluated, symbolic parameters for primitives and rigid motions.
AM, an experimental assembly modeler under development at the University
of Southern California's Programmable Automation Laboratory, admits as pa­
rameters arbitrary LISP expressions and functions. Symbolic parameters con­
stitute a powerful representational capability. They can be used to establish
constraints between objects' surfaces, to define object families, and to represent
nominal assemblies through symbolic rigid-motion parameters. A specific in­
stance of a solid in a parameterized family defined through CSG is constructed
by binding numeric values to the symbolic variables, and evaluating the pa­
rameter expressions. Under very simple conditions (e.g., the size parameters

www.manaraa.com

25

for the primitives must be positive) the instantiated object is valid, that is,
it has a corresponding 1'-set. This makes eSG-based parameterizations very
attractive.

A BRep represents the topological boundary of an object through a graph
whose nodes correspond to faces, edges and vertices, and whose arcs corre­
spond to adjacency relations. BReps also can be parameterized, but this raises
delicate problems. For example, certain combinations of parameter values may
be inconsistent with the BRep structure. New faces, edges or vertices may have
to be introduced or old ones deleted for the representations of certain object
instances to be valid.

Mating relations and tolerance specifications are associated with constraints on
subsets of the boundaries of solids. Most of these constraints apply to surface
features of objects, although lower-dimensional entities are sometimes needed.
A surface feature usually is a face, or a union of faces, and in rare cases it may
be a subset or union of subsets of faces. For example, a flatness tolerance may
apply only to a small region of a planar face because a mating part will contact
the face only on that region. (Edge or vertex features can be defined in terms
of surface features, and will be ignored in the sequel.)

BReps represent faces explicitly, and therefore can easily be extended to cater
to surface features. But surface features also can be represented in eSG. The
boundary of a eSG solid is a subset of the union of the boundaries of the
primitives in the eSG representation. This implies that an object's (BRep)
faces can always be associated with one or more primitive faces. Instead of
representing a surface feature directly through a BRep node, we can represent
it indirectly by the primitive face or faces that give rise to it. We need meth­
ods for representing faces of primitives, and for combining these, through a
union operation, into larger features when necessary. A specific scheme, called
VGraph, for representing surface features in terms of eSG and assigning them
tolerances is discussed in [36], and has been implemented in an experimental
version of PADL-2 and also in the AM system. Surface feature representations
based on eSG are more complicated than their BRep counterparts, but offer
advantages in dealing with parameterized families of objects.

2.4 Mating relations and
constraint satisfaction

To support the computations needed to display assemblies, test them for in­
terference, assess their stability, and for other applications, assembly instances
must be represented by their component solids plus explicit, numerically-valued
transformations with respect to a common or "lab" coordinate frame. A pose
representation scheme based on 4 x 4 matrices, quaternions, or other methods,
defines a set of natural parameters (e.g., Euler angles, rotation angles about the

www.manaraa.com

26

~ [: C(:x) S(:x) tl: 1
o -s(9x) c(9x) tlz

o 0 0 1

(a) (b)

Figure 2.2: Coplanarity (a) and coaxiality (b) constraints and corresponding
matrices with rotational (e.g. 9",) and translational (e.g. ~y) free variables.
(c(9) and s(9) denote cos 9 and sin 9.)

principal axes) that characterize unambiguously the poses of the components of
an assembly in lab coordinates. But direct specification of natural pose param­
eters of parts or their surface features has drawbacks, as noted earlier. Indirect
specification through relative distances, angles, and geometric constraints such
as coplanarity, parallellism, and coaxiality is much more attractive. Some of
these constraints (e.g., parallelism) are applied primarily to surface features of
a single part, whereas others (e.g., coplanarity) correspond to mating relations
between parts. All of these geometric constraints can be expressed as (often
non-linear) equations on the natural pose parameters of surface features.

Mating relations between surface features can be described by static geometric
constraints such as those just discussed. For example, "against" and "fits"
conditions, which are equivalent to coplanarity and coaxiality for planar and
cylindrical features, have been used in the RAPT system [1, 29] and in [21,
22]. Static constraints typically do not fix all of the degrees of freedom of a
feature. For example, coaxiality between the cylindrical surfaces of a pin and
a hole allows rotary motion about the axis, and translational motion along the
axis direction. Static constraints between features of known geometry can be
expressed as transformations with symbolic parameters that correspond to the
degrees offreedom. Examples are provided in Figure 2.2. Each transformation
maps a coordinate frame attached rigidly to one feature onto another frame
attached to the other feature.

Mating relations also may be defined by kinematic constraints, which specify
explicitly the desired relative motion between two features [19, 20, 27, 44]. For

www.manaraa.com

27

example, one might specify a translational or prismatic joint between a square
bar and a square "hole". Kinematic constraints can be converted directly into
symbolic-parameter relative transformations, and therefore are mathematically
equivalent to their static counterparts. Nevertheless, we favor assembly repre­
sentation schemes that support both static and kinematic constraints, because
they help in capturing design intent, and therefore should make it easier to
design an assembly or to reason about it. A kinematic constraint is closely
related to the mechanical function and behavior a designer wants to achieve.
In fact, a designer is likely to think first about the type of joint he or she wants
to specify, and only later consider the detailed geometry of the surface features
that "implement" the joint. Clearly, kinematic constraint information is avail­
able at the design stage, and can be easily captured if suitable user interfaces
are provided. Note, however, that kinematic constraint specification raises the
issue of consistency with features' geometry. For example, a rotary joint is
incompatible with a square pin and hole geometry. The poses of components
in a rigid assembly also can be defined through kinematic constraints, but a
static-constraint specification is more natural, because no motion is intended.

We have been discussing bi-directional constraints. For example, coaxiality
between a pin and a hole is a symmetric relation. If the pin's position were
to change, the hole would have to move for the constraint to be maintained;
similarly, a hole positional change would cause a corresponding change in the
pin's pose. Alternatively, one can consider uni-directional constraints, which
are akin to sequential operations, and sometimes are called relative positioning
operations [13, 38, 45]. Uni-directional geometric constraints often can be cap­
tured by assigning to the pose parameters of a "target" feature the values of
symbolic expressions involving the parameters of previously-defined "source"
features. Figure 2.3 shows a very simple example. The left face of the small
block B can be constrained to be coplanar with the middle face of the L-shape
A if the position of B is determined by evaluating the expression c = a-b.
Observe that changes in a or b are correctly propagated to block B, and the
constraint is enforced. However, a direct change in c will not be reflected back
to object A, and will produce a configuration that does not satisfy the copla­
narity constraint. Expressions such as c = a - b are not treated as equations,
and it is not possible in this scheme to solve for a given values for the other two
parameters. Relative positioning via parameter expressions was implemented
in the PADL-1 solid modeler through "distance chains" relating surfaces or
half-spaces of objects defined by CSG [47], and is supported in PADL-2 [6] and
some commercial modelers.

Unidirectional constraints are computationally convenient and surprisingly pow­
erful, but have several drawbacks: (1) a sophisticated interface is needed to
make the approach palatable to human users; (2) because constraints apply
sequentially, previously-established relations may be broken unless special pre­
cautions are taken [19, 20, 38]; (3) complex constraints that correspond to
systems of simultaneous equations are difficult, if not impossible to accommo-

www.manaraa.com

28

c ~I

- bl B

A

a ~I

Figure 2.3: U ni-directional constraints and parameter expressions

date.

There is a substantial amount of additional literature on geometric constaints
in the computer graphics area, from Sutherland's Sketchpad [41] to object­
oriented approaches such as Borning's ThingLab [3]-see [38], which contains
many references.

Consider now rigid assemblies defined through networks of mating relations.
Constraint satisfaction methods analyze the networks to determine if they de­
fine a unique solution in pose configuration space, or ifthere are many solutions,
or perhaps none, and to compute the solutions. The geometric constraints can
be converted into a set of equations on the pose parameters of the surface fea­
tures involved. An elegant technique for finding the relevant equations involves
extracting cycles from the constraint network [1, 29]. In essence, constraint
satisfaction amounts to studying the roots of a set of (nonlinear) equations.

Numerical solutions may be sought by using, for example, modified versions
of Newton-Raphson iteration [21, 25, 37]. Modifications are needed because
the number of equations often is larger than the number of unknowns, and
redundant equations must be identified. Numerical solution of large systems
of nonlinear equations raises several delicate issues, which include: (1) the pro­
cess may fail to converge; (2) only one solution may be found when several
exist; (3) the algorithm's behavior depends on the initial guess for the solu­
tion; and (4) the computation may be costly. Furthermore, if an assembly is
articulated, the solutions contain higher-dimensional sets that correspond to
the motions of the mechanism, and numerical equation solvers do not provide
much useful information about the degrees of freedom of the assembly or about
its motions.

www.manaraa.com

29

An alternative approach consists of manipulating the equations symbolically
[1, 29]. Casting the problem in algebraic terms enables powerful techniques to
be deployed, for example Grobner basis computation [16]. These techniques
provide information about the entire set of solutions, its dimensionality, and so
forth. Symbolic elimination and simplification methods produce results con­
taining symbolic parameters that correspond to the degrees of freedom of an
assembly. Unfortunately, Grobner basis calculation and related symbolic alge­
bra algorithms use rational arithmetic and are notoriously slow.

To mitigate some of the drawbacks of numerical and symbolic constraint satis­
faction algorithms, a variety of heuristics and special-case short cuts have been
proposed [1, 18,29]. Sequential, uni-directional constraint satisfaction methods
[38, 46] are computationally attractive, and the parameter expression approach
is by far the fastest, since no equations are solved. But these methods have
their own drawbacks, discussed earlier.

Recently, group theoretic methods have been applied to study the degrees of
freedom of assemblies [26, 30, 43]. The key observation is that contact between
two surfaces is maintained when the surfaces undergo rigid motions only if
the rigid motions leave the surfaces invariant. For example, two cylinders
in contact permit rotations around the axis and translations along the axis
direction. These are precisely the rigid motions that map a cylinder onto
itself, that is, the motions under which a cylinder is invariant-and therefore
correspond to the symmetries of the cylinder. The symmetries of a feature are
associated with a subgroup of the group of all rigid motions in Euclidean space.
When parts are connected by several mating relations, their degrees of freedom
may be computed by intersecting the corresponding symmetry groups. All the
possible mating relations among a set of parts can be inferred by reasoning
about symmetry groups. However, in our opinion, it is more reasonable to
capture such relations at the design stage, since they are known to a designer
even before the detailed geometry of the parts is specified.

In summary, assembly representations through mating relations give rise to
networks of spatial constraints, and these are intimately associated with sys­
tems of non-linear equations, with all their inherent difficulties. Recent work
by Kramer illustrates the current state of the art [19, 20]. Kramer combines
symbolic and numerical methods, and converts bi-directional constraints into
uni-directional relations for efficient solution. Finally, note that most of the
research on geometric constraint satisfaction has been devoted to equality con­
straints (but see [28, 46]). Inequalities are important for dealing with geometric
uncertainty.

www.manaraa.com

30

2.5 Variational classes and tolerance analysis

Tolerances define permissible variations in the geometry of parts. A variational
class is the set of solids that satisfies a given tolerance specification [33, 34].
(Note that other authors use these terms with a different meaning [45].) All
the solids in a variational class should be "almost equal" in a suitable metric
[5], functionally equivalent, and interchangeable in assembly operations.

Tolerance specifications amount to geometric constraints on the size, pose and
form of subsets of a part's boundary. Typically they apply to surface features.
The precise meaning of tolerance specifications is a topic of active research.
There are two main approaches for defining tolerancing semantics:

• Shape and pose parameterization .

• Tolerance zone specification, which may be parametric or non-parametric.

We will explain these approaches with the help of a very simple 2-D example.
Consider a planar quadrilateral polygon. If we assume that adjacent sides meet
precisely at right angles, we have a perfect rectangle, which can be characterized
completely by two parameters, its length L and height H. We have thus defined
a family of objects with an associated 2-D parameter space, which we can
identify with M$' the solid modeling space for this example. A pair (L, H) is
a point in this space and therefore it defines a specific rectangle instance. A
tolerance specification corresponds to a subset of M$' Typically, the subset is
an interval (L -ll.L, L + ll.L) x (H -ll.H, H + ll.H). But other, more complex
subsets may be defined indirectly, through constraints on entities that depend
on the two parameters [45].

For a richer variational class we may relax the assumption of perfect orthog­
onality, and introduce four more parameters lh, .. . , 84, which are the angles
between adjacent sides. The "length" and "width" must be redefined as dis­
tances between specified vertices. A variational class now corresponds to a
subset of a 6-0 parameter space. This variational class includes quadrilat­
erals similar to that shown in Figure 2.4, which does not satisfy the earlier,
perfect-orientation specification.

What we have done in both examples is to parameterize the poses of four
straight lines, and constrain the poses through their associated parameters. The
form ofthe lines is assumed perfectly straight. Perfect form is a reasonable first
approximation, but a more refined tolerance specification must acknowledge
that surfaces cannot be manufactured with perfect shapes. Imperfect form
can be accommodated by using higher-order approximations. For example, we
can replace the straight lines by second-degree curves (conics), and introduce
additional parameters to define the conics. Alternatively a spline can be used.
A tolerance specification still corresponds to a subset of parameter space, but
the space's dimensionality has increased. Shape and pose parameterization is a

www.manaraa.com

31

Figure 2.4: A quadrilateral with non-orthogonal sides

reasonable approach for perfect-form tolerancing, but its extension to imperfect
form leads to a large number of parameters of dubious physical significance.

In contrast, the tolerance zone approach makes extremely mild assumptions
about the nature of the surfaces involved. They are required only to "vary
slowly" at the scale of the tolerance values specified [4, 33]. Tolerancing con­
straints in this approach are translated into set inclusion relations. Typi­
cally, a surface feature of an object is required to lie in a region of space
called a tolerance zone. These zones may be constructed parametrically or
non-parametrically [34]. We illustrate the two possibilities with an imperfect
rectangle-see Figure 2.5. First we parameterize the rectangle by its length and
height, as before, and specify an admissible range for each of the parameters.
N ext we construct the largest and smallest rectangles in the specified parameter
range, and define a tolerance zone as their set difference, shown in Figure 2.5-a.
Any object with a (slowly-varying) boundary in the tolerance zone is consid­
ered acceptable. In the non-parametric approach illustrated in Figure 2.5-b,
we grow and shrink a perfect rectangle by specified amounts, and subtract the
results to define the tolerance zones. The main distinction between parametric
and non-parametric zones is the growing and shrinking method used. Instead
of considering maximal and minimal values for parameters, expansion and con­
traction are achieved in the non-parametric approach through solid offsets [39].
which are special cases of Minkowski operations or sweeps. The two approaches
produce slightly different tolerance zones, as shown in the figure, but the dif­
ferences do not seem to be practically important. Constructing tolerance zones
for all the specifications used in practice is non-trivial, but an adequate theory
is emerging [9, 17, 33, 40]. Note also that a tolerance zone specification may
be converted into a set of constraints on parameters, if we assume that the

www.manaraa.com

32

(a) (b)

Figure 2.5: Parametric (a) and non-parametric (b) tolerance zones

surfaces of actual parts have specific, parameterized shapes.

Representations for variational classes depend on the specific approach adopted
for tolerance semantics. The non-parametric theory requires representations
for nominal solids, surface features, and attributes that constrain such features
[36]. Shape parameterization, as well as parametric tolerance zones, have an
additional requirement: feature and object representations must be parameter­
ized.

Almost all of the extant tolerance analysis algorithms assume a semantics for
tolerances in terms of shape and pose parameterizations. Typically, range or
limit specifications are given for a few parameters or dimensions ~, and the
corresponding range is computed for a resulting dimension d.,. = f(~). Figure
2.6 shows a simple example. The resulting dimension is d = a - (b+ c) . Given
limits for a, band c, what are the corresponding limits for d? Observe that
the relative location of the right face of the slot in the figure with respect to
the left face of the slot can be defined either as the single distance d or by the
"chain" -b + a-c. (To construct this chain go left from the left face of the
slot, then right to the rightmost face of the part, and then left to the right
face of the slot.) In tolerancing jargon, two chains of dimensions associated
with a feature constitute a loop. More generally, the given dimensions need not
be aligned along a single direction, and a more complicated vector loop must
be constructed to relate the relevant parameters. However, most systems deal
only with linear loops of dimensions.

In most tolerance analysis programs the function f that relates resulting and
given dimensions must be specified by a user, either as a closed-form expression
or by a procedure for computing d.,. from the other di. In some systems f is

www.manaraa.com

33

a

Figure 2.6: An indirectly-toleranced slot

defined implicitly by a simulation procedure that generates representations of
parts in tolerance, "assembles" them, and "measures" the resulting dimensions
[45] .

Worst case analysis involves finding the minimal and maximal values for pa­
rameters, and therefore is an optimization problem. The equations that relate
the resulting dimension to the given ones may be non-linear, when angular rela­
tionships are involved. Because the variations in the parameters are small, the
equations often can be linearized, and the optimization carried out by linear
programming [15, 42, 45].

Specific analysis problems must be formulated by human users so as to reflect
critical assembly requirements, and the results of the analysis also must be in­
terpreted by humans in most of the existing tolerance analysis programs. For
example, the slot size in the example above may preclude assembly with a mat­
ing part, but such an inference is beyond the capabilities of typical industrial
systems. Increasing automation is being demonstrated in research systems [45].

The same vector-loop considerations can be used for statistical tolerance anal­
ysis. Now the part dimensions are viewed as random variables. P.d.f.'s for
the given dimensions are specified by a user, and the statistics of the resulting
dimension are computed by using analytic statistical methods [2, 8, 23], or nu­
merically, by Las Vegas techniques (which are the U.S. equivalent of old-world
Monte Carlo analysis) [14, 45]. The traditional approach to tolerance analysis
is well described in [2], which is a revised version of a report dating from the
mid 1970's.

Judicious formulation ofresulting dimensions coupled with worst-case or statis­
tical tolerance analysis can go a long way towards establishing non-interference

www.manaraa.com

34

or internal consistency of assembly representations. In essence, traditional tol­
erance analysis seeks to show that constraints on components suffice to guar­
antee that assembly requirements are met, and therefore is closely related to
internal consistency issues.

Tolerance analysis algorithms based on the tolerance zone approach are still
at the research stage. The most interesting results thus far are reported in
[10, 11, 12]. Work under way at the University of Southern California seeks
to compute tolerance zones and verify clearance and fit conditions by using
the ideas outlined in [35]. The tolerance zone approach deals naturally with
imperfect form. Coupled with assembly representations that contain the critical
assembly requirements, it is expected to lead to highly automated and powerful
tolerance analysis systems.

2.6 Summary and open issues

This chapter introduced mathematical models for (the geometric aspects of)
assemblies in terms of configuration spaces whose elements correspond to col­
lections of solid mechanical parts and their poses (positions and orientations).
Rigid assemblies were considered, as well as articulated mechanisms, with and
without part variability, and with and without randomness. Sharp charac­
terizations for the subsets of configuration space that correspond to physical
assemblies are unknown.

Computational representations for assemblies proposed in the literature con­
sist essentially of (toleranced) solid models for the component parts, mating
relations between surface features, and attributes of such relations. Attributes
establish geometric and non-geometric constraints on the assembly.

The validity and internal consistency of assembly representations raise a host
of very complex problems, many of which require substantial mathematical and
algorithmic development. These problems include interference calculations and
path planning, to establish geometric realizability; constraint satisfaction, to
find static poses and allowed motions of sets of parts connected by mating
relations; and worst-case and statistical tolerance analysis, to check if part­
level tolerance specifications ensure that assembly requirements are met.

Assembly representations should capture design requirements such as assembly
clearances and desired motions. Some of this information can be inferred from
the assembly geometry, but it seems more reasonable to capture requirements
at the design stage, since they are known to the designer, than to re-create
them later, in a process akin to reverse engineering. Computer aided design
of assemblies was not considered in detail in this chapter but a good survey
is available [24]. Two interesting issues raised by assembly design are the
following.

www.manaraa.com

35

1. Designers may proceed bottom-up, by constructing new part represen­
tations or using existing ones, and establishing mating relations and at­
tributes. But they also may operate top-down. The first approach can be
supported through relatively straightforward extensions of current solid
modeling technology. The second, top-down approach is more challeng­
ing, because one must be able to ignore low-level details and establish
relations between features of incompletely specified objects.

2. Assemblies are naturally decomposed by designers into subassemblies,
typically through functional considerations. Subassemblies are not dif­
ficult to represent, and hierarchical structures can be combined with
mating-relation graphs. However, the subassembly structure imposed
by designers need not correspond to a desirable sequence of assembly
tasks. In fact, some of the planners discussed in the following chapters
assume a flat,non-hierarchical assembly structure and infer a suitable set
of subassemblies associated with assembly operations.

The main conclusions of this chapter may be summarized as follows. The
mathematical aspects of assembly modeling are not fully understood. Assembly
representations through mating relations and attributes are reasonably well
established, although most of the associated constraint satisfaction methods
suffer from lack of generality, efficiency, or robustness (or all of the above).
Properties of assembly representations such as validity and internal consistency
involve a variety of complex, open issues. Algorithms for converting assembly
representations into sequences of assembly operations are discussed in later
chapters of this book.

Acknowledgements

The authors were supported by the National Science Foundation under grants
DMC-87-15404 and CDR-87-17322, by the industrial members ofthe Institute
for Manufacturing and Automation Research (IMAR), and by the Industrial
Associates of the Programmable Automation Laboratory, Institute for Robotics
and Intelligent Systems (IRIS) of the University of Southern California.

References

[1] A. P. Ambler and R. J. Popplestone, "Inferring the positions of bodies
from specified spatial relationships", Artificial Intelligence, Vol. 6, No.2,
pp. 157-174, Summer 1975.

[2] 0. Bj~rke, Computer-Aided Tolerancing. New York: ASME Press, 2nd ed.,
1989.

www.manaraa.com

36

[3] A. Borning, "ThingLab - A constraint-oriented simulation laboratory",
Ph.D. Dissertation, Dept. of Computer Science, Stanford University, July
1979.

[4] M. Boyer and N. F . Stewart, "Modelling spaces for toleranced objects",
Department d'informatique et de recherche operationnelle, U niversite de
Montreal, July 1990.

[5] M. Boyer and N. F . Stewart, "Modelling spaces for toleranced objects:
!R-classes suitable for practical use", Department d'informatique et de
recherche operationnelle, Universite de Montreal, November 1990.

[6] C. M. Brown, "PADL-2: A technical summary" , IEEE Computer Graphics
and Applications, Vol. 2, No.2, pp. 69-84, March 1982.

[7] S. A. Cameron, "Modelling solids in motion" , Ph.D. Dissertation, Univer­
sity of Edinburgh, 1984.

[8] K. W. Chase and W. H. Greenwood, "Design issues in mechanical tolerance
analysis" , Manufacturing Review, Vol. 1, No.1, pp. 50-59, March 1988.

[9] F. Etesami, "Tolerance verification through manufactured part modeling" ,
Journal of Manufacturing Systems, Vol. 7, No.3, pp. 223-232, September
1988.

[10] A. Fleming, "Analysis of uncertainties in a structure of parts", Pmc. 9th
Intl. Joint Conf. on Artific ialIntelligence, Los Angeles, CA, pp. 1113-1115,
August 18-23, 1985.

[11] A. D. Fleming, "Analysis of uncertainties and geometric tolerances in as­
semblies of parts", Ph.D. Dissertation, Dept. of Artificial Intelligence, U ni­
versity of Edinburgh, 1987.

[12] A. Fleming, "Geometric relationships between toleranced features", Arti­
ficial Intelligence, Vol. 37, No. 1-3, pp. 403-412, December 1988.

[13] D. C. Gossard, R. P. Zuffante and H. Sakurai, "Representing dimensions,
tolerances, and features in MCAE systems", IEEE Computer Graphics fj
Applications, Vol. 8, No.2, pp. 51-59, March 1988.

[14] D. D. Grossman, "Monte Carlo simulation of tolerancing in discrete parts
manufacturing and assembly" , Computer Science Report Number STAN­
CS-76-555, Stanford University, May 1976.

[15] P. Hoffman, "Analysis of tolerances and process inaccuracies in discrete
part manufacturing", Computer-Aided Design, Vol. 14, No.2, pp. 83-88,
March 1982.

[16] C. M. Hoffmann, Geometric and Solid Modeling. San Mateo, CA: Morgan
Kaufmann Publishers, 1989.

www.manaraa.com

37

[17] R. Jayaraman and V. Srinivasan, " Geometric tolerancing: I. Virtual
boundary requirements", IBM Journal of Research and Development, Vol.
33, No.2, pp. 90-104, March 1989.

[18] H. Ko, "Empirical assembly planning: A learning approach", Ph.D. Dis­
sertation, Dept. of Computer Science, University of Illinois at Urbana­
Champaign, 1989.

[19] G. A. Kramer, "Solving geometric constraint systems", Proc. 8th National
Conf on Artificial Intelligence, Boston, MA, pp. 708-714, July 29-August
3, 1990.

[20] G. A. Kramer, "Geometric reasoning in the kinematic analysis of mecha­
nisms", Ph.D. Dissertation (draft), University of Sussex, October 1990.

[21] K. Lee and G. Andrews, "Inference of the positions of components in an
assembly: Part 2", Computer Aided Design, Vol. 17, No.1, pp. 20-24,
January/February 1985.

[22] K. Lee and D. C. Gossard, "A hierarchical data structure for representing
assemblies: Part 1", Computer Aided Design, Vol. 17, No.1, pp. 15-19,
January/February 1985.

[23] W.-J. Lee and T. C. Woo, "Tolerances: Their analysis and synthesis",
Journal of Engineering for Industry, Vol. 112, No.2, pp. 113-121, May
1990.

[24] E. C. Libardi, J. R. Dixon and M. K. Simmons, "Computer environments
for the design of mechanical assemblies: A research review", Engineering
with Computers, Vol. 3, No.3, pp. 121-136, Winter 1988.

[25] R. A. Light and D. C. Gossard, "Modification of geometric models through
variational geometry", Computer-Aided Design, Vol. 14, No.4, pp. 209-
214, July 1982.

[26] Y. Liu and R. J. Popplestone, "Assembly feature-mating inference from
solid models using symmetry groups", COINS Tech. Report 90-34, Com­
puter and Information Science Dept., University of Massachusetts at
Amherst, 1990.

[27] G. H. Morris and L. S. Haynes, "Robotic assembly by constraints", Proc.
1987 IEEE IntI. Conf. on Robotics and Automation, Raleigh, NC, pp.
1481-1486, March 31-April 3, 1987.

[28] G. Mullineaux, "Optimization scheme for assembling components",
Computer-Aided Design, Vol. 19, No.1, pp. 35-40, January/February 1987.

[29] R. J. Popplestone, A. P. Ambler and I. M. Bellos, "An interpreter for a
language for describing assemblies", Artificial Intelligence, Vol. 14, No.1,
pp. 79-107, August 1980.

www.manaraa.com

38

[30] R. J. Popplestone, Y. Liu and R. Weiss, "A group theoretic approach to
assembly planning", AI Magazine, Vol. 11, No.1, pp. 82-97, Spring 1990.

[31] A. A. G. Requicha, "Mathematical models of rigid solid objects", Tech.
Memo. No. 28, Production Automation Project, Univ. of Rochester,
November 1977.

[32] A. A. G. Requicha, "Representations for rigid solids: Theory, methods,
and systems", A CM Computing Surveys, Vol. 12, No.4, pp. 437-464, De­
cember 1980.

[33] A. A. G. Requicha, "Toward a theory of geometric tolerancing", Intl. Jour­
nal of Robotics Research, Vol. 2, No.4, pp. 45-60, Winter 1983.

[34] A. A. G. Requicha, "Representation of tolerances in solid modeling: Issues
and alternative approaches", in M. S. Pickett and J. W. Boyse, Eds., Solid
Modeling by Computers. New York: Plenum Press, 1984, pp. 3-22.

[35] A. A. G. Requicha, "Solid modeling and its applications: Progress in tol­
erancing, inspection, and feature recognition", IRIS Tech. Report No. 259,
Institute for Robotics and Intelligent Systems, University of Southern Cal­
ifornia, November 1989.

[36] A. A. G. Requicha and S. C. Chan, "Representation of geometric features,
tolerances, and attributes in solid modelers based on constructive geom­
etry", IEEE Journal of Robotics and Automation, Vol. RA-2, No.3, pp.
156-186, September 1986.

[37] D. N. Rocheleau and K. Lee, "System for interactive assembly modelling",
Computer-Aided Design, Vol. 19, No.2, pp. 65-72, March 1987.

[38] J. R. Rossignac, "Constraints in constructive solid geometry", Proc. 1986
Workshop on Interactive 3D Graphics, Chapel Hill, NC, pp. 93-110, Oc­
tober 23-24, 1986.

[39] J. R. Rossignac and A. A. G. Requicha, "Offsetting operations in solid
modelling", Computer-Aided Geometric Design, Vol. 3, No.2, pp. 129-
148, August 1986.

[40] V. Srinivasan and R. Jayaraman, "Geometric tolerancing: II. Conditional
tolerances", IBM Journal of Research and Development, Vol. 33, No.2,
pp. 105-124, March 1989.

[41] I. E. Sutherland, "Sketchpad: A man-machine graphical communica­
tion system", Ph.D. Dissertation, Dept. of Electrical Engineering, Mas­
sachusetts Institute of Technology, January 1963.

[42] R. H. Taylor, "A synthesis of manipulation control programs from task
level specifications", Ph. D. Dissertation, Dept. of Computer Science, Stan­
ford University, July 1976.

www.manaraa.com

39

[43] F. Thomas and C. Torras, "A group theoretic approach to the computation
of symbolic part relations", IEEE Journal of Robotics and Automation,
Vol. 4, No.6, pp. 622-634, December 1988.

[44] R. B. Tilove, "Extending solid modeling systems for mechanism design
and kinematic simulation", IEEE Computer Graphics and Applications,
Vol. 3, No.3., pp. 9-19, May/June 1983.

[45] J. U. Turner, "Tolerances in computer-aided geometric design", Ph.D. Dis­
sertation, Dept. of Computer and System Engineering, Rensselaer Poly­
technic Institute, May 1987.

[46] J . U. Turner, "Relative Positioning of parts in assemblies using mathe­
matical programming", Tech. Report TR-89046, Rensselaer Polytechnic
Institute, 1989.

[47] H. B. Voelcker, A. A. G. Requicha, E . E. Hartquist, W. B. Fisher, J.
Metzger, R. B. Tilove, N. K. Birrell, W. A. Hunt, G. T. Armstrong, T . F.
Check, R. Moote and J. McSweeney, "The PADL-1.0/2 system for defining
and displaying solid objects", Computer Graphics (Proc. Siggraph '87 j,
Vol. 12, No. 3, pp. 257-263, August 1978.

www.manaraa.com

Chapter 3

Representation of solid
objects by a modular
boundary model

Leila De Floriani, Amitava Maulik, and George Nagy

The geometric representation of man-made objects has always been considered
essential for their design and construction. It is inconceivable that cathedrals,
catapults, caravels and clockworks could have reached their level of perfection
without the concurrent development of graphic tools as the lingua franca be­
tween designers, clients ("end-users"), and artisans. Drafting conventions were
gradually refined and formalized according to the requirements of different dis­
ciplines (sheet metal, piping, trusses, part and assembly drawings, renderings).
Till recently, "mechanical drawing" formed an important component of engi­
neering and architectural education.

Early computer-aided drafting tools bore the same relation to engineering draw­
ing as word processors to typing: they facilitated the preparation of neat, error­
free prints, allowed storage and transmission in digital form, and speeded up
immensely the updating of existing designs. Ancillary information, such as
parts lists, machining directions, and surface finish, were kept in separate files
and dimensions were treated as mere annotations. Electronic drawings con-

www.manaraa.com

42

tained the minimum amount of structural information: no other views could
be displayed than those entered by the draftsman, and few additional proper­
ties (such as weight) could be calculated. This remained the case even after
the introduction of wireframe models.

In the second phase of computerization, integral methods were developed to
represent three-dimensional rigid objects themselves, rather than specific 2-D
views of such objects. It was soon discovered that purely geometric coordi­
nate information and surface equations left unresolved certain ambiguities: in
particular, such location information is insufficient to differentiate the inside
from the outside. This led to the introduction of data structures for repre­
senting simple topological concepts and relations. However, the integrity and
consistency of 3-D representations could not be verified as easily as 2-D repre­
sentations. It was therefore necessary to define transformations that, applied
to a topologically valid object, guaranteed yielding another valid object . The
computer models developed along these lines were sufficient to allow the ma­
nipulation and display of well-formed objects of arbitrary complexity, and form
the basis of the current commercial systems.

The third phase of computerization, which includes the research reported here
on modular boundary models, extended the above techniques to families of
objects. The ability to combine objects has implications both in design, where
the combination is conceptual, and in manufacturing, where the combination
is physical. Useful combinations include not only juxtapositions, where objects
do not spatially overlap, but combinations of interpenetrating components. In
the latter case, voids (such as holes) are also considered objects, and multiple
positive and negative objects may share the same space. One may equivalently
consider a hole as the complement of the corresponding solid, or simply as a
negative object. Naturally, the representation and verification of the validity
of such modular objects becomes more complicated.

Another major limitation of classical CAD models has been their inability to
describe form features and their relations. Pure solid modelers cannot be used
for assembly and machining planning because they do not contain essential
information that is most naturally associated with form features (i.e., tolerances
and dimensions, materials, surface finish). Modular boundary models (MBMs)
bridge the gap between the design and manufacturing phases through their
ability to represent form features as model components [13,15] . Moreover, the
MBM description of the object produced by the designer, in which components
represent design features, can be locally modified (because of the modular
nature of the model) to yield an MBM description in terms of manufacturing
features.

Since modular boundary models are rooted in the boundary representation of
monolithic objects, we first review alternative representation schemes for indi­
vidual objects . Then, we introduce definitions for a class of modular boundary
models for compound objects, and develop a specific model of that class, the

www.manaraa.com

43

Face-to-Face Composition (FFC) model. The essential characteristics of this
model are the explicit graph representation of the abutting and interpenetrat­
ing faces of the constituent object components, and the detailed representation
of the resulting object in terms of a mutually exclusive, completely exhaustive,
irregular cellular structure, called the cellular model.

Our high-level conceptual model (called the F FC Graph) allows the application
of graph-theoretic tools to validity issues, including those that arise when the
object is decomposed into its constituent components. In discussing validity
issues, we find that the locality of information due to modularity assists greatly
in establishing geometric as well as topological validity. A direct representation
of the FFC graph in the form of adjacency relations is, however, too cumber­
some for the complete low-level vertex, edge and facet information necessary
for building and manipulating the model. This latter is thus relegated to the
cellular representation.

Since boundary evaluation is a common requirement for any model, we first
suggest an algorithm to evaluate the boundary of the final object. Then we
describe a data structure appropriate for the cellular representation, which is
an extension of Weiler's radial-edge structure [54], and show how the FFC
model of an arbitrary compound object can be constructed. Finally, we intro­
duce the Production Graph (based on the AND/OR assembly graph described
in [14,25,48]), which shows the alternative sequences of material-removal and
assembly operations for manufacturing the modeled object.

We conclude that modular boundary models fit in the long-established trend
from human to programmatic computer utilization of models. First generation
models could be used only for direct screen or plotter output. Wireframe mod­
els could be projected and, with some human intervention, generate numerical
machine tool control code. Second-generation models were adequate for 3-D
surface display under varying lighting and viewing conditions. The current
generation of models is intended for the computer-integrated manufacturing
paradigm, linking automated (feature-based) design, production engineering,
and quality control.

However, before the ideas presented can be applied in an actual design and
manufacturing environment, a number of additional problems must be solved.
These include issues related to the numerical robustness of the various opera­
tions, the cost of the suggested data structure for objects typical of given ap­
plications, and the introduction of additional essential criteria for pruning the
production graph to obtain feasible and economical manufacturing sequences.
These issues are discussed briefly in the final section.

www.manaraa.com

44

3.1 Object Representation Schemes

Several object representation schemes have been developed in the past for dif­
ferent applications. Interesting classifications and discussions of such schemes
are given in [36,41,46]. Some object models are special-purpose, in the sense
that they can effectively represent only special classes of objects. Examples
of such models are sweep representations, generalized cylinders and cones, and
blob models. General-purpose models are characterized by a larger descriptive
power, and are those used in modern CAD/CAM systems.

The emphasis in object models for a CAD system used to be on the efficient
performance of operations typical of a design environment. Examples of such
operations were the creation of the object model, the visualization of the object
on a graphic display, computation of integral properties, Boolean and interfer­
ence computations. More recently, the emphasis has shifted to information for
assembly and machining planning. In other words, the model should not only
describe the geometry of a solid object, but be capable of representing infor­
mation, like dimensions and tolerances, form features or surface finish, used in
manufacturing. So, the new directions in research in solid modeling are towards
more complete models which allow an explicit representation of tolerance and
feature information.

Classical solid models for CAD/CAM applications can be broadly classified
into boundary, volumetric and hybrid schemes. Boundary schemes describe an
object in terms of the surfaces enclosing it. Volumetric schemes describe an
object in terms of solid primitives covering its volume. Hybrid schemes combine
the two approaches.

A boundary representation (B-Rep) of an object is a geometric and topological
description of its boundary. The object boundary is segmented into a finite
number of bounded subsets, called faces. Each face, in turn, is described by
its bounding edges and vertices. Two other (non-primitive) elements are used
to describe objects with multiply connected faces or internal cavities: the loop
and the shell. A loop on a face f is a closed chain of edges bounding f. A
shell is defined as any maximal connected set of object faces. In a B-Rep
a clear separation is made between geometry and topology. The geometric
description consists of the shape and location in space of each of the primitive
topological elements (vertices, edges and faces). Topological information is
concerned with the adjacency relations between pairs of individual topological
elements (25 relations, in total). Several data structures have been proposed to
encode a B-Rep: the winged-edge structure [4], the symmetric structure [57],
the face adjacency hypergraph [2]. They all store the five topological elements,
but differ in the number and kind of relations they store. The radial edge
structure, proposed and implemented by Weiler [54], is capable of describing
also solids not bounded by two-manifold surfaces.

www.manaraa.com

45

The descriptive power of a B-Rep depends on the surfaces used (planes, quadric
or free-form surfaces). Boundary schemes can represent a wide variety of solid
objects at arbitrary levels of detail. They are unambiguous, but generally not
unique. Validity is quite difficult to establish. A topologically valid B-Rep
can be constructed by the use of a limited set of primitive functions, called
Euler operators [2,7,21,35,36]. Geometric validity must, however, be tested
algorithmically.

Volumetric schemes can be classified into decomposition models, which describe
an object as a collection of primitive objects combined with a single glueing
operation, and constructive models, which describe an object as the Boolean
combination of primitive point sets.

Decomposition schemes can be further subdivided into object-based and space­
based schemes. The former describe an object as the combination of pairwise
quasi-disjoint elementary cells whose union covers the object. Examples of such
models are cell decompositions, like tetrahedralizations [5] mainly used for ob­
ject reconstruction, and finite element meshes. Space-based schemes describe
an object by subdividing the space into regular volume elements, called vox­
e/s. Examples are spatial enumerations and adaptive schemes, like the Octree
or the Bintree [26,38,46,47,49,50]. Adaptive subdivision schemes achieve stor­
age economy by combining neighboring voxels which are completely internal or
completely external to the object. Space-based decomposition schemes provide
only approximate object descriptions: the quality of the approximation is de­
termined by a fixed resolution. Such representations are unambiguous and also
unique, except for positional nonuniqueness: all space-based representations
vary under rigid transformations. Octrees and Bintrees are especially interest­
ing as auxiliary representations in a solid modeler, since Boolean operations
and computation of integral properties can be done very efficiently on them. A
general disadvantage of such schemes is the amount of storage required, even
if pointerless linear representations have been developed [46].

Constructive schemes (Gonstructive Solid Geometry, CSG) [41,42,43] are a fam­
ily of schemes for representing solids as Boolean combination of primitive com­
ponents. A CSG model is described by a binary tree, called the GSG tree, in
which internal nodes represent operators which can be either rigid motions or
regularized set operators, while the terminal nodes are subsets of E3. CSG
schemes are unambiguous, but not unique. The validity of a CSG scheme
can be checked at a purely syntactic level, provided that the primitives are
bounded. The main disadvantages of a CSG are the difficulty in computing
integral properties and extracting or describing information related to surfaces
(surface finish, tolerances, etc.). Variants of the CSG tree have also been pro­
posed. Wyvill and Kunii [58] devised the GSG-DAG, in which the Boolean
operation allowed are set addition and set subtraction. This representation fa­
cilitates the construction of a spatial index, called a PM-GSG tree, on top of a
CSG-DAG in order to speed up ray tracing on a constructive object description.

www.manaraa.com

46

Hybrid models, as mentioned earlier, can be viewed as combinations of two dif­
ferent representation schemes. There are two major classes of hybrid schemes,
PM-Octrees and PM-GSa trees (which combine an Octree with a boundary
representation or a eSG model, respectively), and Modular Boundary Models
(which combine a B-Rep with a constructive approach limited to a restricted
set of Boolean operations). These latter will be discussed in the next section.

The major drawbacks of adaptive space-based decomposition models, like the
Octree or the Bintree, are that they provide only approximate object descrip­
tions, and contain a large number of nodes. Thus, several authors have pro­
posed schemes that combine the Octree with a B-Rep by using the octree as
a spatial index over the boundary description [3,8,9,12,20,23,39,46,47]. These
schemes have different names, but their underlying principle is the same. Like
an Octree, a PM-Octree is based on the recursive subdivision of a finite cubic
universe containing the object into octants. Terminal nodes can be full or void,
as in the octree, or they can be of type face, edge or vertex. Face nodes are
crossed by a single object face, an edge node contains a portion of an edge
together with the two faces incident on it, a vertex node contains exactly one
vertex and portions of all the edges and faces incident on it. The main advan­
tage of PM-Octrees is the simplicity of the algorithms for Boolean operations.
Visualization and computation of integral properties can also be performed
efficiently on such structures. PM-CSG trees are based on the same concept
as the PM-Octree: the definition of a terminal node is changed to refer to a
primitive object rather than to a boundary element [58].

Even by considering only the modeling operations performed in a CAD system,
no representation scheme is uniformly best for all operations. So, many mod­
eling systems maintain more than one object description . Octrees, and more
recently, PM-Octrees, have been mainly used as a secondary representation to
speed up Boolean operations and computation of integral properties. In many
commercial systems, eSG has been used as an interface to the designer, while
keeping a B-Rep as internal representation. Such modelers require conversion
algorithms capable of translating data among the different schemes. A conver­
sion algorithm must guarantee that the output is always correct and consistent
with the input model. Also, ideally, the conversion should be completely in­
vertible. This cannot happen when we convert from an exact model, like CSG
or B-Rep, to any spatial enumeration model. A survey of conversion algorithms
between representations can be found in [19].

Besides the "pure" solid models discussed above, which describe only the shape
of the object, other object models containing also semantic information have
been developed for machining and assembly. In this class, we include assembly
models and feature-based models.

Generally speaking, assembly models describe an object as the composition of
parts which must be combined to form the object, and the relative position and
relations among the parts. They essentially differ in the kind of part-to-part

www.manaraa.com

47

relations they describe. Braid [6] defines a tree-like assembly structure, in which
the terminal nodes are assembly components, described in a boundary form,
and non-terminal nodes represent assembly operations. Assembly operations
could be of type collective (i.e., placing components side by side), conjunctive
or disjunctive (i .e., Boolean operations).

An early attempt at modeling the assembly of components was made in the
AUTO PASS project [34] . The assembly model is a graph, in which the nodes
are geometric objects (described by polyhedra) and the arcs represent four rela­
tions: part-of, attachment, constraint and assembly-component. More recently,
an improved representation has been proposed by Lee and Gossard [32]. It is a
hierarchical representation in which an assembly consists of subassemblies and
components. Each component is described in a boundary form, and two mat­
ing relations are introduced: against (abutting planar faces) and fits (center
lines of the two parts are collinear). This structure has been improved again
by Ko and Lee [30] by adding additional mating conditions. Turner proposed
an assembly model specifically developed for tolerance-based design [52].

Sanderson and Homem de Mello [48] discuss a set of algorithms and a relational
scheme to generate a representation of all "feasible" assembly sequences. When
given as input the pairwise relations (contacts, attachments, etc.) between the
components, the scheme can handle assemblies which are constructed by com­
bining two subassemblies at a time. The input relational model is converted to
a graph. The cut-sets that correspond to feasible disassemblies are determined
from the geometric feasibility, mechanical feasibility, and stability predicates
defined by the authors. These predicates essentially test the possibility of lo­
cal incremental translations, accessibility of the attachments, and gravitational
stability. All the feasible disassemblies are then represented in the form of an
AND/OR graph. The authors propose searching this graph for solution trees
that represent either complete or partial assembly sequences. Partial sequences
are used for the replacement offailed parts, whose identity cannot be predicted.
We will make full use of these ideas in our model.

Lee and Shin [33] discuss a co-operative planning system with job-specific ad­
visor routines to determine a partial-order graph for automatic generation of
assembly sequences with a high degree of parallelism. The face-face contact
between compatible surfaces of neighboring parts, and blocking relationships,
where one part blocks the disassembly of another without actually touching it,
are provided by the designer. The constraints imposed by these relationships
are used by the Geometric Reasoner to determine the ranges of movements of
each part. Then the Heuristic Advisor uses grouping heuristics and suggests
tentative decompositions, which are checked for interference by the geometric
reasoner. The Plan Co-ordinator takes the list of accepted decompositions and
determines those tasks that can be accomplished most easily. Other advisors
determine resources and their availability. This decomposition process is per­
formed iteratively till the decompositions of all subassemblies are determined .

www.manaraa.com

48

,
I
I
)-

/U(Cl, C2)

a) Disjoint Union of two cuboids C1 and C2 .

b) Restricted Difference of two cuboids Cl and C2 .

Figure 3.1: Face-based operations on two cuboids C1 and C2 •

U(Ci,Cj), is the solid object defined as the set addition of Ci and Cj . Given
two components Ci and Cj such that Cj is contained in Ci and their boundaries
intersect at some faces, then the Restricted Difference of Ci and Cj, denoted
D(Ci, Cj), is the solid object defined as the set difference Ci - Cj. Thus, the
two previous operators can be applied only to pairs of components such that
their boundaries have a proper 2-D intersection . Such components are called
face-adjacent components. This ensures that the results of these operations are
objects in our domain. Figure 3.1 shows examples of the two operators using
cuboidal components (the portions of the boundary that have 2-D intersection
are shown hatched).

Note that the disjoint union operator is the glue operator defined in many
boundary modelers [2,36], and also that the restricted difference operator can
be interpreted as a glue operation applied to a positive and a negative object.
A more convenient way of looking at an MBM, for the purpose of developing
a boundary-based description, is to consider two kinds of components: positive
and negative components corresponding to the actions of adding and removing
material, respectively. Positive and negative components are then combined
along faces by means of a single glue operator. The composition rules are:

(i) if Ci and Cj are both positive or both negative, then they must intersect
only along their boundaries and have portions of faces in COmmon.

(ii) if Ci is positive and Cj is negative, then Cj must be contained in Ci, and
they must intersect along their boundaries and share portions of faces.

www.manaraa.com

49

A Hierarchical Partial Order Graph is formed whose terminal nodes represent
simple parts and non-terminal nodes represent subassemblies along with the
part relationships and parallelisms involved.

Most of the work on assembly reviewed above is based on independent repre­
sentation of individual parts and separate data structures that store the re­
lations between them. Repeated evaluations or cumbersome additions to the
data structures may be required to efficiently perform incremental interference
checks as new parts are added to the workplace or during tests for global de­
tachability of parts from the assembly. But once two faces are specified and
found to be in surface contact, the common portion of the two faces need not
be treated during interference checks. This suggests deleting all the touching
portions of the faces between different parts. Our modular description of the
assembled object with parts as individual modules does exhibit this advantage.

Another important aspect in object models for manufacturing is the need for
an explicit description of form features. In other words, as for the assembly,
the object model should be expressed as the composition of parts which corre­
spond to machining operations. Non-geometric information (which characterize
the specific machining process) should be associated with form features. The
problem of representing form features in an object model, or, equivalently, of
developing a feature-based object representation scheme, has been addressed
mainly in connection with the problem of extracting form features from the
model produced by the designer (usually from a B-Rep) [15,16,22,24,27,28,56] .
Henderson produces a feature-based representation, the feature graph, in which
nodes are form features and arcs are relations among them. Woo uses a CSG
model in which primitives are convex polyhedra extracted from a B -Rep by a
recursive convex hull technique. A modular boundary model, which is a vari­
ation of the Hierarchical Face Adjacency Graph described in (13], is used in
[15,16,22] to organize the extracted form features .

3.2 Modular Boundary Models

The class of solid objects we consider are those subsets of E3 bounded by
compact, orientable, two-manifold surfaces [1] . Modular Boundary Models are
a family of object representation schemes which describe a solid object as the
Boolean combination of parts defined by their boundary under a restricted set
of Boolean operators.

Each part forming .an MBM is called a component. A component is a solid
object Cs bounded by a compact orientable two-manifold surface (i.e., an ob­
ject in our domain). A component is described through a boundary model.
The Boolean operators in an MBM are a disjoint union and a restricted set
difference operation . Given two components Cs and Cj such that their bound­
aries intersect only at some faces, the disjoint union of Cs and Cj, denoted

www.manaraa.com

50

Figure 3.2: Cuboids C1 , C2 , and C3 are all face-adjacent at the hatched
connection face.

Positive and negative components are identified by the directions of their face
normals: in a positive component they are directed outwards, in a negative
component they are directed inwards.

Since an MBM is based on a Boolean combination of components represented
in a boundary form, it could be considered as a hybrid boundary-CSG repre­
sentation. The conceptual difference is that, due to the restricted operators
allowed, an MBM describes the connection between face-adjacent components
explicitly, while the two operators are implicit. Thus, the MBM is an un­
evaluated representation from which the reconstruction of the boundary of the
object requires two-dimensional set operations only (to eliminate portions of
faces).

Any face of a component which has a non-empty two-dimensional intersection
with a face of at least one other component is called a connection face. The
faces of the cuboids in Figure 3.1 to which the hatched portions belong are
examples of connection faces. Note that a component may be face-adjacent at
the same connection face to several components (see the example in Figure 3.2).

MBMs of the first generation, like the Hierarchical Face Adjacency Hypergraph
(HFAH) [13] or the Object Decomposition Graph (ODG) [15], descr'ibe only
face-adjacency relations between pairs of components in the form of a directed
graph. In such a graph, the nodes correspond to the components defining the
object decomposition. Each arc (Ci, Cj) joining two face-adjacent components
Ci and Cj represents the face-to-face relations between Ci and Cj and is labeled
with the pairs of corresponding connection faces of Ci and Cj. The orientation
associated with the arc keeps track of the object construction sequence. Fig­
ure 3.3 shows an example of ODG. In the HFAH, the relations between object
components is described as a tree, which restricts the class of modular decom­
positions which can be described. The HFAH has been developed and used [22]
as a representation of object form features at different levels of resolution.

www.manaraa.com

51

a) Object.

c) Object Decomposition Graph.

b) Exploded view of Modular Decomposition into components.

Figure 3.3: The Object Decomposition Graph and Modular Decomposition
of an object.

www.manaraa.com

52

Figure 3.4: C1 and C3 have volumetric interference. C2 and C3 also have
volumetric interference even though they do not share a connection.

3.3 The FFC Model

The components in an MBM can have spatial interference, and this does not
only happen for a positive and negative component which are combined to­
gether (see the example of Figure 3.4). If we consider both the spatial interfer­
ence among components and the partition of the component connection faces
into subfaces shared with other face-adjacent components, we have a partition
of the boundary of each component Ct into portions of its original faces, that
we call facets.

A facet of Ci can be either:

(i) a maximal connected portion of the common intersection between one face
of Ci and one face of any face-adjacent component Cj (and, thus, it is a
subset of a connection face of Ct and a connection face of Cj), or

(ii) a maximal connected portion of a face of Ci defined by the intersection of
such face with the boundary of any component Ck having a volumetric
interference with Ci .

A facet of a component Ct is either a connection facet, when it is that subset
that represents the common portion of a connection face, or it is a boundary
facet. When two or more components are face-adjacent, only one connection
facet is used to represent the common portion of their connection faces. Let
S be a solid object and MD be a family of positive and negative components
defining a modular decomposition of S into face-adjacent components which,
when combined through a glue operator, give S. The collection of the connec­
tion and boundary facets of all components of a modular decomposition MD
of an object defines a fragmentation F of the union of the boundaries of its
components. Figure 3.5 shows the fragmentation of the faces of the modular
decomposition depicted in Figure 3.3.

Given the fragmentation F defined by a modular decomposition MD of S, each
face /j in F can be classified with respect to a component Ci as follows:

www.manaraa.com

53

Figure 3.5: Exploded view showing facets in the fragmentation of the objects
of Figure 3.3a.

(i) Ii is a connection facet for Gi (i.e., Ii belongs to the boundary of Gt and is
shared by at least another component face-adjacent to Gt)

(ii) Ij is a boundary facet for Gt (i.e., Ii belongs to the boundary of Gt and is
not shared by another component)

(iii) Ii is internal to Gt (i.e., Ii belongs to the boundary of another component
and is contained in Gt)

(iv) Ii is external to Gi (i.e., Ii belongs to the boundary of another component
and has no interference with Gt)

Figure 3.6 shows the classification of the facets of the modular decomposition
of the object in Figure 3.2 according to the four categories listed above.

A connection facet is called homogeneous if it is a connection facet for an even
number of components, otherwise it is called non-homogeneous. Figure 3.6
shows examples of homogeneous and non-homogeneous connection facets. Ho­
mogeneous connection facets do not belong to the boundary of the object.
Thus, the evaluation of the boundary of S from an MBM consists of eliminat­
ing the homogeneous connection facets.

The components in MD and the fragmentation F of the faces of the components
in MD with the above classification define a modular boundary model that we
call the Face-to-Face Composition (FFC) model and denote M = (MD,F). A
high-level relational description of the FFC model is given by a hypergraph,
called the Face-to-Face Composition (FFC) graph. In the FFC graph the nodes

www.manaraa.com

54

11 - 15 are boundary facets of C1.
16 - 19 are connection facets of C1 .

16, h, and fg are homogeneous connection facets.
18 is a non-homogeneous connection facet.
110, lu, and 112 are internal facets to C1 •

Figure 3.6: Classifications of facets of components in Figure 3.2.

correspond to the components in MD, the hyperarcs to internal and connection
facets . More formally, if MD = {C1 ,C2 , ... ,Cn}, and F = {11,/2, ... ,lm},
then the FFC graph is a hypergraph G = (N,Aj, where

(i) each node in N corresponds to a component Cj in MD (and thus can be
identified with it);

(ii) each directed hyperarc h in A is an ordered k-tuple h = (Cr1 , Cr2 , . . . , Crk),
where Cra ' S = 1,2, ... , k, are nodes of G. It corresponds to a facet Ir
in F such that Ir is a connection facet for at least two components in h
or an internal facet for at least one component in h, and Ir is not external
with respect to any component in h.

An attribute is associated with each hyperarc h of G. It is an ordered k-tuple
ha = (arl' ar2, ... ,ark), where ars is one of internal, connection, or boundary.
Attribute ars denotes the relation of facet Ir with respect to component C rs .

Figure 3.7 shows the FFC graph describing the modular decomposition depicted
in Figure 3.3. Note that the external relation is not represented in the hyperarcs
of the FFC graph. A facet which is only a boundary facet, and is not internal
to any other component, is not described in the FFC graph. The FFC graph
is a concise representation of the connection and interference relations among
the components in the FFC model. Depending on its attribute, a hyperarc h
in the FFC graph can be classified as a connection arc, if all the attributes
in ha are of type connection, as an interference are, if at least one attribute

www.manaraa.com

55

I

Figure 3.7: FFC graph for the modular decomposition shown in Figure 3.2
and Figure 3.6. (C and I denote connection and interference arcs respectively.)

in ha is of type internal, and there is no connection attribute in ha, or as a
mixed arc, when ha contains attributes of both type connection and internal.
The spanning subgraph of the FFC graph G containing all the connection and
mixed arcs of G is called the connection subgraph of G).

We can obtain global interference information from the FFC graph. Two com­
ponents Cj and Cj have a proper volumetric interference (i.e., their intersection
is a 3-D subset of their volumes), if there exists a hyperarc h incident in both
of them such that the attribute associated with only one of them is of type
internal. A component Ci is contained in another component Cj if

(i) there exists one hyper arc incident on Cj for each facet of C;,

(ii) a connection or an internal facet in Cj corresponds to each connection facet
in Ci,

(iii) and an internal facet in Cj corresponds to each boundary facet in Cj (see
Figure 3.7).

3.4 Validity issues in the FFC model

The classification of the facets in a fragmentation induced by a modular de­
composition of a solid object can be used to verify validity issues related to
an FFC model. We assume that the single FFC components are single-shell
solid objects bounded by two-manifold surfaces, and they are described by a
valid boundary model. Topological validity is guaranteed by Euler operators,
while geometric validity is checked algorithmically. We want to ensure that the
boundary model of an object obtained by evaluating its FFC model is both
topologically and geometrically valid.

www.manaraa.com

56

C2 s

a) Resulting object S has multiple shells.

non-manifold
condition

b) S has a non-manifold condition at an edge.

Figure 3.8: Objects outside the domain of the FFC model as currently defined.

One problem is that we may obtain a representation of an object outside our
domain by combining components which are in the domain: for instance , we can
have an object composed of more than one shell (see Figure 3.8a), or an object
bounded by a non-manifold surface (see Figure 3.8b). For now, we check this
algorithmically, but it would be possible to extend our domain. Moreover, the
evaluated representation of S must describe an object without self-intersecting
parts, and thus all the volumetric interferences must be eliminated by a suitable
sequence of glue operations . A simple case illustrating this point occurs in
Figure 3.3 if only C1 and C3 are combined to form S. This can clearly be
checked by building the evaluated representation of S and then looking for self­
intersecting portions. This information, however, is embedded in the relations
between the components in the modular decomposition MD and the facets of
fragmentation F. Intuitively, the evaluated representation can describe a solid
object only if the facets lying on the boundary have one extra positive, or one
extra negative, component (depending on whether the MD describes a positive
or a negative object) on one side and no material on the other side.

The definition introduced is a static definition of validity which does not take
into account whether S can be constructed through a sequence of glue oper­
ations by starting from the given modular decomposition. In other words, an

www.manaraa.com

57

Figure 3.9: If C2 is lowered into C3 , then a valid object that cannot be built
from the modular decomposition in Figure 3.3b.

FFC model of an object can be valid, but not constructible (see the example of
Figure 3.9). This is not a real problem since such a model could not be actually
constructed with validity checks being performed at each update.

Necessary and sufficient conditions for validity have been proven in [10]. The
main result for validity of the FFC representation of positive objects is the
following (an analogous result holds for negative objects). An FFC model is
a valid representation of an object if and only if each facet Ii in F satisfies
one of two conditions on nj, the difference between the number of positive and
negative components in MD for which Ii is an internal facet:

(i) if fj is a homogeneous connection facet, then nj is equal to -n or 1 - n,
where n is the difference between the number of positive and negative
components on either side of Ii for which it is a connection facet;

(ii) if fj is either a boundary or a non-homogeneous connection facet, then
nj is equal to -r, where r is the minimum between the differences of the
number of positive and negative components for which Ii is a connection
facet, computed on each side of f;.

The previous result allows a validity check which involves only boundary and
connection facets. From the classification of the facets in a fragmentation F
introduced in the previous section, it follows that the boundary of S is formed
by the non-homogeneous connection facets and by the boundary facets of the
fragmentation. The homogeneous connection facets correspond to the sets of
facets of F inside and outside S.

3.5 Evaluating an FFC Model

The problem of converting an FFC model into a boundary representation is
termed boundary evaluation (by analogy with the well-known problem of con­
verting from CSG to B-Rep). The conversion problem is important for compat­
ibility with other modeling systems based on B-Rep, and for being able to use

www.manaraa.com

58

visualization techniques developed for boundary descriptions. Further reserch
will go in the direction of designing specific algorithms for displaying objects
described by an FFC model without the need of evaluating the model.

While the evaluation of a CSG representation is a difficult task because a large
amount of information about the boundary of the object is only implicitly
encoded in a CSG (see [44,45,51]), the evaluation of an FFC model is quite
easy since the information about the object boundary is clearly represented
in the FFC. The evaluation task is even easier if we do not require that the
descriptions produced at intermediate steps be valid.

The evaluation of an FFC model M of an object S, described by a modular
decomposition MD and by a fragmentation F, consists of iteratively applying
a union operation to pairs of face-adjacent components. At each step, two
face-adjacent components C j and Cj are joined together along their common
connection facets. If a connection facet h is homogeneous, it is eliminated
as soon as any two components sharing it are merged. If a connection facet
is non-homogeneous, it remains as part of the boundary of S. The evaluation
process can thus be regarded as the elimination of the homogeneous connection
facets from F. Note that the resulting boundary description of S might contain
facets belonging to the same surface. In a planar-faced object environment, a
segmentation of the boundary of S into maximal connected faces could be
produced by applying a face-growing algorithm to the segmentation produced
by the evaluation process. Examples of these two situations are shown in
Figure 3.10. For clarity the face growing algorithm has been used on all figures
illustrating the object.

The boundary evaluation algorithm outlined above can produce invalid repre­
sentations at intermediate steps. To be sure that we produce valid intermediate
results, the algorithm must follow the design sequence, i.e., the sequence used
by the designer to create the object.

The boundary evaluation algorithm of an FFC model can be expressed as
a merging algorithm applied to the connection subgraph of its FFC graph.
Performing the union of two components Ci and Cj is equivalent to merging
the corresponding two nodes in the connection graph, and also in the set of
extreme nodes of hyper arcs incident on both nodes. A hyperarc h is eliminated
when all its extreme nodes have been merged together. Figure 3.11 illustrates
this process on the connection subgraph of the FFC-graph shown in Figure 3.7.

The boundary evaluation algorithm can also be applied in local modifications
of the FFC model, for instance, for forming composite components from el­
ementary ones. When the boundary evaluation is applied to a single pair of
face-adjacent components, we want to be sure that the boundary description
of the resulting component is valid. Validity checks on such descriptions can
be performed through the local checks discussed in the previous section.

www.manaraa.com

59

a) Exploded view of the modular decomposition of S.

b) Intermediate object S'. c) Final object S.

Proceeding from S' to S requires:
i) Deletion of the homogeneous connection facet (shown hatched).
ii)Merging at edge e the two facets II and h, that belong to the same plane
surface.

Figure 3.10: Face-growing on an object with two positive (C1 and C3) and
one negative (C2) components combined at their front faces .

· · · · · · ·

........

........
".

I f6

I

Figure 3.11: The hyperarc corresponding to facet fg is eliminated when
components C1 and C3 (Figures 3.2, 3.6, 3.7) are merged, and f8 becomes an
internal facet.

www.manaraa.com

60

Boundary evaluation is an irreversible process since once two components have
been joined the FFC model does no longer contains information representing
the two original components. Provisions for undo operators must be made.

3.6 Cellular representation of the FFC Model

An FFC model of an object described by a modular decomposition MD can be
represented as a partitioning of the portion of 3-D space defined by the union of
the components in MD into pairwise quasi-disjoint 3-D cells. This is a special
type of cellular decomposition [41], since the cells can be empty or full and
their union covers the union of the components in MD. Here, S is covered by
the union of only the full cells.

Given the modular decomposition M D = {C1 , C2 , .•• , Cn }, the connection and
interference information among the components of MD, represented by a frag­
mentation F, defines a cellular decomposition CD = {Cl' C2, ... , cp } of the U Ci
into cells which satisfy the following properties:

(i) Each cell Ci is a subset of at least one component in MD.

(ii) The interiors of the cells are pairwise disjoint.

(iii) The union of the cells in CD is the same as the union of the components in
MD (each considered as a positive component); this union is called volume
occupied by MD and denoted V.

(iv) Each facet Ii in F is either a common facet to two cells or a facet bounding
V.

(v) Each vertex and each edge of the cellular representation must be common
to all the cells adjacent to it.

(vi) A cell is either empty if it describes empty space, or full, if it is a part of
the object volume.

Thus, a cellular representation of the FFC model is partially an object-based
(like tetrahedralizations, finite element meshes, etc.) and partially a space­
based (like octrees or bintrees) decomposition. If we consider only the full
cells, CD reduces to a cellular decomposition. Unlike space-based and object­
based decompositions, the cells in the cellular FFC representation have a more
complex shape. A cell can be any simply-connected solid object (cells cannot
have internal cavities). Figure 3.12 shows an exploded view of the cells in the
cellular representation of S shown earlier in Figure 3.3.

We encode the FFC model by using a data structure for its cellular representa­
tion plus a binary matrix describing the component-facet and facet-component
relations. The component-cell and cell-component relations can be obtained
from the previous ones provided that we store the cell-facet and facet-cell re­
lations in the data structure for the cellular representation.

www.manaraa.com

61

Figure 3.12: Exploded view of cells covering the union of the components in
Figure 3.3.

Figure 3.13: There are 25 possible relations between elements in a cellular
decomposition.

A cellular decomposition CD is defined by five topological elements, namely,
cells, facets, loops, edges and vertices. We can define 25 pairwise adjacency
relations between each ordered pair of elements (arrow diagram in Figure 3.13),
and 16 adjacency relations among the elements in a single cell.

The topological elements required to represent the two manifold boundary of a
single cell and their inter-relationships are shown in Figure 3.14a. The relations
satisfy the definition of the symmetric data structure proposed by Woo and is
sufficient to describe any arbitrarily complex two-manifold surface [57].

The six stored adjacency relations (arrow diagram in Figure 3.14b) are defined
as follows:

www.manaraa.com

62

cell

facet

nexcaround_loop

.... 0
radial

vertex

a) Relationships between elements in the Symmetric data structure .

F "Ee---...;~~ L "'Ee---...;~~ E "'Ee---...;.~ V

b) There are six relations stored in a cell.

Figure 3.14: The Symmetric data structure.

www.manaraa.com

(i) Facet-Loop (FL): loops belonging to a given facet f.
(ii) Loop-Facet (LF): facets (at most two) containing a given loop I.

(iii) Loop-Edge (LE): ordered list of edges forming a given loop I.

(iv) Edge-Loop (EL): loops to which a given edge e belongs.

(v) Edge-Vertex (EV): extreme vertices of a given edge e.

63

(vi) Vertex-Edge (VE): ordered list of the edges incident in a given vertex v.

Note that the loop-facet, edge-loop and edge-vertex relations are constant, in
the sense that they involve a constant number of elements, while the remaining
three are variable relations. It can be proven that such relations are sufficient
to characterize the boundary of a single-shell solid object without errors or
ambiguities [37] . Moreover, the remaining ten relations can be retrieved from
the six stored ones in a number of operations proportional to the number of
elements involved in each relation.

The proposed data structure represents our cellular decomposition using the
symmetric data structure for each individual cell. The topological elements and
their inter-relationships are shown in Figure 3.15. It may be easily observed
that the cell-elements maintain all their relationships in the symmetric data
structure. A separate set of object elements have been defined as a framework
for the identical cell elements and to store the geometry of facets and vertices.
Adjacency relations between object elements of different types are not stored
explicitly. They are derived from the corresponding cell elements.

Figure 3.16 shows the edgelists around a cell-loop and a cell-vertex in the
symmetric data structure. It may be noted that the edgelists around a cell­
vertex and cell-loop are traversed in a counter-clockwise direction when viewed
from outside the solid. Since the same edgelists are used around cell-loops
and cell-vertices a convention is used for the orientations of the edgelists with
respect to the cell-loops and the cell-vertices. If an edgelist belongs to the
lists of cell-vertex CVl and cell-loop ell then the cell-edge starts from cVl when
traversing ell. Figures 3.17 , 3.18, and 3.19 show the extensions to the cellular
data structure. The relations between the cell-elements remain the same. A
cell has to be hypothetically isolated from the cellular object and then viewed
from outside for the orientation conventions to be verified. Note that each
facet, edge, vertex and loop is represented in each cell to which it belongs and
also as an element of the decomposition.

3.7 Building an FFC Model

An FFC model of a solid object can either be constructed by combining a single
component to an existing model (which is initially null) or by combining two
separate FFC models. The first method can be considered as a specialization

www.manaraa.com

64

object

nexCin_object
ate_in_other_obj

nexUn_object
ate_in_other_obj

nexUn_object
mate_in_othecobje t

Figure 3.15: Relationships between elements in the cellular data structure.

www.manaraa.com

I
I
I ,
\

; ,

\
\

\ , , , , , , , ...

I" - - - - - - - ~~xcaround_ vertex
I ,

\
I

...... ... ,
\

ne caround_tpop

...
' ... ; ----' ..._--------'

;
; ,

,

I
I

I
I

6S

Figure 3.16: Edgelists around a cell loop and around a cell vertex in the
Symmetric data structure.

,-) objecCedge ,-) t'9= -~-----r--- - -~-- - - ---11

L63~~------,)....--
'-objecC vertex

Figure 3.17: Plan view of a cell-loop as a list of cell edges.

www.manaraa.com

66

I
~--- - --,,"

"
" " " " cell 3

"

.. . . . -_.----- .. -------
e2

nexUn_adLcell

e3

: .
, .
: I
: I el
: I
: I
: I
: I

el

cellI
:.

~:~
'. .' e4 :. . .. , .
·1 ,.

Vl •• ~.;~·..:""'.: :.-:.-.:.-.:.-.:.-..:, e3

---y,.;, cell 2
,- , -,
e2

cell 3

edge of vertex of

cellI 0 cellI

cell 2 ;) cell 2

cell 3 -. cell 3 ',.-

object 0 object

c::J edgelist

Figure 3.18: View of a cell-vertex as a list of cell-edges in the cellular data
structure. (Only the adjacencies of a cell-vertex of cell 1 are shown in full.)

www.manaraa.com

67

: , edgelist ..

0 cell_edge

0 objecCedge

f3 f1

cell_facet

cellI

Figure 3.19: Cross-section of three object-facets sharing a common object­
edge and the associated cell elements. (Only the relationships between similar
elements have been labeled.)

www.manaraa.com

68

of the second, since a single component is a special case of an FFC model.
For now, we have restricted our attention to FFC model construction by the
first method, and this operation, that we call COMPOSE, is currently being
implemented in our experimental geometric modeler based on the FFC model.

The steps required to perform COMPOSE are first described followed by spe­
cialized Euler operators defined to create and manipulate the cellular data
structure during COMPOSE.

3.7.1 Adding a component to an FFC model: COMPOSE

An FFC model can be constructed by a sequence of COMPOSE operations
applied to an existing model (which is initially empty). A COMPOSE operation
consists of adding a new component Ct to an existing FFC model M. The
requirements are that either the new component share portions offaces with the
boundary ofthe object S represented by M, and have no volumetric interference
with S (if Sand Ct are both positive or negative), or Cj be contained in S (if
Sand Cj have opposite sign).

In terms of the FFC graph, a COMPOSE is equivalent to adding a new node
Cj and a set of connection and interference hyper arcs describing the connection
and interference relations of the new components with the existing ones. The
addition of a component Cj can modify the connection facets of other compo­
nents by splitting existing connection facets. Figure 3.20 shows the modification
of existing facets and the FFC graph when adding a component.

The cellular representation of the FFC model is especially useful to enhance the
efficiency of the construction of the FFC model. Each time a new component
is added, it is intersected only with a restricted number of cells . Also, once
interferences and connections are computed, we have to check the validity of
the resulting object by checking the parity of the modified and new facets
(see section 3.4). This also ensures that , at the completion of a sequence of
COMPOSE operations, we have a valid object and a valid sequence of pairwise
face-to-face compositions of parts which produce valid components at each
intermediate step.

The inputs to the COMPOSE algorithm are as follows:

(i) The component-facet relations .

(ii) The cellular data structure of the FFC model.

(iii) The parity counters associated with each facet.

(iv) A description of the component being added .

(v) At least one pair of faces, with a face from the component and a face
of a component in the FFC model, should be specified to abut after the
specified transformations.

www.manaraa.com

69

f6

Figure 3.20: Some facets and the FFC-graph are modified when C2 is added.
See Figures 3.6 and 3.7. (Arc labels C indicate connection facets.)

The outputs of the algorithm are as follows :

(i) The new component-facet relations.

(ii) The new cellular data structure.

(iii) The result of the validity check on the model.

The COMPOSE algorithm consists of the following steps:

(i) Convert component description to the symmetric data structure of a single
cell using Euler operators.

(ii) Starting from the connection facets specified detect the cells from the cur-
rent FFC model that need to be intersected with the new cell.

(iii) Intersect cells using Euler operators.

(iv) Update parity counters and perform validity checks.

(v) Update the component-facet relations.

www.manaraa.com

70

3.7.2 Euler operators to manipulate
the cellular representation.

The COMPOSE operation needs to create a new cell from the component and
to manipulate the cellular data structure by creating and destroying topolog­
ical elements in it. The operators to accomplish this should have correctness
properties similar to that of the widely used Euler operators [2,21,35,53].

In a cellular decomposition the boundary of each cell is represented by a bound­
ary model for a single shell. Utilizing this property the operators can maintain
the correct topology of individual cells. Another property of the cellular decom­
position is that any two cell-elements sharing an object-element must have the
same geometry. Therefore, adding a cell-edge to a cell-loop requires adding a
cell-edge to the other cell-loop sharing the same object-loop. Similarly, splitting
a single cell-edge requires splitting all the cell-edges sharing the corresponding
object-edge. Thus, the same operations are performed on several cells. Since
their effect on the individual cells is the same as that of the traditional Euler
operators, we have retained the nomenclature and added· a prefix (CD) to the
name of each operator.

The set of Euler operators defined by Mantyla [35] were implemented at first to
manipulate the symmetric data structure representing the boundary of a single
cell. These operators were extended to manipulate a cellular decomposition.
The names and actions of the operators and a few simple examples are shown
in Figures 3.21 and 3.22.

3.8 The Production Graph

The FFC model of an object S can be built by pairwise combination, through
the glue operation defined in section 3.2, of FFC models of simpler parts. This
also means that the evaluation of an FFC model can be performed by merging
pairs of object parts. We do not allow the construction of an FFC model by
combination of more than two parts at a time. If an FFC model M of an object
S can be built by adding a single component to an existing FFC model (initially
a single component) at each step, then S is called linearly constructible. The
object depicted in Figure 3.3 is an example of a linearly constructible object.

Given a modular decomposition MD associated with an FFC model M of an
object S, each sequence of pairwise combinations of face-adjacent parts, which
produces an evaluated boundary description of S, is called a composition se­
quence. A composition sequence can be described as a binary tree, called an
evaluation tree, in which the root represents the boundary model of S, the
leaves represent the components in MD, and the intermediate nodes contain
valid descriptions of parts of S. Figure 3.23 shows the evaluation tree for the
object in Figure 3.3. A composition sequence for the object is obtained by a

www.manaraa.com

OPERATOR

CD_M_CFLV
CD_K_CFLV
CD_M_EV
CD_K_EV
CD_M_EF
CD_K_EF
CD_M_EKL
CD_K_EML
CD_M_F

Figure 3.21:

poof!

ACTION

Make cell, face, loop, vertex
Kill cell, face, loop, vertex
Make edge, vertex
Kill edge, vertex
Make edge, face
Kill edge, face
Make edge, Kill loop
Kill edge, Make loop
Make face, Kill loop hole, or
Make face, cell
Kill face, Make loop hole, or
Kill face, cell
Split edge, Make vertex
Join edge, Kill vertex

Euler operators for the cellular decomposition .

~~.; ~,

~ l:%'.~--;9)./ . / .
• I / •
: 6/ ...
! . . -. .' . .
.:, oo

71

Figure 3.22: Examples of the actions of the first six Euler operators on a
cellular decomposition.

www.manaraa.com

72

Figure 3.23: Evaluation tree for the object (5) depicted in Figure 3.3.

postorder traversal of the evaluation tree. The preorder traversal gives a decom­
position sequence, i.e., a sequence of valid decompositions of S which produce
the components in MD.

An evaluation tree is generated during the construction process. Such a tree re­
duces to a list when we use the operator COMPOSE described in section 3.7.l.
The evaluation tree can be used to evaluate the boundary of an object from
its FFC model, and this ensures that we obtain a valid representation at each
intermediate step. There are many ways of constructing an object from its FFC
model that are different from the one chosen by the designer. All feasible eval­
uation trees are described by the AND/OR graph that we term the production
graph. OR nodes represent alternative composition/decomposition sequences,
AND nodes the combination of two face-adjacent parts. Figure 3.24b shows
the production graph of the object depicted in Figure 3.24a assuming that the
object of Figure 3.3a is placed on a large slab C4 .

The production graph is a further development of the assembly AND /0 R graph
proposed by Sanderson and Romem de Mello [25,48]. It does not include all
possible component combinations, but represents only those that produce a
valid representation of a part at each intermediate step . Given a production
graph, a particular evaluation tree can be extracted by traversing the graph
from the OR node describing S and selecting one arc incident from each OR
node and both arcs incident from each AND node traversed.

The production graph must be computed by selecting all decomposition se­
quences that produce feasible intermediate results. A decomposition sequence
can be derived by recursively splitting 5 into two valid parts. To produce a de­
composition into valid representations of the parts, we must check the validity
of such representations by applying the results in section 3.4.

www.manaraa.com

,
, , , ,

s ..

, ,

a) Object S" obtained by placing S of Figure 3 on a slab C4 .

(The dashed arrows identify the contribution of each component.)

b) Production graph of S".

Figure 3.24: An object and its production graph.

73

www.manaraa.com

74

a) Cleavage graph of S". b)Assembly graph of S".

Figure 3.25: The cleavage and assembly graphs of the object S".

Feasible assembly and machining sequences are represented in the production
graph as feasible composition sequences. In the production graph, an AND
node can describe addition of two parts with the same sign, and is called
an assembly node, or the combination of a positive and a negative part, and
is called a cleavage node. Assembly nodes describe an assembly operation,
cleavage nodes a machining (material removal) operation. Any subgraph of the
production graph entirely composed of assembly nodes is called an assembly
graph. Similarly, any subgraph made only of cleavage nodes is termed a cleavage
graph. Figures 3.25a and 3.25b show assembly and cleavage subgraphs of the
production graph of Figure 3.24b.

In those situations when it is possible to combine all negative components with
the positive ones that contain them, the production graph reduces to an as­
sembly graph, and thus it describes all feasible assembly sequences that can be
obtained by starting from such parts. In this case, we will not have any internal
facet in the fragmentation defining the FFC model, and the FFC graph will
reduce to a connection graph in which the hyperarcs describe mating relations
among components to be assembled together. In general, however, the assem­
bly and cleavage graphs cannot be separated in the production graph, since
material removal operations are usually interspersed with assembly operations
in a production sequence.

www.manaraa.com

75

3.9 Concluding Remarks

We have attempted to lay the groundwork for the development of third-genera­
tion solid modeling systems. The FFC model differs from previous models in
the high-level, graph-theoretic representation of juxtaposition and interference
relations among the faces of overlapping, arbitrary components. These com­
ponents themselves constitute individual objects that are represented by their
boundaries and are guaranteed to be topologically valid through the use of
Euler operators. The proposed data structure for the resulting object contains
sufficient information to establish the adjacency relationship among the cells,
and also their relationship to the original object components. An algorithmic
method is available to construct compound objects from constituent objects
that are themselves composed of individual components and are represented
by FFCs. The recovery of the boundary of the compound object from the
cellular model is quite straightforward. A possible application of the model
is exhibited by the production graph, which shows alternative sequences of
machining and assembling the modeled object.

A number of issues remain to be solved. Foremost among them is the develop­
ment of robust geometric algorithms capable of dealing with almost coincident
vertices, almost collinear edges, and almost coplanar faces resulting from nu­
merical approximation.

The storage efficiency of the proposed data structure could undoubtedly be
improved, since edges and facets are represented more than once. A direc­
tion to investigate is extension of the data structures developed for tetrahedral
decompositions [18].

In the production graph, feasible decomposition sequences could be generated
more efficiently by exploiting graph-theoretic properties of the conditions de­
veloped in [10]. Further, more realistic constraints on machining and assembly
need to be developed in terms of specific manufacturing environments, such as
tool-path and robot-arm geometries.

So far, only the algorithm for composing a single component with an FFC model
has been developed in detail. Although feasibility is obvious, considerable work
remains to be done to fill in the steps for combining two arbitrary FFC models.

It is worth investigating combining modular boundary representation with a
PM-Octree in a solid modeler. Boolean operations and the computation of
mass properties can be accomplished efficiently on PM-Octree representations.
Furthermore, space-decomposition representations are easily generated from
multiple camera views of actual objects [40] .

We are actively looking at each of these problems and continuing implementa­
tion of the FFC model for polyhedral geometries.

www.manaraa.com

76

Acknowledgments

We gratefully acknowledge support under National Science Foundation grant
IRI-8704718 and INT-8714578, NATO Collaborative Research Grant 0498/87,
and the New York State Science and Technology Council through the RPI
Center for Advanced Technology. We are pleased to acknowledge Elisabetta
Bruzzone's essential contribution to the analysis of the validity of the FFC
model, under the sponsorship of the CNR (Italy) .

References

[1] M. Agoston. Algebraic Topology, Marcel Dekker, New York, 1976.

[2] S. Ansaldi , L. De Floriani, B. Falcidieno, Geometric modeling of solid ob­
jects by using a face adjacency graph representation , Computer Graphics,
19(3):131-139, July 1985.

[3] D. Ayala, P. Brunet, R. Juan, I. Navazo, Object representation by means
of non minimal division quadtrees and octrees, A CM Transaction on
Graphics, 4(1):41-59, January 1985.

[4] B. G. Baumgart, Winged-edge polyhedron representation, Technical Re­
port STAN-CS-320, Computer Science Department, Stanford University,
Stanford, CA, 1974.

[5] J . D. Boissonnat, Geometric structures for three-dimensional shape rep­
resentation, ACM Transactions on Graphics, 3(4):266-286, April 1984.

[6] I. C. Braid, On storing and changing shape information, CAD Group Doc­
ument #97, University of Cambridge, Computer Laboratory, Cambridge,
December 1977.

[7] I. C. Braid, R. C. Hillyard, I. A. Stroud, Stepwise construction of polyhe­
dra in geometric modeling, in Mathematical Models in Computer Graph­
ics and Design, K. W . Brodlie, ed., Academic Press, New York, pages
123-141, 1980.

[8] P. Brunet, I. Navazo, Geometric modeling using exact octree represen­
tation of polyhedral objects, Proceedings EUROGRAPHICS'85, pages
159-169, 1985.

[9] P. Brunet, I. Navazo, Solid representation and operation using extended
octrees, ACM Transaction on Graphics, 8, 1989.

[10] E. Bruzzone, Validity issues in the Face-to-Face Composition model,
Technical Report, 89-025, Rensselaer Polytechnic Institute, Troy, NY,
October 1989.

www.manaraa.com

77

[11] E. Bruzzone, A. Maulik, A cellular data structure for solid objects in the
Face-to-Face Composition model, Technical Report, 89-026, Rensselaer
Polytechnic Institute, Troy, NY, October 1989.

[12] I. Carlbom, I. Chakravarty, D. Vanderschel, A hierarchical data structure
for representing spatial decomposition of 3-D objects, IEEE Computer
Graphics and Applications, 5(4):24-31, April 1985.

[13] L. De Floriani, B. Falcidieno, A hierarchical boundary model for solid
object representation, ACM Transactions on Graphics, 7(1):42-60, 1988.

[14] L. De Floriani, A. Maulik, G. Nagy, Manipulating a modular boundary
model with a face-based graph structure, Geometric Modeling for Product
Engineering. IFIP WG 5.2, M. J. Wozny, J. U. Turner, K. Preiss, Eds.,
North-Holland, pages 131-143, 1989.

[15] L. De Floriani, Feature extraction from boundary models of three-dimen­
sional objects, IEEE Transactions on Pattern Analysis and Machine In­
telligence, 11(8):798-798, August 1989.

[16] 1. De Floriani, E . Bruzzone, Building a feature-based object description
from a boundary model, Computer Aided Design, December 1989.

[17] L. De Floriani, G. Nagy, A graph-based model for face-to-face assem­
bly, Proceedings IEEE Int. Conference on Robotics and Automation,
Scottdale, pages 75-78, 1989.

[18] L. De Floriani, A pyramidal data structure for triangle-based surface de­
scription, IEEE Computer Graphics and Applications, 9(2):67-78, March
1989.

[19] L. De Floriani, E. Puppo, Representation and conversion issues in solid
modeling, Progress in Computer Graphics (to appear).

[20] M. J. Durst, T. 1. Kunii, Integrated poly trees: a generalized model for
the integration of spatial decomposition and boundary representation,
Theory and Practice of Geometric Modeling, W. StraBer, H. P. Seidel,
Eds., Springer-Verlag, pages 329-348, 1989.

[21] C. M. Eastman, K. Weiler, Geometric modeling using Euler operators,
Proceedings of the First Conference on Computer Graphics and CAD/­
CAM Systems, Cambridge, Ma, pages 248-259, May 1979.

[22] B. Falcidieno, F. Giannini, Automatic recognition and representation of
shape-based features in a geometric modeling system, Computer Vision,
Graphics and Image Processing, 48(1):93-123, October 1989.

[23] K. Fujimura, T. L. Kunii, A hierarchical space indexing method, Proceed­
ings of Computer Graphics'85, Tokyo, TI-4:1-14, 1985.

www.manaraa.com

78

[24] M. R. Henderson, Extraction of feature information from three-dimen­
sional CAD data, PhD Thesis, Purdue University, 1984.

[25] L. S. Homem de Mello, A. Sanderson , AND/OR graph representation of
assembly plans, AAAI-86 Proceedings of the Fifth National Conference
on Artificial Intelligence, American Association for Artificial Intelligence,
Morgan Kaufmann Publishers, 1986.

[26] C. L. Jackins, S. L. Tanimoto, Octrees and their use in representing three­
dimensional objects, Computer Graphics and Image Processing, 14(3):249-
270, November 1980.

[27] G. E. Jared, Shape features in geometric modeling, Solid Modeling by
Computers: from Theory to Applications, Plenum, New York, 1984.

[28] S. Joshi, T. Chary, Graph-based heuristics for recognition of mechanical
features from a 3-D solid model, Computer Aided Design, 20(2), 1988.

[29] M. Karasick, On the representation and manipulation of rigid solids, PhD
thesis, School of Computer Science, McGill University, Montreal, 1988.

[30] H. Ko, K. Lee, Automatic assembling procedure generation from mating
conditions, Computer Aided Design, 19(1):3-10, 1987.

[31] Y. T. Lee, A. A. G. Requicha, Algorithms for computing the volume and
other integral properties of solids. II. A family of algorithms based on
representation conversion and cellular approximation, Communications
of the ACM, 25(9):642-650, September 1982.

[32] K. Lee, D. Gossard, A hierarchical data structure for representing assem­
blies: Part 1., Computer Aided Design, 17(1) :20-24, 1985.

[33] S. Lee, Y. G. Shin, Automatic construction of assembly partial-order
graphs, Proceedings RPI Conference on Computer Integrated Manufac­
turing, pages 383-392, 1988.

[34] L. I. Liberman, M. A. Wesley, AUTOPASS: an automatic programming
system for computer, IBM Journal of Research and Development, 21,
pages 321-333, July 1977.

[35] M. Mantylii, R. Sulonen, GWB: a solid modeler with Euler operators,
IEEE Computer Graphics and Applications, 2(7):17-31, September 1982.

[36] M. Mantyla, A n Introduction to Solid Modeling, Computer Science Press,
Rockville, MD, 1987.

[37] A. Maulik, A graph-based approach to solid modeling, PhD Thesis Pro­
posal, Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY, October 1988.

www.manaraa.com

79

[38] D. Meagher, Octree encoding: a new technique for the representation, the
manipulation, and display of arbitrary 3-d objects by computer, Techni­
cal Report, Department of Electrical, Computer, and Systems Engineer­
ing, IPL-TR-80-111, Rensselaer Polytechnic Institute, 'Troy, NY, October
1980.

[39] I. Navazo, Extended octree representation of general solids with plane
faces: model structure and algorithms, Computers fj Graphics, 13(1):5-
16, 1989.

[40] H. Noborio, S. Fukada, S. Arimoto, Construction of the octree approxi­
mating three-dimensional objects by using multiple views, IEEE Trans­
actions on Pattern Analysis and Machine Intelligence, 10(6):769-781,
November 1988.

[41] A. A. G. Requicha, Representations of rigid solids: theory, methods, and
systems, ACM Computing Surveys, 12(4):437-464, December 1980.

[42] A. A. G. Requicha, H. B. Voelcker, Solid modeling: a historical summary
and contemporary assessment, IEEE Computer Graphics and Applica­
tions, 2(2):9-24, March 1982.

[43] A. A. G. Requicha, H. B. Voelcker, Solid modeling: current status and
research directions, IEEE Computer Graphics and Applications, 3(7) :25-
37, October 1983.

[44] A. A. G. Requicha, H. B. Voelcker, Boolean operation in solid model­
ing: boundary evaluation and merging algorithms, Proceedings IEEE,
73(1):30-44, January 1985.

[45] J. R. Rossignac, H. B. Voelcker, Active zones in CSG for accelerating
boundary evaluation, redundancy elimination, interference detection, and
shading algorithms, ACM Transactions on Graphics, 8(1):51-87, January
1988.

[46] H. Samet, The Design and Analysis of Spatial Data Structures, Addison­
Wesley, Reading, MA, 1990.

[47] H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Read­
ing, MA, 1990.

[48] A. Sanderson, L. S. Homem de Mello, Automatic generation of mechanical
assembly sequences, Geometric Modeling for Product Engineering. IFIP
WG 5.2, M. J. Wozny, J . U. Turner, K. Preiss, Eds., North-Holland,
pages 461-482, 1989.

[49] M. Tamminen, H. Samet, Efficient octree conversion by connectivity la­
beling, Computer Graphics, 18(3):43-51, July 1984.

www.manaraa.com

80

[50] M. Tamminen, O. Karonen, M. Miintylii, Ray-casting and block model
conversion using a spatial index, CAD Journal, 16(4), 1984.

[51] R. B. Tilove, Set membership classification: a unified approach to geomet­
ric intersection problems, IEEE Transactions on Computers, C-29(10):874-
883, October 1980.

[52] J. U. Turner, Tolerances in Computer-Aided Geometric Design, Ph.D.
dissertation, Department of Electrical, Computer, and Systems Engineer­
ing, Rensselaer Polytechnic Institute, Troy, NY, May 1987.

[53] K. Weiler, Edge-based data structures for solid modeling in a curved­
surface environment, IEEE Computer Graphics and Applications, 5(1):21-
40, January 1985.

[54] K. Weiler, Topological structures for geometric modeling, Ph.D. disser­
tation, Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, Troy, NY, August 1986.

[55] P. W. Wilson, M. Pratt, Requirements for support of form features in
a solid modeling system, Technical Report, Geometric Modeling Project,
CAM-I, 1985.

[56] T. C. Woo, Feature extraction by volume decomposition, Proceedings
Conference on CAD/CAM in Mechanical Engineering, MIT, Cambridge,
MA, March 1982.

[57] T. C. Woo, A combinatorial analysis of boundary data structure schemata,
IEEE Computer Graphics and Applications, 5(3):19-27, March 1985.

[58] G. Wyvill, T. L. Kunii A functional model for constructive solid geometry
The Visual Computer, 1(1):3-14, July1985 .

www.manaraa.com

Chapter 4

Graphs of kinematic
constraints

Federico Thomas

When a set of kinematic constraints are imposed between several rigid bodies,
finding out the set of configurations that satisfy all these constraints is a matter
of special interest. The problem is not new and has been discussed, not only in
Kinematics, but also in the design of object level robot programming languages
for assembly tasks.

This chapter deals with the problem of finding out how constrained move­
ments, or kinematic constraints, are propagated and how some workpieces in
an assembly reduce their degrees of freedom after this propagation, and how in­
consistencies between constraint movements can be found. Special attention is
paid to those problems which can be solved using a simple topological analysis
derived from the Theory of Continuous Groups of Transformations.

Part of the material presented herein has already appeared in [16] . Here impor­
tant points have been clarified and some modifications have been introduced.
Also, an important part. of this chapter is devoted to the propagation of kine­
matic constraints using part of the material appeared in [17].

This chapter is structured as follows. Section 4.1 shows the important role of
kinematic constraints in the assembly domain. Section 4.2 provides all basic

www.manaraa.com

82

theory about kinematic constraints needed in this chapter. Section 4.3 essen­
tially deals with the basic operations to be carried out on a graph of kinematic
constraints, namely composition, intersection and star-polygon transform. Sec­
tion 4.4 introduces a basic algorithm for constraint propagation, which avoids
the application of the star-polygon transform when obtaining the equivalent
constraint between any two bodies in a graph of kinematic constraints with
arbitrary topology. Section 4.5 presents an example and, finally, Section 4.6
gives a brief summary of the main points in this chapter.

4.1 The role of kinematic constraints in
the assembly domain

In the assembly domain, it does not suffice to make the workpiece models
produced by a CAD system available in the programming environment, but
a description of the way the different pieces should be fitted together is also
required. This description can be provided in full detail by either the designer
or the programmer, or rather be automatically inferred, at least in part, from
constraints derived from both the shapes of the workpieces involved in the as­
sembly, after trying to find matings of complementary subparts between them,
and the mechanics of the assembly operations themselves.

Matings of complementary subparts of different workpieces have a direct trans­
lation into constrained movements, or kinematic constraints. In general, this
translation assumes that the legal motion for compatible pairs of predefined
subparts, or features, is provided by the user and thus already known. Al­
ternatively, it would be possible to infer legal motions directly from geometric
models of predefined features. This problem has been reduced to find local
symmetries [9] or, when working with polyhedral workpieces, to find cycles of
edges [18]. The recognition and extraction of expected patterns of geometry and
topology, corresponding to particular engineering functionality, as described in
[20], will play an important role in this area in a near future.

In the assembly domain, kinematic constraints are not only relevant when
mating complementary subparts, but also when specifying relative locations
between workpieces, specially when using an interactive graphics system. Let
us look at a simple example. In order to specify the location of the block with
reference to the box in fig. 4.1, we impose that faces PI and P2 of the block be
against P4 and P3 of the box, respectively. Then, we might ask: Is there any
configuration satisfying both constraints? In other words, are they consistent?
If the answer is yes, how many degrees of freedom remain between the block
and the box? Which are the values of the constrained degrees of freedom? It
will be shown that a directed graph of kinematic constraints, that is, a graph
whose nodes correspond to workpieces and whose arcs are labeled with a set of

www.manaraa.com

83

Figure 4.1: Specifying the location of a block with reference to a box using a
set of kinematic constraints.

legal transformations linking the coordinate reference frame of the correspond­
ing workpieces, is a proper data structure to represent these problems.

If we want to deal with graphs of kinematic constraints with arbitrary topology
and constraints, then we must be able to find a solution to any inverse kinematic
problem. Nevertheless, no general satisfactory solution, convenient for practical
use, has been found for the general inverse kinematic problem. This problem is
highly complicated because of its non-linearity, non uniqueness of the solution
and existence of singularities. Fortunately, most kinematic graphs arising in the
assembly domain are quite simple, since most planes and axis of symmetry of
the involved geometric features are parallel and orthogonal in the final assembly.

The automatic manipulation of kinematic constraints has attracted a lot of
attention not only in Kinematics, but also in the design of object level robot
programming languages, such as RAPT [14] or LM-Geo 112]. Several algebraic
symbolic approaches have emerged, among which we will mention a system of
rewriting rules [14] and a table look-up procedure [8].

Algebraic symbolic (as opposed to a numerical) methods for dealing with kine­
matic constraints can shed light on basic aspects of the problem. For example,
as it is shown in 117], the way they propagate provide useful information on
the sequence of assembly.

www.manaraa.com

84

The algebraic symbolic method used by the RAPT interpreter can be factored
into a solution for the rotation which will determine angles, followed by the for­
mation of real equations involving variables representing linear displacements
and sines and cosines of the angle variable, which, in general, are difficult to
deal with.

The approach presented herein distinguishes between topological and geometri­
cal analysis of a set of kinematic constraints. The described topological analysis,
well suited for the assembly domain, is derived from the Theory of Continuous
Groups of Transformations, and it was essentially devised by Herve in [7] for
obtaining the number of degrees of freedom in mechanisms (see [1] for a revi­
sion) . This analysis takes advantage of the fact that the legal relative motions
resulting from mating two complementary subparts, such as pegs and holes or
grooves and tongues, constitute cosets of subgroups of the Euclidean group,
leading to a procedure based on a set of look-up tables.

4.2 The Euclidean group and
kinematic constraints

It is well known that a rigid body in 3-dimensional space has 6 degrees of
freedom, and, given a reference frame, any displacement can be obtained by a
pure rotation about the origin followed by a pure translation.

The set of all displacements of a rigid body, with the composition operation, is
isomorphic to the Special Euclidean group 8E(3). The decomposition 8E(3) =
~ x 80(3) shows the aforementioned fact that for any D E 8E(3),

D = Trans(v)Rot(u,O},

where Trans(v) is a translation along the vector v E ~ and Rot(u, 0) E 80(3)
is a rotation of angle 0 about the axis u. Rotations about the axes x, y and
z are denoted by Twix, Twiy and Twiz, respectively. An arbitrary rotation
can be written, using Euler's decomposition, as:

Rot(u, 0) = Twix(<p)Twiz(</>}Twix('I/I) .

A rotation can also be expressed using only the Twix operator and constant
rotations as follows:

Rot(u,O} = Twix(a) XTOY Twix(.B) XTOY Twix('"Y)

where the constant rotation XTOY is defined as Twiz(7r/2).

www.manaraa.com

85

While the results presented below do not depend on a particular representation
of SE(3), we will use the well known 4x4-matrix representation of homogeneous
transforms [13], which has become fashionable because its simplicity. Let us see
a brief overview to this representation (see [2] for alternative representations
such as screw coordinates, quaternions, dual numbers, etc.)

4.2.1 Homogeneous transformations. An overview

The representation of objects in an n-dimensional space using homogeneous
coordinates needs a space of dimension n + 1 from which the original space is
recovered by projection. For example, the vector v = xli + yd + zlk, where
i,j, k are unit vectors along the Cartesian coordinate axes, is represented using
homogeneous coordinates as a column vector:

so that

Xl = x/t
YI = y/t
Zl = zit

Henceforth we will normalize t = 1.

A transformation H is a 4 x 4-matrix so that, the image of a given point v
under this transformation is represented by the matrix product u = Hv.

Translations

A transformation H representing a translation by a vector d = ai + bj + ck will
be:

(
100 a) o lOb

H = Trans (d) = Trans (a,b, c) = 0 0 1 c

000 1

Thus, given a vector v = (x, y, Z, l)t, its image u under H will be

(
x+a)

u=Hv= y+b
z+c

1

www.manaraa.com

86

It is easy to prove that the set of all translations constitutes a group under the
matrix product operation, which will be denoted by T.

Rotations

The transformations representing rotations about the x, y, and z axes by angles
1/J, () or cp, respectively, are:

Rotx(.) ~ (! 0 0

D cos.p - sin.p
sin.p cos.p

0 0

C' 0 -sinO

D Roty(O) = ,0 0
1 0

sm 0 cosO
0 0 0

C' - sin 4> 0

D Rotz(4)) = Sir cos 4> 0
0 1
0 0

Each element ij of the 3 x 3 upper left submatrix is equal to the cosine of the
angle between the i-axis of the original coordinate frame and the j-axis of the
rotated one.

These matrices, as well as their products, are orthogonal matrices with deter­
minant equal to +1. They also constitute a group under matrix multiplication
which will be denoted by So.

Displacements

The transformations representing rotations and translations can be multiplied,
and the resulting matrices are said to describe displacements.

The following properties must be emphasized:

- Decomposition of a displacement. Every displacement H can be decom­
posed into the product of a translation and a rotation, so that

H = Trans(d) H = Trans(a, b,c) H , V'H E SE(3)

where H is the rotation component of the displacement H or, in other
words, is the matrix resulting from setting the first three elements - a, b
and c - of the last column of H to zero.

www.manaraa.com

- Composition of n displacements.

Hl ... Hi ... lin = Trans (dd Hl . .. Trans (dn) Hn

Trans (dl + H l d2 + ... + H lH 2··· Hn-ldn) H1 H 2··· Hn ,

VIll··· Hn E SE(3)

87

If a transformation is postmultiplied by another transformation, the latter
is applied with respect to the transformed frame described by the former.
Conversely, if a transformation is premultiplied by another one, the latter
is applied with respect to the reference frame [13]. Other authors [14], in
using the transposes of the above defined transformations, adhere to the
inverse rule.

- Inverse displacement. Because of the properties of orthogonal matrices,
the inverse displacement of His:

1 At H- = H Trans (-a, -b, -c) , VII E SE(3)

where Ht denotes the transpose matrix of H.

A given displacement has been denoted using a upper case bold letter. Here­
after, sets of displacements, possibly subgroups, will be denote using just an
upper case letter.

4.2.2 Subgroups of the group of displacements

It is well known that a group is a set of elements closed under an associative
operation with an identity and inverse elements, as is the group SE(3) of
displacements. A subgroup S c SE(3) is a subset of SE(3) which is itself a
group under the same operation. The composition of elements of SE(3) can
be extended to the composition of elements and subgroups. If S ~ SE(3) and
D E SE(3), then the right coset S . D is the set {H · D I H E S}. The left
coset D . S and the two-sided coset D1 . S . D2 can be similarly defined. More
generally, the composition of two subgroups S1 . S2 is defined as {D1 . D2 I D1 E

S1,D2 E S2}.

Definition 1 (Conjugation classes of subgroups of SE(3» Every such
class is an equivalence class with respect to the relation:

S1 and S2 being subgroups of SE(3).

www.manaraa.com

88

Table 4.1: Classification of the subgroups of SE(3) into conjugation classes

Dimension Conjugation class Geometric
(d.o.c.) Notation and associated elements Canonical subgroup

lower pair of definition

0 I Identity I
displacement

1 TV Rectilinear A direction of {Trans (x,O,O) I x E R}
translation translation gi ven

(P) Prismatic by a vector v

RU Rotation around An axis of
an axis revolution u {Twix ('1/1) I '1/1 E (-11",+11"]}

(R) Revolution

Hu,. Helicoidal An axis of {Trans (x,O,O)Twix(px) I
movement revolution u and xER,p=constant}
(H) Screw a thread pitch p

2 Tp Planar A plane P {Trans (O,y,z) I x, y E R}
translation

Cu Lock movement An axis u {Trans (x,O,O) Twix ('1/1) I
(C) Cylindrical x E R,'I/I E (-11",+11"]}

3 T Spatial {Trans (x,y,z) I x, y, z E R}
translation

Gp Planar sliding A plane P {Trans (O,y,z) Twix ('1/1) I
(E) Plane y, z E R, '1/1 E (-11", +1r])

S. Spheric rotation A point 0 in {Twix ('1/1) XTOY Twix(~)
(S) Spherical the space XTOY Twix ('1) I

'I/I,~,'1 E (-11",+1r]}

Yv ... Translating A direction of {Trans (x,y,z) Twix(PX) I
screw revolution v and x, y, z E R , p = constant}

.. thread pitch p

4 Xv Translating A direction of {Trans (x,y,z) Twix('I/I)
gimbal revol ution v x, y, z E R,'I/I E (-11", +1I"J)

www.manaraa.com

89

There exists infinite subgroups of SE(3), but they can be classified into a
finite number of conjugation classes. This suggest that we can represent each
conjugation class by a canonical subgroup, so that all subgroups of the same
class can be expressed as a conjugate of it.

An exhaustive classification of the continuous subgroups of SE(3) into con­
jugation classes can be carried out using classic methods of analysis of finite
dimension continuous groups [3]. A list of the classes thus obtained and a
canonical subgroup for each of them is shown in table 4.1 (adapted from [7)).
Note that all lower pairs are included in this classification. Let us recall that
a lower pair exists when one element is coupled to the other via a wrapping
action and contact takes place along a surface.

The notation used for these conjugation classes appears in the second column
of table 4.1. Each class can be characterized by a set of geometric elements of
definition which appear as subindices in the notation of the class. A geometric
element of definition of a given subgroup is an affine space of !R3 of dimension
0, 1 or 2 (a point, line or a plane) which characterize the subgroup. A scalar is
also required to characterize the Hu,p and Yv,p subgroups. An instance of this
elements leads to a subgroup belonging to the class. Instances will be denoted
using numerical subindices. For example, Tp denotes the conjugation class of
planar translations and Tp) denotes a given subgroup belonging to this class.

The canonical subgroups are chosen in such a way that their geometric elements
of definition satisfy the following conditions:

- if it is a point, it coincides with the origin of the reference frame;

- if it a line, it passes through the the origin of the reference frame and the
x axis is aligned with it; and

- if it is plane, it passes through the origin of the reference frame and the
x axis is orthogonal to it.

The election of canonical subgroups is thus arbitrary. If Si is a canonical sub­
group, it will be denoted Si' Given a subgroup Sl, (SI)G denotes the canonical
subgroup in the same class.

The degree of freedom of a kinematic chain is defined as the necessary and
sufficient number of variables that define uniquely the position and orientation
of all the workpieces involved. The dimension of one of the foregoing subgroups
is defined as the degree of freedom of the constrained motion it allows. A set of
variables is thus associated with every subgroup. The dimension of a subgroup
is indicated as dim(·), where (-) denotes one of those subgroups. Obviously,
dim(SE(3)) = 6.

When the geometric elements of definition of two different subgroups satisfy
some kind of spatial relationship - such as parallelism, collinearity or perpen-

www.manaraa.com

90

Table 4.2: Conditions of inclusion of one subgroup of SE(3) into another

11ol.Po ~ 110 perpendicular to Po
li1 ~ 110 ~ li1 and 110 collinear

110 II Vo ~ liO and Vo parallel

II
T110 uo II Po UO II U1

R110 uo ~U1

HuooPo UO ~ U1

TJt

CUo

T

GJt

YVooPo

XVo

T

Vuo

VPo

GJ\ 800

Uo II P1 uol.vo Vuo

UO~P1 OOEUO UO II V1

Uo = Vo,PI! = P1 UO II V1

Po II P1 Po~vo VPo,VVl

11() II V1

VV1

PO~V1

11() II V1

dicularity -, one may become subgroup of the other. The conditions of inclusion
of one subgroup into another appear in table 4.2 (adapted from [7)).

Now, we can introduce a formal definition of kinematic constraint.

Definition 2 (Constraints and linking displacements) A constraint R is
a set of displacements which can be expressed as a composition of cosets of
canonical subgroups. That is,

(4.1)

where L1 , ... ,Ln - 1 are defined as linking displacements. A constraint is said
to be trivial when it can be reduced to a single coset.

The interest of most mechanisms is to provide a constrained motion which
cannot be expressed as a constraint in the way it has been defined here. Nev­
ertheless, we are not interested in analyzing mechanisms, but reasoning about
constrained motions in the assembly domain.

www.manaraa.com

91

Hereafter, we will assume that our constraints are trivial. In this particular
case, if ~ = LOSiL1, then Rf will denote the canonical subgroup Si, thus
extending the notation introduced for subgroups.

Constraints will be denoted by ~, where i is a subindex that identifies it. If
~ is the set of legal transformations from the reference frame of B1 to the
reference frame of ~, R;1 denotes the set of legal transformations in the way
around, i.e. from B2 to B1. Note that Rf = (R;1)G for all ~.

A constraint ~ has the variables and geometric elements of definition inher­
ited from Si . Given a reference frame, the subgroup with the same geometric
elements of definition as a given constraint ~ will be called its associated
subgroup, which will be denoted by Rf. Obviously, Rf tv Rf.

4.3 Operations on a graph of
kinematic constraints

A directed graph of kinematic constraints - or GR graph, for short - is defined
as a graph whose nodes correspond to workpieces and whose directed arcs are
labeled with constraints. The two basic operations on a graph of kinematic
constraints are composition and intersection of constraints. The former (fig.
4.2a) involves finding the constraint between bodies B1 and B3 that results from
composing the constraint between B1 and B2 - say ~ - with that between ~
and B3 - say Rj -, which will be denoted by ~ . Rj • The latter operation
(fig. 4.2b) permits combining two given constraints, ~ and Rj, between the
same two workpieces into a single resulting constraint, which will be denoted by
~nRj. Let us analyze both operations in terms of composition and intersection
of subgroups.

4.3.1 Composition

Let us assume a universe of three bodies - Bl, ~ and B3 -linked by two trivial
constraints

Then, the equivalent constraint between bodies B1 and B3, that results from
composing R12 and R23, is:

(4.2)

www.manaraa.com

Bt

92

Ri (a)

S>

(b)

c:;>

(c)

cO

Figure 4.2: Operations on a graph of kinematic constraints: (a) composition;
(b) intersection; and (c) star-polygon transform.

www.manaraa.com

93

where

We will denote (R12R23)C = 8182 according to 4.2.

Thus, the problem of composing two trivial constraints can be reduced to the
problem of composing two subgroups, and the outcome of the composition of
two continuous subgroups of 8E(3) can be tabulated as shown in table 4.3
(adapted from [7]).

Clearly, the composition of two trivial constraints needs not be a trivial con­
straint itself, and the only information we need to find it out is the spatial
relationships between their geometric elements of definition of both constraints.

When we compose two constraints expressed in terms of canonical subgroups,
the linking displacement (A2B1 in (4.2)) captures the information about the
spatial relationship between their geometric elements of definition. Taking
advantage of this fact, we can check the linking displacement to find whether
the composition of two trivial constraints can be reduced to a trivial constraint.

4.3.2 Intersection

If body 83, still in the same example above, is rigidly linked to 8 1 forming a
closed kinematic chain, the intermediate body ~ will only have the possibilities
of motion given by R12 n Rial.

We can write,

If 8t and 8~ are subgroups of 8E(3), then (81 n8~C) is either null or is a coset
of 81 n 8~ (proposition 2 of [15]). Then, we have

(4.3)

where

D = EC, E E 8~, D E 8~, (4.4)

81 being a conjugate subgroup of 81, and 8~ of 82.
We will denote (R12 n Rial)! = 81 n 82 according to 4.3 and 4.4.

www.manaraa.com

94

Table 4.3: Intersection and regular representation for the composition of all
pairs of subgroups of SE(3) whose intersection is different from the identity
displacement or one is not subgroup of the other

Groups t o be {Jondltions on the Conditions on the Regular
composed geometric linking Intersection representation

elements displacement

Tlb ' T1\ Tvo
Vo =PO nPl

T

Tlb ' G1\ Tvo XVo
vO=POnPl vO.LPl

Glb ' (J1\ Tvo Rno' T· RUl
vO=POnPl uo.LFb. ul.LPl

YVoJ'O . Tlb vo A-Fb 111 t- ±l TVl Xvo
vIII PO. vl.LvO

YVoJ'O . (Jlb vo ,LLFb 111 'F ±1 TVl Xvo ·Rno
vI II po. vl.LvO uo.LFb

YVoJ'O . YVU'l vo I/'vl 111 'F ±1 TV2 Rno' T · RUl
v2.LvO . v2.Lvl Uo II vo. ul II vI

YVoJ'O ' Guo no.LvO 111 - 0 Tvo YVoJ'O ' Rno

Guo 'Gul no II ul 111 - ±l Tno Guo · RUI
124 ;lo 0 or 134 ;lo 0

Tlb . (Jno nollFb 111 -0 1110 Tlb ' Rno
T · Gno Tno Xvo

vo II ul

Glb·Gno no liP 111 - 0 Tno (Jlb ' Rna

XVo ' (Jno uo I/'vo 111 'F ±l Tno XVo · xuo

YVoJ'O ' Guo uo II vo 111 - ±1 HvoJ'O XVo

Glb'Gno no.LPo 111 - ±1 Rno Xvo
vo.LFb

Soo ' Gno on e axis no 111 - ±1 Rno S.o · Tuo
124 =0
134 =0

Soo ' Glb Ruo Soo ·Tlb
on E axis no

uo.LFb

Soo ·Xvo Rna SE t3)
on E axis no

no II vo

Soo·SOJ Ru~ Soo · Rno ·Rul

no = ooOJ 01 e axis uo

01 e axis ul

Yvc; 'YV)II vo II vI 111 - ±1
;loPl

Tlb Po.lvO Xvo

YVoJ'O . XVI vo I/'vl 111 ;lo ±1 Tlb Fb.lvo Xvo · Rul
ul II vI

Glb ' YUu,o vo.lFb 111 - ±l Tf\) XVo
Glb . Xvo vo A-Fb 111 t- ±1 Tpo Rno .T · Rul

no.LFb. u l II vo

Glb · T Tpo XVo vO.LPo
YVoJ'O . T Tpo XVo

Xvo . XVI vo I/'vl 111 f:. ±l T Rno ·T· RUl
uo II vo . ul II vI

www.manaraa.com

95

Note that, although the intersection of two subgroups is at least the identity
displacement, the intersection of two constraints may be the empty set.

When the intersection of two constraints is null, i.e. it is not possible to find a
set of displacements satisfying (4.4), it implies that both kinematic constraints
can not be simultaneously satisfied. This situation can not be detected through
the intersection of subgroups. Roughly speaking, if we state our problems
of kinematic constraints purely in terms of compositions and intersections of
subgroups, we will be unable to detect inconsistencies. As it has been pointed
out in [1], Group Theory provides the means for a topological analysis of the
behavior of a set of bodies linked by a set of kinematic constraints, but a
geometric analysis is required if we care about dimensions.

Thus, the problem of intersecting two constraints, say A15\A2 and B2"l S2Bl1,
can be expressed, if their intersection is different from null, in terms of the
intersection of two subgroups, and the information about the spatial relation­
ships between their geometric elements of definition can be obtained either
from A2 . B1 or B2 . A1. Obviously, both information must be consistent.

The outcomes of the composition and intersection of two continuous subgroups
of SE(3), for all those cases in which the intersection is different from the
identity displacement or one subgroup is a subgroup of the other, have also been
tabulated in table 4.3. lij denotes the element (i,j) of the 4 x 4 homogeneous
transformation representation for the linking displacement.

See [9] for deeper prospects on the intersection of, possibly not continuous,
subgroups of SE(3).

As a summary, we can say that: (a) the composition of two trivial constraints is
sometimes a trivial constraint; (b) the intersection of two trivial constraints is a
trivial constraint or null; and (c) the intersection of two non-trivial constraints
is not necessarily a constraint, as defined here.

Definition 3 (Independence and inconsistency) Two trivial constraints,
R1 and R2, are said to be independent iff(R1nR2)I is the identity displacement,
and they are said to be inconsistent iff R1 n R2 is the empty set.

Let us suppose that we want to find out the dimension of R13 = R12 . R23 or,
in other words, the number of d.oJ. of the body 8 3 with respect to 8 1 . It can
be stated that:

This formula can be extended to the composition of n constraints, leading to
a variation of the Chebyshev-Griibler-Kutzbach formula

n n

dim(R1,n+1) = L dim(~,i+1) - L dim(R1,1 n R 1,I+d (4.5)
1 1=2

www.manaraa.com

96

where

j-1

~j = IT RI,I+1
l=i

There are many examples of kinematic chains whose degree of freedom cannot
be determined from its sole topology, i.e., they are elusive to the application of
4.5 [1, page 86].

Definition 4 (Regular representation) The composition of two trivial con­
straints, R3 = R1R2 provide a regular representation for R3 iff (R1 n R2)I = I.
Then, dim(R3) = dim(R1) + dim(R2)

Notice that regular representations are not unique.

4.3.3 Examples

Firstly, let us analyze the composition of two constraints whose associated
subgroups are Gpo and X Uo . This composition can be expressed as:

Rc A 81 L 82 B

= A Trans(O, y, z) Twix(O) L Trans (x' , y', z') Twix("p) B

where L is the linking displacement between both constraints. On the other
hand, GPD and XUo can be decomposed into composition of subgroups as fol­
lows:

with u11..Po and u211no.

If no ,lPo, then ll1 -# ±1 (see table 4.3) and the only possible simplification for
Rc is:

Rc = A Trans (x" , y", z") Twix(O) L Twix("p) B

The simplified term, Trans(O, y, z), corresponds to the intersection of GEt, and
XUo . In terms of subgroups (table 4.3), we have

www.manaraa.com

97

with Ul.lPO and U2 II no.
If uo.lPo, then Ul II no, ll1 = ±1, and GPo becomes a subgroup of XUo (ta­
ble 4.2). Consequently, Rc can be expressed as

Rc = A Trans(xlll, ylll, Zlll) Twix(O)L' Twix(1/I) B

= A Trans (XIII, y"', z",) Twix(0 + l' 111/1) L' B

where L = L' Trans(O, h4' l34).

Notice that the necessary and sufficient condition for the equality

Twix(Ot) L Twix(02) = Twix(1/I) L

to hold is that In = ±1, l24 = 0 and l34 = O. In this case 1/1 = 01 + ln82.

Let us see another example. Imposing that the axes of the cylinders be aligned
with the axes of their corresponding holes for the workpieces in fig. 4.3, the
following expressions for both constraints will be obtained:

The composition of both constraints yields:

where the linking displacement is:

Since no and Ul are parallel, and according to table 4.3, III = ±1; therefore,
the composition of both constraints can be simplified leading to:

or, in other words,

where 81 E Cu and 82 E Ru. Expression (4.6) is a regular representation for
the composition of both constraints.

If, in addition to III = ±1, h4 = 0 and 134 = 0 (uo ~ ut), a further simplification
could be carried out and R12R23 becomes a trivial constraint. In this case
(R12R23)G E Cu.

www.manaraa.com

98

~l
z

, , , , ,
t
I
t
t
t
I

" A22 I

Figure 4.3: Insertion of a clamp. Geometric elements of definition, kinematic
constraints and canonical subgroups involved.

www.manaraa.com

99

Let us suppose that now we want to obtain R12nRil , the equivalent constraint
between 8 1 and ~. Then, (R12 n R.231)1 can be easily obtained using table 4.3.
Observe that the simplified term in 4.6, Trans(x2' 0, 0), is (R12 n Ril)1G. This
term encompasses the remaining d.oJ. of body ~ with respect to 8 1, when 83
is kept rigidly linked, as in this case, to 8 1,

We have proved that the above constraints are not independent, but we have not
checked their consistency. Depending on the relative dimensions of the involved
workpieces, they may be inconsistent. The only thing we can say using this
kind of symbolic manipulation is that, if (R12 n Rin =/: 0, then 8 2 only have
one translational degree of freedom with reference to 81. Checking consistency
requires a geometrical analysis which requires, in turn, solving a kinematic
equation. In our example, we would have to decide whether RI2R23 = I has
a solution. Thus, although the previous ideas provide a theoretical framework
within which it is easy to justify, for instance, when the composition of two
constraints can be simplified, they must be complemented with an algorithm to
obtain numerical values for the constrained d.o.f. if we care about dimensions.
See [4] for new developments in this area.

4.3.4 Star-polygon transform

The above two basic operations are not enough for obtaining the equivalent
constraint between any two bodies in an arbitrary graph of kinematic con­
straints. This fact can be easily proved by drawing a fully connected GR graph
with four nodes and trying to obtain the equivalent constraint between any two
of them through the iterative application of compositions and intersections of
constraints.

The star-polygon transform is included here to provide a complete set of op­
erations which make possible to obtain the equivalent constraint between any
two bodies in an arbitrary GR graph.

The star-polygon transform consists in removing one node of the GR graph by
fully connecting all the nodes connected to it with the equivalent constraint
between them (fig. 4.2c) . This operation can be seen as a generalized compo­
sition. Actually, when this transform is applied to a node of degree two, the
result is the composition of two constraints.

The problem with this operations is that, once it has been applied, the involved
constraints share variables. Thus, when a variable is assigned somewhere in the
graph, it is necessary to take into account that it may be shared by another
constraint. In the next section, an algorithm, which represents a way around
this difficulty, is introduced. This algorithm is able to find the equivalent
constraint between any two bodies without resorting to this operation.

www.manaraa.com

100

4.4 Propagation of constraints

If, as the result of intersecting two constraints between the same two workpieces,
the empty set is obtained, we say that they are inconsistent. The goal is
now to verify the consistency of entire GR graphs. This can be stated as a
problem of consistency in networks of relations. As it is pointed out in [10],
any representation of the constraints that allow composition and intersection
is sufficient for this purpose.

Informally, a GR graph is consistent if there exist configurations between work­
pieces whose defining coordinate transformations belong to the corresponding
constraints. Obviously, a GR graph without cycles is always consistent; thus,
it is easy to realize the important role of cycles in GR graphs.

Next, before introducing a general algorithm for propagating kinematic con­
straints, some few concepts on cycles in graphs are reminded.

4.4.1 Preliminaries on cycles

Two basic operations with cycles are the union and the ring sum. The union
of two cycles C1 = (Vi, Ed and C2 = (V2, E2) is a graph G = C1 + C2 with
node set V3 = Vi U V2 and arc set E3 = E1 U EJ.z. The ring sum of two cycles C1
and C2 (written C1 E9 02) is another cycle or a set of cisjoint cycles consisting
of the node set Vi U V2 and of arcs that are either in C1 or C2, but not in both.

A set of cycles 11. in a graph G = (V, E) is said to be a complete set of basic
cycles if (i) every cycle in the graph can be expressed as a ring sum of some or
all cycles in 11., and (ii) no cycle in 11. can be expressed as a ring sum of others
in 11.. The cardinality of a complete set of basic cycles is J1, =1 E 1 - 1 V 1 +1,
which is called the cyclomatic number. Hence the maximum number of cycles
is 2/.1 - 1.

4.4.2 Isolation of blocks

When a kinematic constraint is posted, it can affect other workpieces different
from those it is incident to, but, in general, a constraint is limited in its scope.
In order to isolate sub graphs within which the effect of a constraint is limited,
the following operations are applied:

1 Elimination of cutlines or bridges. This includes the elimination of pen­
dant constraints (fig. 4.4a).

2 Split cutpoints or articulation nodes into two nodes to produce two dis­
joint subgraphs (f.g. 4.4b).

www.manaraa.com

(a)

/
./

./

101

(b)

Figure 4.4: Operations applied for the isolation of blocks: (a) elimination of
cutlines; and (b) splitting cutpoints.

As a result of these operations a set of subgraphs, or simply blocks, are obtained.
A GR graph is consistent if each of its blocks is consistent.

Now, we can introduce a definition for an important subclass of graphs of
kinematic constraints.

Definition 5 (Trivial GR graph) A GR graph is said to be trivial iff the
equivalent constraint between any two nodes in any of its blocks can be expressed
a trivial constraint.

It is obvious that a GR graph without cycles is always trivial.

Let us assume that the obtained blocks are planar graphs. This assumption,
while not very restrictive, simplifies the treatment given below. Anyway, the
provided results can be extended to non-planar graphs.

A plane representation of a graph divides the plane into regions. A region is
characterized by the set of arcs forming its boundary. In a plane representation
of a planar connected graph the set of cycles forming the interior regions, or
region cycles, constitutes a complete set of basic cycles. The set of region cycles
is not unique. Actually, there are (J.i~1) different sets of region cycles. This can
be easily seen by noting that a planar graph can be embedded on the surface
of a sphere. The number of region cycles in the surface of a sphere would be
f1. + 1, which are also the shortest cycles for a planar graph.

www.manaraa.com

102

Let X be the set of region cycles in a planar block G. The cycle graph of X
is the graph with vertex set X and arcs joining two distinct nodes if and only
if the corresponding cycles have an arc in common. This graph is denoted by
'D(G) and it can be easily proved that V(G) is a subgraph of the dual graph
of G (see [6, page 106]). Nodes in a V(G) graph stand for cycles and arcs in
'D(G), for shared arcs in G. For extension, constraints labeling a shared arc are
called shared constraints. Note that an arc can only be shared by two region
cycles.

Let Ci be a region cycle whose arc set is labeled with the constraints

according to fig. 4.5. Then, the constraint Rj can be substituted by

Ri R n (R-1 R-1 R-1 R-1) j = j j-1 . .. 1 . n ... j+1

without modifying the consistency of the corresponding GR graph (fig. 4.5b).
In order to simplify the notation, we will write

This is the basic mechanism for constraint propagation as it is shown below.

4.4.3 A filtering algorithm for
propagating kinematic constraints

A general procedure to propagate the effect of constraints in GR graphs has
been devised, either to characterize the set of configurations that satisfy all the
constraints or to find out that there exist no such configurations.

The propagation process consists in filtering all constraints, that is eliminating
from the constraints those displacements which cannot appear in any solution.
Eventually, if all constraints are reduced to only one element, a single solution
is obtained.

Global consistency in a block G is checked by eliminating local inconsistencies;
that is, by eliminating inconsistencies in region cycles - which is equivalent
to ensure node inconsistency in V(G) -, and by eliminating inconsistencies
between adjacent region cycles - which is equivalent to ensure arc consistency
in'D(G) (see [10] or [11]). The following procedure implements this idea.

www.manaraa.com

103

R·]

Ci

R· n (R-:- 11 ••• R-1 1 • R- 1 ••• R-:- 11)
] J- n J+

Figure 4.5: The basic mechanism for constraint propagation. A constraint Rj ,

labeling an arc in a cycle OJ, can be substituted by nC; Rj •

www.manaraa.com

104

proced ure filter _constraints;
input: G; /* a block of a GR graph * /
output: G;
repeat

stop:= true;

j* check node consistency * /

/*1*/
/*2*/

forall region cycles Cj do
forall constraints R; in Cj do

Rj := nCjR;;
t .

if R; == 0 then exitO;
enddo;

enddo;

/* check arc consistency * /

/*3*/
/*4*/

forall shared constraints R; do
R '-n Ric. T·- Ic i'
if RT == 0 then exitO;
if RT::/: ~ then

stop:= false;
~ :=RT;

endif;
enddo;

until stop;
end.

Geometric inconsistencies can be found either when nCj R; or when nlcRf be­
come the empty set. In the first case, the cycle Cj becomes inconsistent; in
the second one, all the cycles sharing the constraint ~ do. The problem of
obtaining the minimum set of constraints that made a given GR graph become
inconsistent is addressed in [17].

The above algorithm can be easily modified for its application for a topological
analysis, stating the problem in terms of composition and intersections of ass0-

ciated subgroups instead of constraints. Then, sentences /*2*/ and /*4*/ can
be removed and, if the outcome /*1 * / is not a subgroup for a particular Gj , it
is not taken into account when computing /*3*/. In this case, the algorithm
will halt when no progress is made, either because the graph is not trivial,
or because all possible filterings have already been carried out. An example
illustrating this idea is shown in the next section.

www.manaraa.com

105

If the corresponding GR graph is planar, it is presumable that the complexity
of the above algorithm is polynomial in the number of constraints [111 .

The significance of the described algorithm is that it only needs to repeatedly
handle a set of short cycles. Because of domain specific attributes, node and
arc consistency provide a sufficient guarantee that there is a complete solution,
in the same way the celebrated Waltz's filtering algorithm provides a complete
solution for polyhedral scene labeling looking only for arc consistency [191.

4.5 Example

Let the workpieces in fig. 4.6a be elements of an assembly. The matings between
complementary features of workpieces 8 1, ~ and 8 3 lead to the GR graph in
fig. 4.6b, which only contains one block with one cycle. Thus, the equivalent
constraint between any two workpieces can be obtained by simply reduction of
the graph to a single edge linking them . For example, the equivalent constraint
between 82 and 8 3, if different from null, will be a coset of

i.e. ~ will remain fixed with reference to 83. This suggest that 82 and 83
must be put together before 8 1 is assembled, providing valuable information
about the assembly sequence.

Now, let us consider all the workpieces in fig. 4.6a. Given the matings between
their complementary features, the problem consists in deciding whether these
matings are enough for fixing the relative location of these four workpieces.
The corresponding GR graph appears in fig. 4.6c. Neither composition nor
intersection of constraints can be applied to reduce it.

Using the algorithm proposed in the last section, we can write the following
table:

RA • Cl C2 C3 results 1st Cl C2 C3 results 2nd
iteration iteration

Rl TU1 TU1 TU1 I I
R2 TU2 TU2 I I I I I
R3 TU3 I I I I I I
E4 G~ ? ? G~ G~ G~ G~
Rs GU$? GU$ G~ C~
lis GU6 ? G U6 G~ G~

taking into account that:

www.manaraa.com

106

(a)

(b) (c)

Figure 4.6: (a) A set of workpieces to be assembled; (b) the corresponding GR
graph involving workpieces 8 1, 82 and 83; and (c) the GR graph involving all
workpieces.

www.manaraa.com

Ul II U2
Ul.LU3

U2.LUl

u3.L14

U3.LU5

14 M U5

14 M ll6
ns M ll6
u2.Lll6

Ul.Lll6

which can be directly inferred from the linking displacements.

107

The outcomes of (nC;Rj)A appear in row Rj and column Ci . In the first iteration,
some of this subgroups cannot be obtained since the corresponding constraint
is not trivial. In the third iteration no new progresses can be carried out
and, since it was possible to compute (~Rj)A for i = 1..3 and j = 1..6, the
algorithm finishes after propagating all the constraints. Then, it can be said
that, if all introduced constraints are geometrically consistent, then the bodies
Bl, ~ and B3 will remain fixed and, if they are considered as a subassembly,
then the body B4 will have two d.o.f. with reference to it.

4.6 Summary

A kinematic constraint has been defined as a set of displacements which can be
expressed as a composition of cosets of Euclidean subgroups. A constraint is
said to be trivial when it can be reduced to a single coset. Thivial constraints
include all kinematic lower pairs.

A characterization of the spatial relationships between bodies in assemblies as
trivial kinematic constraints, as well as a tabulation of the outcomes of the
composition and intersection of the corresponding subgroups has been given.
The theoretical foundation for this systematization has been taken from [7].

A graph of kinematic constraints has been defined as a graph whose nodes
correspond to workpieces and whose directed arcs are labeled with trivial kine­
matic constraints.

It has been shown that it is not always possible to obtain the equivalent con­
straint between any two bodies in a graph of kinematic constraints by simply
composing and intersecting constraints, so that the graph is reduced to a single
arc linking both bodies. An algorithm that provides a way around this diffi­
culty has been proposed. This algorithm filters all the constraints in a graph of
kinematic constraints. This process consists in eliminating from the constraints
those displacements which cannot appear in any solution.

It has been shown how - relying on the composition and intersection of sub­
groups - it is possible to carry out a topological analysis of the motion possi­
bility for a set of bodies linked by a set of trivial kinematic constraints. It has
also been shown that it is not possible to derive geometric inconsistencies from
this analysis.

www.manaraa.com

108

Acknowledgements

This research was funded by the Fundaci6n Areces, under the project
SEPETER, and the Comisi6n Interministerial de Ciencia y Tecnologia
(CIGYT), under the project "Automatic spatial reasoning based on con­
straints." The author was also supported by a NATO fellowship.

The author thank Yanxi Liu and Robin Popplestone, from the University of
Massachusetts at Amherst, for their useful comments during the preparation
of this chapter.

References

[1] J. Angeles, Rational Kinematics. Springer-Verlag, New York, 1988.

[2] O. Bottema and B. Roth, Theoretical Kinematics. Dover Publications,
New York, 1979.

[3] J .E. Campbell. Introductory Treatise on Lie's Theory of Finite Contin­
uous Transformations Groups. Clarendon Press, Oxford, 1903.

[4] E. Celaya and C. Torras. Finding Object Configurations that Satisfy
Spatial Relationships. EGAI, Stockholm, 1990.

[5] N. Christofides. Graph Theory. An Algorithmic Approach. Academic
Press, N.Y., 1975.

[6] N. Deo. Graph Theory with Applications to Engineering and Computer
Science. Prentice-Hall, Englewood Cliffs, N.J.,1974.

[7] J .M. Herve. Analyse Structurelle des Mecanismes par Groupe des De­
placements. Mechanism and Machine Theory, Vol. 13, pp. 437-450,
1978.

[8] N. Koutsou. Planning Motion in Contact to Achieve Parts Mating. Ph.D.
dissertation, University of Edinburgh, 1986.

[9] Y. Liu. Symmetry Groups in Robotic Assembly Planning. Ph.D. disser­
tation, University of Massachusetts, 1990.

[10] A.K. Mackworth. Consistency in Networks of Relations. Artificial Intel­
ligence Journal, Vol. 8, pp. 99-118, 1977.

[11] A.K. Mackworth and E.C. Freuder, The Complexity of Some Polynomial
Network Consistency Algorithms for Constraint Satisfaction Problems.
Artificial Intelligence Journal, Vol. 25, pp. 65-74, 1985.

www.manaraa.com

109

[12] E. Mazer. LM-GEO Geometric Programming of Assembly Robots. In
Advanced Software in Robotics, pp. 99-125, Elsevier Science Publishers
B.V. (North-Holland), 1984.

[13] R.P. Paul. Robot Manipulators: Mathematics, Programming, and Con­
trol. Cambridge, MA. MIT Press, 1981.

[14] R.J. Popplestone, A.P. Ambler and I.M. Bellos. An interpreter for a
language for describing assemblies. Artificial Intelligence Journa~ Vol.
14, pp. 79-107, 1980.

[15] R.J. Popplestone, Group Theory and Robotics. In Robotics Research.
The First International Symposium, edited by M. Brady and R. Paul.
MIT Press, 1984.

[16] F. Thomas and C. Torras. A Group Theoretic Approach to the Com­
putation of Symbolic Part Relations. IEEE Journal of Robotics and Au­
tomation, VolA, No.6, December 1988.

[17] F. Thomas and C. Torras. Inferring Feasible Assemblies from Spatial
Constraints. Technical Report of the Institute of Cybernetics, IC-DT-
1989.03,June 1989.

[18] J .M. Valade. Geometric Reasoning and Automatic Synthesis of Assembly
Trajectory, International Conference on Advanced Robots, Tokyo, Japan,
Sept. 9-10, 1985.

[19] D. Waltz. Generating Semantic Descriptions from Drawings of Scenes
with Shadows. AI-TR-271, MIT, reprinted in The Psychology of Com­
puter Vision, Winston (ed.), McGraw Hill, 1975.

[20] J.R. Woodwark. Some Speculations on Feature Recognition. In Geomet­
ric Reasoning, edited by D. Kapur and L. Mundy, MIT Press, 1989.

www.manaraa.com

Chapter 5

Relative positioning of
parts in assemblies using
mathematical

• programmIng

Joshua U. Turner

In extending solid modeling technology to the modeling of assemblies of dis­
crete parts, it is important to capture the position of each part in the assembly
relative to the positions of its neighbors. By describing each part position in
terms of relationships between various features of the part and mating features
of its neighboring parts, it is possible for the solid modeling system to compute
the modeling transformations needed to simulate the desired assembly config­
uration. In this chapter we formulate a mathematical programming approach
to this problem. This approach is particularly useful in situations that arise in
the solution of tolerancing problems.

It should be noted carefully that the relative positioning problem is distinct
from the path planning problem or the assembly sequence problem. Here it is
only the final position of each part that is of concern.

www.manaraa.com

112

The AUTOPASS language of Lieberman and Wesley [1], [2], [3], first described
a representation for feature-based assembly modeling, in which part positions
are specified in terms of coplanarity and coaxiality relations between mating
part features. Lee and Gossard [4] give a variant on this representation. Turner
[5], [6], and Gossard et al. [7] give representations in which part positions are
specified using relative positioning operators imbedded in a eSG-like tree.

Ambler and Popplestone [8]' Lee and Andrews [9], and Rocheleau and Lee
[10] give strategies for computing the modeling transformations implied by the
feature relationships. Their methods attempt to satisfy all feature relationships
among all parts simultaneously, and require that all relationships be satisfied
exactly. Mullineux [11] extends the method of Rocheleau and Lee so that
part relationships need not be exactly satisfied, but in so doing, creates a
large, seemingly intractable unconstrained optimization problem. Rossignac
[12] gives a strategy for computing the part positioning transformations through
a concatenation of simple atomic operators. His method requires the user to
specify the operator sequence, and does not allow for multiple mating feature
relationships between a pair of parts.

In this chapter we extend previous work by formulating an efficient approach
based on mathematical programming, that allows for part shapes in which it is
not possible to satisfy some or all of the mating feature relationships exactly.
This makes it possible to apply feature-based assembly modeling techniques
to variational models of parts and assemblies which arise when tolerances are
taken into account. The feature relationships are treated as inequalities. Math­
ematical programming is used to find the optimal configuration of the parts.

Although most problems can be solved in a sequential manner, positioning
one part at a time, in some cases it is necessary to position several parts
simultaneously. The mathematical programming formulation supports both
sequential and simultaneous positioning operations.

If the nominal part positions are available, and if the actual part shapes are
assumed to incorporate small variations to the nominal shapes, then the math­
ematical programming problem can be linearized, and solved quickly. This
can be particularly important in the solution of problems involving tolerances,
where the nominal part positions are known, and where we want to determine
the effect of small variations applied to each of the parts upon the positions of
the other parts, and ultimately, upon the overall functional requirements of the
assembly. Further details as to the application of these methods to tolerancing
problems may be found in Turner [5], [6], [13], [14], [15], [16]' [17].

The next section gives a summary of the general mathematical programming
schema. The rest of the chapter applies this schema to two common situations:
1) the assembly of planar polyhedra, and 2) the assembly of parts with mating
patterns of holes and posts. By applying the assumption of small variations,
both problems are linearized.

www.manaraa.com

113

5.1 Relative Positioning
by Mathematical Programming

Generally, regardless of whether a sequential or a simultaneous strategy is
adopted, the simple relative positioning relationships presented in the preced­
ing work suffer from a lack of generality. It is not clear how more complex
assembly constraints would be modeled.

For instance, a coplanarity or coaxiality constraint may not be meaningful
when two parts come in contact in several places. As an instance, suppose a
flat plate is to be positioned so that it lies across the top of a U -shaped part.
If the two ends of the U are not exactly coplanar with each other, then it will
not be possible for coplanarity between the two parts to be maintained at both
ends. Generally, in an actual part instance, the two ends of the U will not be
exactly coplanar, even if they are nominally coplanar. As another example, if
one part is a shaft to be inserted into a U-shape bracket so as to pass through
a hole at each end of the U, and if the two holes are not coaxial, then it will
not be possible for coaxiality between the two parts to be maintained at both
ends.

Since such assembly situations are common, particularly when part variations
are modeled, it is important to develop suitable relative positioning capabilities.

This section introduces a general approach to relative positioning based on
mathematical programming. The general idea is as follows: Given a target
object B to be positioned relative to a given reference object A. B is to be
positioned such that certain of its features mate with certain features of A. The
mating features should be aligned as closely as possible. Interference should be
avoided.

In establishing a position for the target object B, there are six degrees of
freedom (three translational, and three rotational). Lozano-Perez and Wesley
[18] have observed that these six degrees of freedom may be conceived as six
independent parameters, collectively spanning a six-dimensional configuration
space that governs the position of B. The specification of a particular position
for B is equivalent to selecting a particular value for each of these six parameters
(a particular point in the configuration space). The mathematical programming
model may be formulated based on the following two observations:

1. The requirement that the various features of B avoid interference with
the corresponding features of A is equivalent to a collection of functional
constraints on the feasible points of the configuration space.

2. The requirement that mating pairs of features be aligned as closely as
possible corresponds to one or more objective functions. on the space.

www.manaraa.com

114

These non-interference constraints and alignment objectives can be based on
any desired relationships between the part geometries, including, but not lim­
ited to, relationships between mating planar or axial features.

So the establishment of an optimum feasible position for B can be formulated as
a mathematical programming problem: The six dimensions of the configuration
space of B are the decision variables. The pairing of mating non-interfering
features establishes one or more functional constraints on the feasible points
of the configuration space. The goal of aligning one or more feature pairs as
closely as possible determines one or more objective functions. These objective
functions may be optimized sequentially, or simultaneously.

Where the relative positions of three or more parts are to be established simul­
taneously, the decision space will have six variables per part, for all the parts
except one part selected as a fixed frame of reference.

The next two sections give two common examples of this schema, and show
that in the case where small variations may be assumed, both can be solved as
linear programming problems.

5.2 Mating Polyhedra

First, consider the case of assemblies composed of polyhedral parts. All mating
pairs of features take the form of contacts between parallel planar faces.

The condition of non-interference between two parts could be evaluated by
computing their volumetric intersection and then determining whether the re­
sult is a non-empty volume, but this is rather expensive: typical approaches
grow quadratically with the number of faces of the two parts.

A less expensive non-interference test involves an examination of each pair of
mating faces. If each face of a mating pair lies entirely outside the half-space
bounded by the other face, then there is no interference. Since each of the two
faces is planar, this condition can be evaluated by substituting the vertices of
each face, in the plane equation of the other. Actually, we need consider only
those vertices of each face which are part of its convex hull.

If the two mating faces only partially overlap, then this test is too restrictive.
We need only be concerned with the region of overlap. The following procedure
gives a simple approach to handling this most general case.

1. Assuming that the nominal position of part B is already known, locate
part B so that it takes on its nominal position with respect to part A.

2. For each pair of mating faces fA and fB, project fA onto the plane of fB.

3. Compute the intersections of the boundaries of the two faces.

www.manaraa.com

115

fA
- - - -, t ,

t fa , PI 'Pa Pa
- - ~-- - - - - - '" - -

Figure 5.1 : Procedure for Generating Non-interference Constraints

4. Compute the convex hull of: a) the vertices of intersection, b) the vertices
of face !B that are interior to the projected face fA, and c) the vertices
of projected face fA that are interior to fB.

5. Attach all of the vertices of this convex hull to face fB, so that any
transformation applied to part B applies to these vertices as well.

6. Generate constraints to the effect that no vertex of this convex hull may
appear on the material side of of the half-space bounded by fA.

Providing that the nominal parts do not intersect, and that large deviations
from nominal are not possible, this procedure will assure the non-intersection
of the two parts in their final positions. Figure 5.1 illustrates the procedure.

Constraints are generated to the effect that PI and P2 must remain below the
plane of fA. Note that P3 is not constrained.

In addition to these non-interference constraints, one or more objective func­
tions are required. The objective functions will specify that the two objects
should be positioned so that for one or more pairs of mating faces, the contact
between the two faces is maintained as much as possible. Maximum contact is
maintained by minimizing the maximum distance between the two faces. For
mating polyhedra it is sufficient to minimize the maximum distance between
each vertex of the convex hull computed in the preceding procedure, and the
plane of the corresponding face fA. If contact is to be maintained between
two or more pairs of mating faces, then a choice can be made whether these

www.manaraa.com

116

objectives are to be achieved simultaneously or sequentially. Sequentialobjec­
tives give a result which is analogous to the fixturing of one part with respect
to another using an ordered sequence of datum surfaces. Simultaneous ob­
jectives give an overall best fit without favoring one pair of mating features
over another. In either case, well established techniques from mathematical
programming can be applied.

The preceding formulation yields a linear problem in the vertices of the parts
to be positioned. The vertex coordinates, in turn, are functions of the six po­
sitioning degrees of freedom. If small variations can be assumed, then these
functions can be linearized, and the relative positions of the parts can be com­
puted rapidly, using linear programming.

To make this discussion more concrete, let us look at a simple two-dimensional
example. Suppose that an object B is to be positioned relative to another object
A. B will be positioned by applying a rigid transformation to the coordinates
of B. In two dimensions a rigid transformation may be expressed in terms of
three parameters (two translational, and one rotational). These will be denoted
tx , ty, and (). If the initial coordinates of any given point of B are given by
p = (x,y), then after transformation, the same coordinates will be given by

p' = (x cos() - ysin () + tx , x sin () + y cos() + ty)

Let us assume that the nominal position of B is already known. Under the
assumption of small variations, we may assume that only small rotations will
be necessary to accommodate any variations in B . This allows us to use the
following approximations:

sin () ~ ()
cos()~l

Then the transformed coordinates of the point are given by

p' ~ (x - y() + t x , x() + y + ty)

Figure 5.2 gives the geometries of the two objects that will be used.

For convenience, the geometry of A is given by identifying the equations of its
bounding edges. The geometry of B is given by identifying the coordinates of
its vertices. The desired position of B with respect to A is shown with dashed
lines. (The role of the parameter b Is to allow for some variability in the shape
of A. For now, assume that b = 0.)

The geometry of B after transformation is shown in Figure 5.3.

Now non-interference constraints will be derived on the position of B, treating
each of its four edges in turn. First, B must be positioned so that its bottom
edge falls above the line y = O. This effectively constrains the y-coordinates of
the two endpoints:

www.manaraa.com

A

o
II

B

y = 1.1

y = a

(0,1) (1,1)

(0 ,0) (1,0)

Figure 5.2: Reference Object (A) and Target Object (B)

117

www.manaraa.com

118

Figure S.3: Target Object (B) after Transformation

(S.l)

(S.2)

Next, the left edge of B must be to the right of the line x - by = o. The
following constraints are obtained by substituting the endpoints of the edge in
the line equation:

(5.3)

(S.4)

Similarly, the non-interference constraints applied to the top edge, and the
right edge give:

l+ty ::; 1.1 (S.5)

(5.6)

(S.7)

1 + tx ::; 2 (5.8)

www.manaraa.com

119

These eight functional constraints define a feasible region of the configuration
space spanned by tx , ty , and e.
To determine an optimum position within the configuration space, the following
goals are added: first, that along its left edge, B should come as close as possible
to touching A; second, that along its bottom edge, B should come as close as
possible to touching A These two goals will be satisfied in sequence, resulting in
a series of transformations in which B is first moved into an optimum position
with respect to its left edge, and then, holding that relationship fixed, moved
into an optimum position with respect to its bottom edge.

The first goal may effectively be achieved by minimizing the maximum distance
of the left edge of B from the corresponding edge of A Thus, the goal is to
minimize the maximum of the left hand sides of equations 5.3 and 5.4. (There
are well-known techniques in linear programming practice [19] for minimizing
the maximum of several goals.)

Once this first goal has been achieved, the second goal may attempted. In
order to fix the position of B with respect to the first goal, equations 5.3 and
5.4 are replaced by equality constraints. The computed values of the left hand
sides at the point at which the first goal is optimized, are used as right hand
sides for these equality constraints. Now the second goal may be achieved in
the same manner as the first.

These equations were set up and solved using linear programming. The param­
eter b was introduced to allow for some variability in the shape of part A. The
problem was solved for different values of b. The results are shown in Figure
5.4. Note that B is always positioned to fall inside A, and that the two goals
are achieved to the extent possible, with preference given to the first Wal.

5.3 Mating Holes and Posts

Now consider an assembly consisting of two flat parts, one of which has a
pattern of holes, and the other of which has a mating pattern of posts or pegs.

Let the hole radii be denoted ~, and the hole positions be denoted Pi. Let the
radii and positions of the posts be denoted Ti and Pi where i = 1, .. . , M.

The minimum clearance between a mating hole and post is given by

The non-interference constraints will specify that each clearance be non-negative.

Optimum alignment is achieved if the two parts are positioned so that the
minimum clearance will be maximized over all the mating sites. So the objective
will be to maximize minimum clearance. One way to achieve this objective is

www.manaraa.com

120

b = 0 b = 0 .15

b = 0.05 b = 0.2

b = 0 .1 b = 0.3

Figure 5.4: Solution of the LP Problem for Different Values of b

www.manaraa.com

121

to introduce a new decision variable, Z, and to maximize Z subject to the
constraints:

(5.9)

z 2:: 0

Taking the position of the hole part as fixed, and positioning the post part
relative to the hole part, the coordinates of the Pi in equation 5.9 will be
functions of the decision variables tx , t y , and (). Under the assumption of small
variations, these coordinates may be given by

as in the previous problem.

So far, this is a nonlinear problem, because IIPi - p~11 is a nonlinear function
of the decision variables tx , ty , and (). The problem can be linearized at the
expense of an approximation. The form of this approximation is as follows -
rather than measure the exact distance between Pi and pi, we can measure the
directed distance between the two points. This distance is given by:

where "." indicates a dot product, and the left-hand term of the dot prod­
uct gives the measurement direction. In other words, Dij is a signed value
which gives the length of the projection of (Fi - Pi) onto the direction vector
(cos <Pj , sin <Pj).

In general, this distance measure will understate the distance between the two
points. However, by taking a number of different measurement directions,
the largest of these distance measures will approximate the true distance. In
particular, we will take

A... _ • (360)
'PJ-J - n

j=O, ... ,n-l

where a larger value of n will give a more accurate approximation.

Then the final form of equation 5.9 is:

where i = 1, ... , M and j = 0, ... , n - 1. Thus there will be one constraint per
value of j for each hole-post pair.

These equations were set up and solved using linear programming. Figure 5.5
and Figure 5.6 give an example of two parts before and after positioning.

www.manaraa.com

122

Pig"", 5.5, Hole Part and Post Part Before POSitioning

5.4 ComPuter Time

www.manaraa.com

--

Figur" 5.6: Hole Part and Post Part After n "t" "

rOSllOnmg

Ifnonlinear methods are Used th h
.

icantly higher, but again COsts Canenb t e "'mp~t,,, t'mes required Win be signif_

""
,

e InlnlInIzed blT perfc " h

operations 1n a seqUential fashion
,I..

" J
or"dng t e aSSeInbly

as InUCll as POSSIble"

5.5 Lilllitations

In hoth ex"'"Ples, it lYas n",,~ to i k h

;n ord., to linearize the equa'ions In ,::vo e t e ."""",,,Ption of small '"ariations

for SitUations in which lar''''e V:ar" t: any apPl'cat>ons We WOUld like to allow

<> la Ions are reqUired t " "

to another. HOWever the Pr""edin , , .
° Pas",on one Part rela,;Ve

of rotation is n~ g S ra e.,os are no, reliable if more 'han 100

Bu, if We are Will;ng to make relatiVe ...

not be a problem. SuppOSe We deVel PO'''t,o'''ng ~ t",,:, step Pro""", this need

0p a grOSs Pas't>onmg strategy intended to

123

www.manaraa.com

124

place the parts in approximate position to one another. This gross positioning
strategy could be simply a matter of associating a local coordinate system with
each of a pair of mating parts, where these local coordinate systems are derived
from the part geometries, and then generating a transformation matrix that
lines up the two coordinate systems.

Given such a gross positioning strategy, the linearized situations illustrated in
this chapter can be used to provide a fine positioning strategy.

If a single application of the fine positioning strategy has unacceptable error
due to linearization, then several successive linearizations may be necessary.

The approach was discussed in terms of establishing the position of a single
target object B relative to an existing frame of reference A. However, the
approach can also be applied to determine the positions of several objects
simultaneously. For instance, given three objects, A, B, and C, to be mutually
positioned so that certain constraints apply. Taking one of the three objects
as fixed, the constraints may be interpreted as conditions on a cross-product
space formed from the configuration spaces of the other two objects.

5.6 Summary

This chapter has introduced a general approach to relative positioning based on
mathematical programming. Non-interference conditions determine functional
constraints. Alignment conditions determine one or more objective functions.
These non-interference constraints and alignment objectives can be completely
general. Mathematical programming is used to establish an optimum feasible
position.

The treatment of alignment conditions as objective functions allows for the
formulation of relationships in which conditions such as coplanarity, and coax­
iality cannot be satisfied exactly. Where multiple alignment objectives are
specified, these objectives can be satisfied in a given sequence, as illustrated in
the first example, or can be satisfied simultaneously. (In this latter case, an
overall objective is formulated - namely, minimize the maximum of any of the
individual objectives.)

Two common situations were used to illustrate these ideas. It was shown that
if small variations can be assumed, then the original nonlinear programs can be
linearized. Because the linearizations are only accurate within a small range,
several successive linearizations may sometimes be necessary to obtain accept­
able answers. Code is currently being written to handle three-dimensional
versions of these situations, using an existing solid modeling system.

www.manaraa.com

125

Acknowledgement

A version of this work first appeared in Computer-Aided Design, Volume 22,
Number 7, September 1990, pp. 394-400.

This material is based upon work supported by the National Science Founda­
tion under Grant Nos. DMC-8820733, and DDM-8908160. The United States
Government has certain rights in this material. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science Foun­
dation.

References

[1] L.I. Lieberman and M. A. Wesley, "Autopass: An automatic programming
system for computer controlled mechanical assembly," IBM Journal of
Research and Development, vol. 21, pp. 321-333, July 1977.

[2] M. A. Wesley, "Construction and use of geometric models," in Computer
Aided Design: Modelling, Systems Engineering, CAD-Systems (J. Encar­
nacao, ed.), pp. 79-136, New York: Springer-Verlag, 1980.

[3] M. A. Wesley, T. Lozano-Perez, L. I. Lieberman, M. A. Lavin, and D. D.
Grossman, "A geometric modeling system for automated mechanical as­
sembly," IBM Journal of Research and Development, vol. 24, pp. 64-74,
January 1980.

[4] K. Lee and D. C. Gossard, "A hierarchical data structure for representing
assemblies: Part 1," Computer-Aided Design, vol. 17, pp. 15-19, Jan­
uary/February 1985.

[5] J. U. Thrner, Tolerances in Computer-Aided Geometric Design. PhD the­
sis, Rensselaer Polytechnic Institute, May 1987.

[6] J. U. Thrner, "Exploiting solid models for tolerance computations," in
Geometric Modeling for Product Engineering (M. Wozny, J. Thrner, and
K. Preiss, eds.), North-Holland, 1990.

[7] D. C. Gossard, R. P. Zuffante, and H. Sakurai, "Representing dimensions,
tolerances, and features in mcae systems," IEEE Computer Graphics and
Applications, vol. 8, pp. 51-59, March 1988.

[8] A. P. Ambler and R. J. Popplestone, "Inferring the positions of bodies from
specified spatial relationships," Artificial Intelligence, vol. 6, pp. 157-174,
1975.

[9] K. Lee and G. Andrews, "Inference of the positions of components in
an assembly: Part 2," Computer-Aided Design, vol. 17, pp. 20-24, Jan­
uary/February 1985.

www.manaraa.com

126

[10] D. N. Rocheleau and K. Lee, "System for interactive assembly modeling,"
Computer-Aided Design, vol. 19, pp. 65-72, March 1987.

[11] G. Mullineux, "Optimization scheme for assembling components,"
Computer-Aided Design, vol. 19, pp. 35-40, January/February 1987.

[12] J. R. Rossignac, "Constraints in constructive solid geometry," in Pro­
ceedings 1986 Workshop on Interactive 3D Graphics, (Chapel Hill, North
Carolina), pp. 93-110, October 23-24 1986.

[13] J . U. Turner and M. J. Wozny, "Tolerances in computer-aided geometric
design," Visual Computer, vol. 3, no. 4, pp. 214-226, 1987.

[14] J. U. Turner, M. J . Wozny, and D. D. Hoh, "Tolerance analysis in a solid
modeling environment," in Proceedings of the 1987 ASME Computers in
Engineering Conference, (New York, N. Y.), August 9-13 1987.

[15] J. U. Turner, "New methods for tolerance analysis in solid modeling,"
in Proceedings 1988 International Conference on CIM, (Troy, New York),
pp. 306-314, IEEE Computer Society Press, May 23-25 1988.

[16] J. U. Turner and M. J. Wozny, "A framework for tolerances utilizing solid
models," in Proceedings Third International Conference on Computer­
Aided Production Engineering, (Ann Arbor, Michigan), June 1-3 1988.

[17] J. U. Turner, "Automated tolerancing using solid modeling technology,"
in Proceedings AUTOFACT '88, (Chicago, Illinois), Oct. 30 - Nov. 21988.

[18] T. Lozano-Perez and M. Wesley, "An algorithm for planning collision-free
paths among polyhedral obstacles," Communications of the ACM, vol. 22,
no. 10, 1979.

[19] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research.
Oakland, California: Holden-Day, 1980.

www.manaraa.com

Part II

Assembly Planning

www.manaraa.com

Chapter 6

Representations for
assembly sequences

Luiz S. Homem de Mello and Arthur C. Sanderson

Several methodologies for representing assembly sequences have been utilized.
These include representations based on directed graphs, on AND/OR graphs, on
establishment conditions, and on precedence relationships. The latter includes
two types: precedence relationships between the establishment of one connec­
tion between parts and the establishment of another connection, and prece­
dence relatioships between the establishment of one connection and states of
the assembly process. Those based on directed graphs and on AND/OR graphs
are explicit representations since there is a mapping from the assembly tasks
into the elements of the representations. Those based on establishment condi­
tions and on precedence relationships are implicit representations because they
consist of conditions that must be satisfied by the assembly sequences.

This chapter analyzes these five representations and shows how they are in­
terrelated and how one can be derived from the others. The correctness and
completeness of these representations are also addressed.

www.manaraa.com

130

CAP STICK RECEPTACLE HANDLE

Figure 6.1: A four-part assembly in exploded view

6.1 Terminology and notation

A mechanical assembly is a composition of interconnected parts forming a sta­
ble unit. Each part is a solid rigid object that is its shape remains unchanged.
Parts are interconnected whenever they have one or more compatible surfaces
in contact. Surface contacts between parts reduce the degrees of freedom for
relative motion. A cylindrical contact, for example, prevents any relative mo­
tion that is not a translation along the axis or a rotation around the axis.
Attachments may act on surface contacts and eliminate all degrees of freedom
for relative motion. For example, if a cylindrical contact has a pressure-fit
attachment, then no relative motion between the parts is possible.

A subassembly is a nonempty subset of parts that either has only one element
(Le. only one part), or is such that every part has at least one surface contact
with another part in the subset. Although there are cases in which it is possible
to join the same pair of parts in more than one way, a unique assembly geometry
will be assumed for each pair of parts. This geometry corresponds to their
relative location in the whole assembly. A subassembly is said to be stable if its
parts maintain their relative position and do not break contact spontaneously.
All one-part subassemblies are stable.

The assembly process consists of a succession of tasks, each of which consists
of joining subassemblies to form a larger subassembly. The process starts with
all parts separated and ends with all parts properly joined to form the whole
assembly. For the current analysis, it is assumed that exactly two subassemblies
are joined at each assembly task, and that after parts have been put together,
they remain together until the end of the assembly process.

It is also assumed that whenever two parts are joined all contacts between
them are established. Due to this assumption, an assembly can be represented
by a simple undirected graph < P, C > in which P = {PI, 112, .. . , P N} is the
set of nodes, and C = {CI' C2, .• . ,cd is the set of edges. Each node in P
corresponds to a part in the assembly, and there is one edge in C connecting
every pair of nodes whose corresponding parts have at least one surface contact.
The elements of C are referred to as connections, and the graph < P, C > is
referred to as the assembly's graph of connections. A connection encompasses

www.manaraa.com

131

Figure 6.2: The graph of connections for the four-part assembly

all contacts between two parts. Figure 6.1 shows an assembly in exploded view,
and figure 6.2 shows its corresponding graph of connections.

6.1.1 Assembly states

The state of the assembly process is the configuration of the parts at the begin­
ing (or at the end) of an assembly task. The configuration of parts is given by
the contacts that have been established. Since whenever two parts are joined
all contacts between them are established, the configuration of parts is given by
the connections that have been established. Therefore, a state of the assembly
process can be represented by an L-dimensional binary vector !f. = [Xl X2 •.• XL]

in which the ith component Xi is true (T) or false (F) respectively if the ith

connection is established in that state or not.

For example, the initial state of the assembly process for the product shown
in figure 6.1 can be represented by the 5-dimensional binary vector [F F F F F]

whereas the final state can be represented by [T T T T T]. If the first task of
the assembly process is the joining of the cap to the receptacle, the second state
of the assembly process can be represented by [F T F F F J

As mentioned above, it is assumed that whenever a subassembly is formed all
connections between its parts are established. Therefore, any subassembly can
be characterized by its set of parts. In the rest of this paper, references to
subsets of parts should be understood as references to the subassemblies made
up of those parts. It will always be clear from context what the whole assembly
is. Because of this assumption, any state of the assembly process can also be
represented by a partition of the set of parts of the whole assembly. For exam­
ple, the initial state of the assembly process of the assembly shown in figure

www.manaraa.com

132

6.1 can be represented by { {CAP}, {RECEPTACLE}, {STICK}, {HANDLE} }

whereas the final state can be represented by { {CAP, RECEPTACLE, STICK,

HANDLE} }. If the first task of the assembly process is the joining of the cap
to the receptacle, the second state of the assembly process can be represented
by { { CAP, RECEPTACLE}, {STICK}, {HANDLE} }.

Given an assembly's graph of connections and one of the two representations
of assembly states described above (binary vector or partition), it is straight­
forward to obtain the other representation.

There are partitions of the set of parts of the whole assembly that cannot char­
acterize a state of the assembly process. For example, the partition { {CAP,

HANDLE}, {RECEPTACLE}, {STICK} } cannot characterize a state of the as­
sembly process for the assembly shown in figure 6.1 because the subset { CAP,

HANDLE} does not characterize a subassembly. Partitions that can charac­
terize a state of the assembly process will be referred to as state partitions,
and partitions that cannot characterize a state will be referred to as nonstate
partitions.

Similarly, not all L-dimensional binary vectors can characterize a state. For
example, for the assembly shown in figure 6.1 the 5-dimensional binary vector
[T T F F F 1 does not correspond to a state because if connections Cl and C2

are established then connection C3 should also be established. L-dimensional
binary vectors that can characterize a state will be referred to as state vectors
whereas L-dimensional binary vectors that cannot characterize a state will be
referred to as nonstate vectors.

Any state of the assembly process can be associated to a simple undirected
graph < P, Ck > in which P is the set of nodes of the assembly's graph of
connections, and Ck is the subset of connections (Ck ~ C) that is established in
that state. This graph is referred to as the state's graph of connections. Except
for the final state of the assembly process, a state's graph of connections has
more than one component.

The subassembly predicate sa will be used to determine whether or not a
subset of parts makes up a subassembly. The argument to this predicate is
a subset of parts, and its value is either true or false depending on whether
or not that subset of parts corresponds to a subassembly. For example, for
the assembly shown in figure 6.1, saC { RECEPTACLE, HANDLE}) = T whereas
saC { CAP, HANDLE}) = F. From the assembly's graph of connections it is
straightforward to compute sa for any given subset of parts.

For the analysis in this chapter, a partition of the set of parts whose elements
all satisfy the subassembly predicate is an assembly state representation, re­
gardless of whether that state actually occurs in any of the different ways the
assembly can be assembled. The corresponding L-dimensional binary vector
is also an assembly state representation. And the corresponding configuration
of parts is an assembly state. For example, for the assembly shown in figure

www.manaraa.com

133

6.1, the partition { {CAP, RECEPTACLE, HANDLE}, {STICK} } as well as the
corresponding 5-dimensional binary vector [F T F F T] are assembly state rep­
resentations. Yet, since it was assumed that once parts are put together they
remain together, the configuration of parts (Le. the state) corresponding to
these representations cannot occur in any assembly process. Once the cap and
the handle are joined to the receptacle, it is no longer possible to join the stick.

We will use the subassembly-stability predicate st to determine whether or not
a subassembly described by its set of parts is stable. The computation of st
has been addressed elsewhere (e.g. the work of Boneschanscher[l]).

An assembly state representation for which all subassemblies satisfy the stabil­
ity predicate is said to be an stable assembly state representation. For example,
for the assembly shown in figure 6.1, the partition { {CAP, RECEPTACLE, HAN­

DLE }, {STICK} } as well as the corresponding binary vector [F T F F T I are
stable assembly state representations.

6.1.2 Assembly tasks

Given two subassemblies characterized by their sets of parts ()i and ()j, we say
that joining ()j, and ()j is an assembly task if the set ()k = ()i U ()j characterizes
a subassembly. For example, for the assembly shown in figure 6.1, if ()i =
{ RECEPTACLE} and ()j = {HANDLE} then joining ()i and ()j is an assembly
task, whereas if ()i = {CAP} and ()j = {HANDLE} then joining ()i and ()j is not
an assembly task. The subassemblies ()i and ()j are the input subassemblies of
the assembly task, and ()k is the output subassembly of the assembly task. Due
to the assumption of unique geometry, an assembly task can be characterized
by its input subassemblies only, and it can be represented by a set of two
subsets of parts. For example, for the assembly shown in figure 6.1, the joining
of the cap to the receptacle is represented by { {CAP}, {RECEPTACLE} }.

Alternatively, a task can be seen as a decomposition of the output subassembly
into the two input subassemblies. Therefore, an assembly task can be char­
acterized by the output subassembly and the set of its connections that are
in neither of the input subassemblies. In this view, an assembly task is rep­
resented by a set that contains a subset of parts and a subset of connections.
For example, for the assembly shown in figure 6.1, the joining of the cap to the
receptacle is represented by { {CAP, RECEPTACLE}, {C2} }.

The set of connections in the representation of an assembly task corresponds
to a cut-set of the graph of connections of the task's output subassembly. Con­
versely, each cut-set of a subassembly's graph of connections corresponds to
an assembly task[7]. Given the set of all cut-sets of a subassembly's graph of
connections, the set of their corresponding assembly tasks is referred to as the
tasks of the subassembly.

www.manaraa.com

134

An assembly task is said to be geometrically feasible if there is a collision-free
path to bring the two subassemblies into contact from a situation in which they
are far apart. And an assembly task is said to be mechanically feasible if it
is feasible to establish the attachments that act on the contacts between the
two subassemblies. We will use the geometric-feasibility predicate g/ and the
mechanical-feasibility predicate m/ to determine whether or not two subsets
of parts characterize, respectively, a geometrically feasible and a mechanically
feasible assembly task. These predicates take as argument a set of two sub­
assemblies, each characterized by its set of parts. The computation of these
predicates is discussed elsewhere[7] .

6 .1.3 Assembly sequences

Given an assembly that has N parts, an ordered set of N - 1 assembly tasks
Tl T2 .• • TN-l is an assembly sequence if there are no two tasks that have a
common input subassembly, the output subassembly of the last task is the
whole assembly, and the input subassemblies to any task Ti is either a one­
part subassembly or the output subassembly of a task that precedes Ti. To
any assembly sequence Tl T2 ·· · TN-l there corresponds an ordered sequence
8182 . . ·8N of N assembly states of the assembly process. The state 81 is the
state in which all parts are separated. The state SN is the state in which all
parts are joined forming the whole assembly. And any two consecutive states
Si and Si+1 are such that only the two input subassemblies of task Ti are in Si

and not in Si+l, and only the output subassembly of task Ti is in Si+l and not
in Si . Therefore, an assembly sequence can also be characterized by an ordered
sequence of states.

An example of an assembly sequence for the assembly shown in figure 6.1 is:

1. The first task (T1) consists of joining the cap to the receptacle.

2. The second task (1"2) consists of joining the stick to the subassembly made
up of the cap and the receptacle.

3. The third task (T3) consists of joining the handle to the subassembly made
up of the cap, the stick, and the receptacle.

An assembly sequence is said to be feasible if all its assembly tasks are geomet­
rically and mechanically feasible, and the input subassemblies of all tasks are
stable. The assembly sequence described above is feasible . An example of an
unfeasible assembly sequence for the assembly shown in figure 6.1 is:

1. The first task (Tl) consists of joining the cap to the receptacle.

2. The second task h) consists of joining the handle to the subassembly
made up of the cap and the receptacle.

www.manaraa.com

135

3. The third task (73) consists of joining the stick to the subassembly made
up of the cap, the stick, and the receptacle.

This assembly sequence is infeasible because the third task (73) is not geomet­
rically feasible since there is no collision free path to bring the stick into the
receptacle, once both the cap and the handle have been joined to the receptacle.

An assembly sequence (not necessarily feasible) can be represented in different
ways. We will use the following representations:

• An ordered list of task representations. The number of elements in this
list is equal to the number of parts minus one.

• An ordered list of binary vectors. Each vector must correspond to a state
(not necessarily stable). The number of elements in this list is the equal
to the number of parts.

• An ordered list of partitions of the set of parts. Each partition must
correspond to a state (not necessarily stable). The number of elements
in this list is equal to the number of parts.

• An ordered list of subsets of connections. The number of elements in this
list is equal to the number of parts minus one.

For example, the feasible assembly sequence for the product shown in figure
6.1 that was described above can be represented as follows:

• The three-element list of task representations

({ {CAP} , {RECEPTACLE} }

{ {CAP, RECEPTACLE} , {STICK} }

{ {CAP, RECEPTACLE, STICK} , {HANDLE} })

• The four-element list of 5-dimensional binary vectors

([FFFFF] [FTFFF] [TTTFF] [TTTTT])

• The four-element list of partitions of the set of parts

({ {CAP} , {RECEPTACLE} , {STICK} , {HANDLE} }

{ {CAP, RECEPTACLE} , {STICK} , {HANDLE} }
{ { CAP, RECEPTACLE , STICK} , {HANDLE} }

{ {CAP, RECEPTACLE , STICK, HANDLE} })

• The three-element list of sets of connections ({ C2 } {CI' C3 } {C4' CS}).

www.manaraa.com

136

Given the assembly's graph of connections and an assembly sequence in any
of these four representations, it is straightforward to obtain the other three
representations.

Furthermore, these assembly sequence representations have the following prop­
erties:

• Any ordered list of binary vectors (lf1 ~ . .. lfN), in which ~ = [Xi 1 Xi 2
Xi3 ... XiL], that represents one assembly sequence is such that

[(j>i)J\(Xik= T)]=>(Xjk= T).

This corresponds to the fact that once a connection is established, it
remains established until the end of the assembly process.

• Any ordered list of partitions of the set of parts (81 8 2 , .. 8 N) that rep­
resents one assembly sequence is such that

This corresponds to the fact that once parts are put together they remain
together until the end of the assembly process.

• Any ordered list of sets of connections (-Yl'Y2 ... "IN-i) that represents one
assembly sequence is such that "Ii U "12 U . . . U 'YN-l = C and "Ii is a cut­
set of the state's graph of connections associated to the ith state of the
assembly process.

Since each assembly sequence can be represented by ordered lists, it is possible
to represent the set of all assembly sequences by a set of lists, each correspond­
ing to a different assembly sequence. Since many assembly sequences share
common subsequences, attempts have been made to create more compact rep­
resentations that can encompass all assembly sequences. The next five sections
discuss different approaches towards representing all assembly sequences of a
mechanical assembly.

6.2 Directed Graph Representation
of Assembly Sequences

Given an assembly whose graph of connections is < P , C >, a directed graph
can be used to represent the set of all assembly sequences. The nodes in this
directed graph correspond to stable state partitions of the set P. These are the
partitions 8 of P such that if 0 E 8 then 0 is a stable subassembly of P . The
edges in this directed graph are ordered pairs of nodes. For any edge, there are
only two subsets Oi and OJ in the state partition corresponding to the first node
that are not in the state partition corresponding to the second node. Also,

www.manaraa.com

137

there is only one subset Ok in the state partition corresponding to the second
node that are not in the state partition corresponding to the first node, and
Ok = OJ U OJ. Furthermore, the assembly task that joins Oi and OJ is feasible.
Therefore, each edge corresponds to an assembly task. This graph is referred to
as directed graph of feasible assembly sequences, and it can be formally defined
as follows:

Definition 1 The directed graph of feasible assembly sequences of an
assembly whose set of parts is P is the directed graph < Xp, Tp > in which

Xp = { e I [e E t1(P)] 1\ [VO(O E e) => (sa(O) 1\ st(O))] }

is the assembly's set of stable states, and

Tp = {(ei' ej) I [(ei' ej) E Xp x Xp] 1\

[U(9 i - (9i n 9j)) E 9 j - (9i n 9j)] 1\

[Iej - (ei n ej) 1= 1] 1\ [lei - (ei n ej) 1= 2] 1\

[mf(ei - (e i n ej))] 1\ [gf(ei - (ei n ej))]}

is the assembly's set of feasible state transitions.

The notation t1(P) has been used to represent the set of all partitions of P,
and the notation U({A, B,···, Z}) has been used to represent AU BU· · · U Z.

Figure 6.3 shows the directed graph of feasible assembly sequences for the
assembly shown in figure 6.1. Each node of the graph in figure 6.3 is labeled
by a partition of the set of parts that represents a stable assembly state. To
facilitate the exposition, the nodes in figure 6.3 also have identification numbers
placed at their upper left corners.

A path in the directed graph of feasible assembly sequences < Xp, Tp >
whose initial node is e1 = { {PI} {P2 } ... {PN } } and whose terminal node
is e F = { { PI. P2, ... ,PN } } corresponds to a feasible assembly sequence for
the assembly P, and conversely. In such a path, the ordered sequence of edges
corresponds to the ordered sequence of tasks, while the ordered sequence of
nodes corresponds to the ordered sequence of states of the assembly process.
For example, the feasible assembly sequence described in the previous section
corresponds to nodes 1, 2, 7, and 13 of the graph shown in figure 6.3.

www.manaraa.com

138

Figure 6.3: Directed graph of feasible assembly sequences for the assembly
shown in figure 1

www.manaraa.com

6.3 AND/OR Graph Representation
of Assembly Sequences

139

An AND/OR graph can also be used to represent the set of all assembly sequences.
The nodes in this AND/OR graph are the subsets of F that characterize stable
subassemblies. The hyperarcs correspond to the geometrically and mechani­
cally feasible assembly tasks. Each hyperarc is an ordered pair in which the
first element is a node that corresponds to a stable subassembly Ok, the second
element is a set of two nodes { Oi, OJ } such that Oi U OJ = (h and the assembly
task characterized by 0i and OJ is feasible . Each hyperarc is associated to a
decomposition of the subassembly that corresponds to its first element and can
also be characterized by this subassembly and the subset of all its connections
that are not in the graphs of connections of the subsubassemblies in the hy­
perarc's second element. This subset of connections associated to a hyperarc
corresponds to a cut-set in the graph of connections of the subassembly in the
hyperarc's first element. This AND/OR graph can be formally defined as follows:

Definition 2 The AND/OR graph of feasible assembly sequences of
an assembly whose set of parts is F = {Pl,P2,··· PN } is the AND/OR graph
< Sp, Dp > in which

Sp = {O E II(F) I sa(O) /\ st(O)}

is the set of stable subassemblies, and

Dp = { (Ok, {Oi, OJ}) I [Oi, OJ, Ok E Sp]/\ [U({Oi, OJ}) = I'h]/\

[mf({Oi, OJ})]/\ [gf({Oi, OJ})]}

is the set of feasible assembly tasks.

The notation II(F) has been used to represent the set of all subsets of F.

As an example, figure 6.4 shows part of the AND/OR graph for the assembly
shown in figure 6.1. Each node of the graph in figure 6.4 is associated with a
subset of parts that corresponds to a subassembly. To facilitate the exposition,
both the nodes and the hyperarcs in figure 6.4 have identification numbers.
There are only two stable subassemblies of the product shown in figure 6.1
whose corresponding nodes were not included in figure 6.4; they are the sub­
assembly made up of the cap, the receptacle, and the handle, and the subassem­
bly made up of the cap, the stick, and the handle. They were not included to
avoid cluttering the figure . Since these subassemblies cannot be reached from
the top node, they do not occur in any feasible assembly sequence.

From the AND/OR graph of feasible assembly sequences one can define feasible
assembly trees as follows:

www.manaraa.com

140

Figure 6.4: AND/OR graph of feasible assembly sequences for the assembly
shown in figure 1

www.manaraa.com

141

Definition 3 Given the AND/OR graph of feasible assembly sequences of an
assembly whose set of parts is P = {PI, P2, . . . ,p N} any AND/OR path having
{PI,P2,"',PN} as its initial node, and having {PI} , {P2}"",{PN} as its ter­
minal nodes is a feasible assembly tree of that assembly.

An assembly tree induces a partial order among its hyperarcs: hyperarc hi is
said to precede hyperarc hj if there is a node nk in the assembly tree such that
hi is incident from nk and hj is incident to nk. At least one sequence of the
hyperarcs of an assembly tree is consistent with this partial order. Further­
more, every sequence of the hypearcs that is consistent with the partial order
corresponds to a feasible assembly sequence.

The Correspondence between
the Directed Graph and the AND/OR Graph

Every feasible assembly sequence in the directed graph of feasible assembly
sequences corresponds to a feasible assembly tree in the AND/OR graph of feasi­
ble assembly sequences. And every feasible assembly tree in the AND/OR graph
of feasible assembly sequences corresponds to one or more feasible assembly
sequences in the directed graph of feasible assembly sequences. The two theo­
rems below establish the correspondence between assembly trees and assembly
sequences. Proofs of these theorems are presented elsewhere[5].

Theorem 1 Given an assembly tree of an assembly, if hI h2 ' " hi = ((Ti, Gi)· · ·
. . . hN-I is a sequence of all the hyperarcs of that assembly tree that is consistent
with the partial order induced by the tree, then the sequence fh , n2 . .. nN in
which n l = {{PI}, {Pz}, .. . {PN}} and niH = (ni - Gi) U {(Ti} is a feasible
assembly sequence of the assembly.

Theorem 2 If n l , n2 ... nN is an assembly sequence of an assembly whose
set of parts is P = {PI,P2,'" PN} and

a
Sp = n l U n2 u .. · u nN

{(Ti} = niH - (ni n ni+l) for i = 1,2" " ,N - 1

Ga; = n i - (ni n ni+d for i = 1,2, . .. , N - 1

hi=((Ti,Ga.) fori=I,2,···,N-l
a

Hp = {hI. h2,"', hN-I}

then < S;, H% > is an assembly tree of that assembly.

The useful feature of the AND/OR graph representation is that it encompasses
all possible assembly sequences. One advantage of the AND/OR graph is that
for most assemblies that have more than 5 parts it has fewer nodes than the
directed graph of assembly states[6]. Furthermore, it explicitly shows the pos­
sibility of simultaneous execution of assembly tasks.

www.manaraa.com

142

6.4 Establishment Condition
Representation of Assembly Sequences

If we represent the states of the assembly process by L-dimensional binary
vectors, then a set of logical expressions can be used to encode the directed
graph of feasible assembly sequences. Let 2i = {gh , ;f2 , ... , ;fKj} be the set of
states from which the ith connection can be established without precluding the
completion of the assembly. The establishment condition for the ith connection
is the logical function

K L

Fi(;f) = Fi(X1,X2, ' " ,XL) = 2: II '"'fkl
k=1 i=1

where the sum and the product are the logical operations OR and AND respec­
tively!, and '"'Ik I is either the symbol Xl if the lth component of h is true (T),
or the symbol XI if the lth component of h is false (F) . Clearly, Fi(Xk) = T if
and only if Xk is an element of~. It is often possible to simplify the expression
of Fi (;f) using the rules of boolean algebra.

Any assembly sequence whose representation as an ordered sequence of states
is (;f1 ~ . .. ;fN) and whose representation as an ordered sequence of subsets
of connections is ('"'11 '"'12 ..• '"'IN-1) is feasible if and only if it is such that if
the ith connection is established in the kth task (Le. C; E '"'Ik) then FiCh) =
T. Therefore, the set of establishment conditions is a correct and complete
representation of assembly sequences.

Knowing F1(;f), F2~), .. . , FL~), and the assembly's graph of connections,
it is straightforward to construct the assembly's directed graph of assembly
states. This representation was first introduced by Bourjault[2].

Obtaining the establishment conditions from the directed graph

The establishment conditions can be obtained from the directed graph of feasi­
ble assembly sequences by systematically looking at the edges that are incident
from and to nodes that correspond to states from which the assembly can be
completed.

As an example, the establishment conditions for the assembly shown in figure
6.1 that are obtained from its directed graph of feasilbe assembly sequences,
which is shown in figure 6.3, are:

IThe logical operation AND will be denoted either by the symbol "A" or by the product of the
two logical variables. Similarly, the logical operation OR will be denoted either by the symbol "v"
or by the sum of the two logical variables.

www.manaraa.com

Fl (Xl, X2 , X3, X4, XS) = Xl· X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • XS+

Xl· X2 . X3 • X4 . Xs + Xl . X2 • X3 • X4 • XS+

F 2(Xl , X2, X3, X4, XS) = Xl· X2 • X3 • X4 • Xs + Xl· X2 . X3 • X4 • XS+

Xl· X2 . X3 • X4 • Xs + Xl . X2 . X3 • X4 • XS+

Xl . X2 . X3 . X4 • Xs + Xl . X2 . X3 • X4 • Xs +

F4(Xl, X2, X3, X4, XS) = Xl· X2 . X3 • X4 • Xs + Xl· X2 • X3 . X4 . XS+

Xl· X2 • X3 • X4 • Xs + Xl· X2 • X3 • X4 • XS+

FS(Xl, X2, X3, X4, XS) = Xl· X2 . X3· X4 • Xs + Xl . X2 . X3 • X4· XS+

Xl· X2 . X3 . X4 • Xs + Xl· X2 • X3 • X4 . XS+

143

The first establishment condition (Fl(Xl, X2, X3, X4, xs» corresponds to the
fact that the only states in which connection Cl (Le. the connection between
the cap and the stick) can be established without precluding the completion of
the assembly are either the state in which no connection has been established
(node 1 in figure 6.3), or the state in which only connection C2 is established
(node 2), or the state in which only connection C3 is established (node 4), or
the state in which only connection Cs is established (node 5), or the state in
which only connections C2 and C4 are established (node 9), or the state in which
only connection Cl and C2 are not established (node 12). It should be noticed
that there is no term corresponding to the state in which only connection C4

is established (node 6); although it is feasible to establish connection Cl the
resulting state (node 10) is a dead-end from which the assembly cannot be
completed.

The establishment conditions defined in this chapter can only discriminate be­
tween feasible and nonfeasible assembly sequences. There are sequences of
states that "satisfy" the establishment conditions but are not assembly se­
quences and therefore cannot be feasible assembly sequences. For example, the

www.manaraa.com

144

sequence of states [F F F F F] [T T T F F] [T T T T T J and its corresponding se­
quence of subsets of connections ({ Cl , C2 , C3} {C4' C5}) "satisfy" the above set
of establishment conditions. Yet, they do not not correspond to an assembly
sequence since it does not encompass exactly 3 assembly tasks.

It is possible to simplify the expressions of the establishment conditions using
the rules of boolean algebra. The expressions above can be rewritten in dis­
junctive normal form[4], as:

FI (Xl, X2 , X3 , X4, Xs) = Xl· X2 • X3 • X4 + Xl . X2 . X4 • XS+

Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • Xs

X2 . X3 . X4 . Xs + Xl . X2 . X4 . xs+

A second type of simplification is possible if we consider the nonstate vectors
as DON'T CARE conditions. For the assembly shown in figure 6.1, there are 19
nonstate vectors:

[FFFTT] [FFTFT] [FFTTF] [FTFTT] [FTTFF]

[FTTFT] [FTTTF] [FTTTT] [TFFTT] [TFTFF]

[TFTFT] [TFTTF] [TFTTT] [TTFFF] [TTFFT]

[TTFTF] [TTFTT] [TTTFT] [TTTTF]

If we consider these vectors as DON'T CARE combinations in the simplification
process, the resulting expressions for the establishment conditions are:

H (Xl , X2 , X3 , X4, Xs) = Xl . X2 . X4 + Xl . X2 • X5 + Xl . X2 . X5

www.manaraa.com

145

Still a third type of simplification is possible if we consider DON'T CARE con­
ditions the states that do not occur in any feasible assembly sequence. For the
assembly shown in figure 6.1, there are two states that do not occur in any
feasible assembly sequence; they correspond to nodes 8 and 10 in figure 6.3
and their corresponding binary vectors are: [F T F F T] and [T F F T F] If we
also consider these vectors as DON'T CARE combinations in the simplification
process, the resulting establishment conditions for the assembly shown in figure
6.1 are:

The expressions for the establishment conditions above are simpler than those
listed previously. Although they can correctly discriminate between feasible
and unfeasible assembly sequences, they are not as safe to be used in the
real time control of the assembly process. For example, these expressions in­
dicate, correctly, that the assembly sequence whose representation as an or­
dered sequence of states is ([F F F F F] [F T F F F] [F T F F T] [T T T T T])
and whose representation as an ordered sequence of subsets of connections is
({C2} {cs} {C1C3C4}) is not feasible because Fs(F,T,F,F,F) =F, and there­
fore the second assembly task, in which the 5th connection is established, is not
feasible. But should the assembly process accidentally reach the state whose
binary vector representation is [F T F F T] these expressions for the establish­
ment conditions would indicate, incorrectly, that it is feasible to establish con­
nections Cl, C3, and C4 and therefore to complete the assembly. This happens
because this state ([F T F F T]) was considered a DON'T CARE condition.

6.5 Precedence relationships between
the establishment of one connection
and states of the assembly process

Two types of precedence relationships can be used to represent assembly se­
quences: precedence relationships between the establishment of one connection
and states of the assembly process, and precedence relationships between the
establishment of one connection between two parts and the establishment of an­
other connection. This section addresses the former type and the next section
addresses the latter.

www.manaraa.com

146

We will use the notation Ci -4 S(;,;.) to indicate that the establishment of the itk
connection must precede any state S ofthe assembly process for which the value
of the logical function S(;,;.) is true. The argument of S(;,;.) is the L-dimensional
binary vector representation of the state s. We will use a compact notation for
logical combinations of precedence relationships. For example, we will write
Ci + Cj -4 S(;,;.) when we mean [Ci -4 S(;,;.)] V [Cj -4 S(;,;.)].

An assembly sequence whose representation as an ordered sequence of binary
vectors is (;fl ~ ... hi) and whose representation as an ordered sequence of
subsets of connections is ('1'2 ... IN-d satisfies the precedence relationship
Ci -4 S (!f) if

S(;£,;;) => 3l[(l < k) /\ (Ci E IZ)] for k = 1,2"" N

For example, for the assembly shown in figure 6.1, the assembly sequence whose
representation as an ordered sequence of binary vectors is ([F F F F F 1 [T F F F

F 1 [T T T F F 1 [T T T TTl) and whose representation as an ordered sequence
of subsets of connections is ({ C1} { C2 , C3} { C4, C5}) satisfies the precedence rela­
tionship C1 -4 X2 . X3 because the only states for which S(!f) = X2 . X3 is true are
the third and the fourth, and the establishment of connection C1 occurs on the
first assembly task. This sequence does not satisfy the precedence relationship
C4 -4 Xl • X2 . X3 because for the third state the value of S(!f) = Xl • X2 • X3 is
true but the establishment of connection C4 occurs on the third assembly task,
which occurs after the third state.

Let 'II s be the set of assembly states that never occur in any feasible assembly
sequence. These include the unstable assembly states plus the stable states
from which the final state cannot be reached plus the states that cannot be
reached from the initial state. Let 'II x = {;';'1, !f2 , ... , !0} be the set of all
L-dimensional binary vectors that represent the assembly states in 'II sEvery
element ;£j of Wx is such that the value of the logical function G(!fj) is true,
where

K L

G(;,;.) = G(X1 , X2, ... , XL) = L IT A/el'

k=l Z=l

(6.1)

The sum and the product in equation 6.1 are the logical operations OR and
AND respectively, and Ak I is either the symbol Xl if the ltk component of;£,;; is
true, or the symbol Xl if the ltk component of ;';'k is false. In many cases the
expression of G(;,;.) can be simplified using the rules of boolean algebra. Allow­
ing for simplifications, but keeping the logical function as a sum of products
(disjunctive form[4]) , equation 6.1 can be rewritten as

J'

G(;,;.) = L 9j(!f) (6.2)
j=l

www.manaraa.com

147

where each term 9j(If) is the product of a subset of { Xl, X2, . . . ,XL, Xl. X2, ...

. . . ,XL} that does not include both Xi and Xi for any i. Each term 9j(If) can
be rewritten grouping all the nonnegated variables first and all the negated
variables last, that is 9j(If) = Xa . Xb . .. Xh . xp . x q · .. Xz·

Any assembly sequence that includes a state that is in Ws is an unfeasible
assembly sequence. Therefore, a necessary condition for the feasibility of an
assembly sequence whose representation as an ordered list of binary vectors is
(If I !f.z ... !f.N) is that G(IfI) = G(!f.z) = ... = G(hv) = F. This condition is
equivalent to gj(Ifi) = Ffor i = 1,2, ... ,N and for j = 1,2, .. . , J'. This
necessary condition is also sufficient if the assembly has the following property:

Property 1 Given any two states Si and Sj not necessarily in the same as­
sembly sequence, let Ii and Ij be the sets of connections that are established in
assembly tasks 'Ii and '1j from Si and Sj respectively. If

< P, Oi > is the state's graph of connections associated to Si

< P, OJ > is the state's graph of connections associated to Sj

Ii C Ij

Oi C OJ and

1"i is geometrically and mechanically feasible,

then

1"j is geometrically and mechanically feasible,

This property corresponds to the fact that if it is geometrically and mechani­
cally feasible to establish a set of connections ('j) when many other connections
OJ have already been established, then it is also geometrically and mechanically
feasible to establish fewer connections ('i C Ij) when fewer other connections
(q C OJ) have been established. Although many common assemblies have this
property, there are assemblies that do not have it. An example of an assembly
that does not have this property is presented elsewhere[5].

If the assembly has property 1, the following lemma establishes a necessary and
sufficient condition for the feasibility of an assembly sequence.

Lemma 3 Given an assembly whose graph of connections is < P, C > (with
C = {Cl' C2, ... , CL}) let W s be the set of states that do not occur in any
feasible assembly sequence. If the assembly has property 1, then an assembly
sequence is feasible if and only if it does not include any state in W s.

If (Ifl!f.z ... !f.N) is an ordered list of binary vectors that represents an assembly
sequence, the condition gj(IfI) = gj(If2) = ... = gj(IfN) = F corresponds to a
precedence relationship. The following lemma establishes the correspondence.

www.manaraa.com

148

Lemma 4 Given an assembly made up of N parts whose graph of connections
is < p,a > (with a = {C1' D.!, ... ,cd), let

g(;&.) = Xo. . Xb ..• Xh • Xp • Xq ..• X z

with

{a, b, ... I h} n {P, q, . .. I z} = 0

and

{a, b I • • • , h} U {p, q, ... , z} C {I , 2, ... , L}

If the assembly has the property 1 and if (;&'1 ~ ••. ;&'N) is the representation of
an assembly sequence as an ordered list of L-dimensional binary vectors, then
the condition

g(;&'l) = g(~) = ... = g(;&.N) = F

is equivalent to the condition

Cp + cq + ... + Cz ~ B(;&.)

where

L

B(;&.) = II .AI and .AI = {XI
i=l true

if 1 E {ab · · · h}
otherwise

The product in this lemma is the logical operation AND. The logical function
B(;£) is the product of the variables Xk that are not negated in the expression
of g(;£), that is B(;&.) = Xo. • Xb . .• Xh.

Applying lemma 4 to each of the J' terms on the right side of equation 6.2 we
obtain J' precedence relationships. Given an assembly sequence, if it satisfies
all J' precedence relationships then it does not include any state in\!! sand
therefore is feasible. Conversely, if the assembly sequence does not include any
state in \!! s (and therefore it is a feasible assembly sequence) then it satisfies all
precedence relationships. Therefore, the set of J' precedence relationships is a
correct and complete representation of the set of all feasible assembly sequences.
This fact is established by the following theorem.

Theorem 5 Given an assembly made up of N parts whose graph of connec­
tions is < P, a> (with 0= {C1' C2, ..• , cd), let

J'

G(;&.) = L 9j(;&')
j=l

www.manaraa.com

149

be a disjunctive form of the logical function that is true if and only if 0[is a
binary-vector representation of a state that does not occur in any feasible assem­
bly sequence. Let Aj be the set containing the indexes of the variables that are
asserted in gj (O[). Let N j be the set containing the indexes of the variables that
are negated in gj(O[) . If the assembly has property 1, and if (1'1,1'2, ... ,I'N-l)
is an ordered sequence of subsets of connections that represents an assembly se­
quence, then (1'1 , 1'2, ... , I'N-l) satisfies the set of J' precedence relationships

LCk-+ 11 Xi forj=1,2,·· · ,J'
kENj iEAj

if and only if it corresponds to a feasible assembly sequence.

An example will illustrate the use of theorem 5. For the assembly shown in
figure 6.1, which has property 1, Wx = {[F T F F T] [T F F T F] } (these
binary vectors correspond to nodes 8 and 10 in the directed graph of assembly
states shown in figure 6.3). Therefore,

G(O[) = G(XlJ X2, X3, X4, xs) =
Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • Xs (6.3)

In this case the expression of G(O[) cannot be further simplified and we have

91 (0[) = Xl . X2 . X3 . X4 • Xs

92(0[) = Xl . X2 • X3 . X4 . Xs

Al = {2,5} Nl = {1,3,4}

A2 ={1 ,4} N2={2,3,5}

Therefore, the precedence relationships are:

(Set 1)

A simpler set of precedence relationships can be obtained if in the simplification
of G(;f) we set the nonstate vectors as DON'T CARE conditions. For the assembly
shown in figure 6.1, there are 19 nonstate vectors:

[FFFTT] [FFTFT) [FFTTF) [FTFTT)

[FTTFT] [FTTTF) [FTTTT] [TFFTT]
[TFTFT] [TFTTF] [TFTTT] [TTFFF]
[TTFTF] [TTFTT] [TTTFT] [TTTTF]

[FTTFF]

[TFTFF]
[TTFFT]

Considering the above 19 nonstate vectors as DON'T CARE conditions in the
simplification of G(;!L) yields

G(;!L) = G(Xl, X2, X3, X4, xs) = Xl . X2 . Xs + Xl . X2 . X4

Therefore, the precedence relationships are

(6.4)

(Set 2)

www.manaraa.com

150

This set is simpler and yet equivalent to Set 1.

It should be noticed that an unfeasible assembly sequence, such as the assembly
sequence whose representation as an ordered sequence of subsets of connections
is ({ C2} {cs} {Cl' C3, C4}), does not satisfy both sets of precedence relationships
above (Le. Sets 1 and 2). It should also be noticed that there are ordered
sequences of N - 1 subsets of connections and their corresponding ordered se­
quence of binary vectors, such as ({cd {C2}{C3, C4, cs}) and ([F F F F F 1 [T F

F F F 1 [T T F F F 1 [T T T TTl) that do not represent an assembly sequence,
but satisfy Sets 1 and 3 of precedence relationships. The precedence relation­
ships obtained using the result of theorem 5 can only discriminate the feasible
from the unfeasible assembly sequences. The information in the assembly's
graph of connections allows the discrimination of assembly sequences from or­
dered sequences of subsets of connections that do not correspond to assembly
sequences.

In order to be able to discriminate the representations of feasible assembly
sequences from any sequence of N - 1 subsets of connections, the set W x must
also include all nonstate vectors, and, of course, these combinations should not
be considered DON'T CARE conditions.

Corollary 6 Given an assembly made up of N parts whose graph of connec­
tions is < P, C > (with C = {Cl' C2, . .. , cd), let

J'

G(~) = 2: gj(~)
j=l

be a disjunctive form of the logical function that is true if and only if ~ is either
a non-state binary-vector or a binary-vector representation of a state that does
not occur in any feasible assembly sequence. Let Aj be the set containing the
indexes of the variables that are asserted in gj (;~). Let Nj be the set containing
the indexes of the variables that are negated in gj (~) . If the assembly has
property one, then an ordered sequence of N - 1 subsets of connections satisfies
the set of J' precedence relationships

2: Ck -4 II Xi for j = 1,2" " , J'
kENj iEAj

if and only if it represents a feasible assembly sequence.

For the assembly shown in figure 6.1 there are two assembly states that do not
occur in any feasible assembly sequence. And there are nineteen 5-dimensional
nonstate vectors which were listed above. Let G(~) be the logical function that
is true if and only if ~ is one of these twenty-one 5-dimensional vectors, that is

www.manaraa.com

G(~) = Xl· X2 . X3 • X4 • Xs + Xl . X2 • X3 • X4 . X5 +
Xl . X2 . X3 • X4 • Xs + Xl • X2 • X3 • X4 . Xs +
Xl . X2 . X3 . X4 • Xs + Xl . X2 • X3 • X4 . Xs +
Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs +
Xl . X2 . X3 . X4 • Xs + Xl . X2 • X3 • X4 • Xs +
Xl . X2 • X3 . X4 • Xs + Xl . X2 • X3 . X4 • Xs +
Xl . X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • Xs +
Xl • X2 • X3 . X4 • Xs + Xl . X2 • X3 . X4 • Xs +
Xl . X2 • X3 . X4 . Xs + Xl . X2 • X3 • X4 • Xs +
Xl • X2 • X3 • X4 • Xs + Xl • X2 . X3 . X4 • Xs +
Xl . X2 . X3 . X4 . XS·

151

(6.5)

The first two terms in this function correspond to the two states that do not
occur in any feasible assembly sequence and the other 19 terms correspond
to the nonstate vectors. Using the rules of boolean algebra to simplify this
function, we obtain

G(~) = Xl· X2 • Xs + Xl . X2 • X3 + Xl . X2 . X4 + Xl . X2 • X3 +
Xl . X2 . X3 + X3 . X4 • Xs + X3 • X4 . Xs + X3 . X4 • Xs ·

Therefore, the precedence relationships are:

(Set 3)

The ordered sequences of subsets of connections ({ CI , C2} { C3 , C4 , cs}) which
does not correspond to an assembly sequence but satisfies Sets 1 and 2 of
precedence relationships does not satisfy Set 3. The third state satisfies S(;f) =
Xl • X2 but connection C3 is established during the third assembly task, which
occurs after the third assembly state; therefore, this sequence does not satisfy
the precedence relationship C3 -+ Xl . X2.

But it should be noticed that Set 3 of precedence relationships will be "sat­
isfied" for ordered sequences of subsets of connections containing fewer than
N - 1 subsets. For exam pie, the sequence ({ CI , C2 , C3} {C4 , cs}) "satisfies" Set
3 of precedence relationships. Yet, this sequence does not correspond to a fea­
sible assembly sequence because it does not contain exactly N - 1 subsets of
connections.

www.manaraa.com

152

6.6 Precedence relationships between
the establishment of one connection and
the establishment of another connection

We will use the notation Ci < Cj to indicate the fact that the establishment of
connection Ci must precede the establishment of connection Cj. And we will
use the notation Ci ::; Cj to indicate the fact that the establishment of con­
nection Ci must precede or be simultaneous with the establishment of connec­
tion Cj. Furthermore, we will use a compact notation for logical combinations
of precedence relationships; for example, we will write Ci < Cj • Cic when we
mean (Ci < Cj) 1\ (Ci < CIc), and we will write Ci + Cj < Cic when we mean
(Ci < CIc) V (Cj < CIc).

An assembly sequence whose representation as an ordered sequence of binary
vectors is (;£1;£2··· ~) and whose representation as an ordered sequence of
subsets of connections is ('Y(Y2·· ·'YN-d satisfies the precedence relationship
Ci < Cj if c; E 'Ya, Cj E 'Yb, and a < b. Similarly, the sequence satisfies c; S Cj if
c; E 'Ya, Cj E 'Yb, and as b. For example, for the assembly shown in figure 6.1,
the assembly sequence whose representation as an ordered sequence of binary
vectors is ([F F F F F] [T F F F F] [T T T F F] [T T T T T]) and whose represen­
tation as an ordered sequence of subsets of connections is ({ Cl} {C2, C3} { C4, cs})
satisfies the precedence relationships C2 < C4 and C2 S C3 but does not satisfy
the precedence relationships C2 < C3 and C2 SCI.

Each feasible assembly sequence of a given assembly can be uniquely char­
acterized by a logical expression consisting of the conjunction of precedence
relationships between the establishment of one connection and the establish­
ment of another connection. For example, for the assembly shown in figure 6.1 ,
the assembly sequence ([F F F F F] [T F F F F] [T T T F F] [T T T T T]) can be
uniquely characterized by the following conjunction of precedence relationships

The set of all M feasible assembly sequences can be uniquely characterized by
a disjunction of M conjunctions of precedence relationships in which each con­
junction characterizes one assembly sequence. Clearly, this logical combination
of precedence relationships constitutes a correct and complete representation
for the set of all assembly sequences.

It is often possible to simplify this logical combination of precedence relation­
ships using the rules of boolean algebra. Further simplification is possible if
one notices that there are logical combinations of precedence relationships that
cannot be satisfied by any assembly sequence. For the assembly shown in figure
6.1, for example, the combination (Cl < C2) 1\ (C2 < C3) 1\ (C3 < C4) 1\ (C4 < C5)

cannot be satisfied by any assembly sequence. These combinations can be
set as don't care conditions in the simplification of the logical combination of

www.manaraa.com

153

precedence relationships.

It is possible to obtain simpler precedence relationships and the rest of this
section describes two ways to do that.

Precedence relationships derived from
those obtained in the previous section

The precedence relationships obtained in the previous section have the form

Cp + Cq + ... + Cz -+ Xa • Xb ••.•. Xh

which is equivalent to the disjunction of precedence relationships

(Cp -+ Xa • Xb • ••• • Xh) V (Cq -+ Xa • Xb .•• •• Xh) V . , .

.. . V (C" -+ Xa • Xb • • • •• Xh) .

It is straigth forward to see that the precedence relationship

Cp -+ Xa • Xb ••••• Xh

is equivalent to

Cp ~ Ca + Cb + ... + Ch·

Therefore, the disjunction of precedence relationships above is equivalent to

(Cp ~ Ca + Cb + ... + Ch) V (cq ~ Ca + Cb + ... + Ch) V .. ·

... V (c" :5 Cc + Cb + ... + Ch)

Each set of precedence relationships obtained in the previous section yields a
conjunction of disjunctions of precedence relationships. For example, for the
simple product shown in figure 6.1, we obtained, in the previous section, Set 1
of precedence relationships. That set is equivalent to the following conjunction
of disjunctions:

[(CI :5 C2 + cs) V (C3 :5 C2 + cs) V (C4 :5 C2 + cs)]A

[(C2 :5 CI + C4) V (C3 :5 Cl + C4) V (cs :5 Cl + C4)]

Precedence relationships derived from
the set of feasible assembly sequences

Another simpler precedence relationship representation of all assembly se­
quences can be derived from the set of feasible assembly sequences if the assem­
bly has the property 1 described in the previous section as well as the following
property:

www.manaraa.com

154

Property 2 If the subsets (It,~, ... ,Ole of the set of parts P characterize stable
subassemblies, then the set 0 = 01 U 02 U . . . U Ole also characterizes a stable
subassembly.

Like in the case of property 1, many common assemblies have this second
property. Yet, there are assemblies that do not have it. An example of an
assembly that does not have this property is presented elsewhere[5].

The following theorem indicates how to obtain a simple precedence relation­
ship representation of the assembly sequences for assemblies that have both
properties 1 and 2.

Theorem 7 Given an assembly made up of N parts whose graph of connec­
tions is < P,C > (with C = {Cl,C2,' " ,cd), let

be a set of M ordered sequences of subsets of connections that represent feasible
assembly sequences. If the assembly has properties 1 and 2, then any ordered
sequence of N - 1 subsets of connections that represents an assembly sequence
corresponds to a feasible assembly sequence if it satisfies the set of2L precedence
relationships:

M M

C;::;L11j i=I,2,"',L and L Hi; ::; c; i = 1,2" .. ,L
;=1 ;=1

where

if Cle E Ilj and I 2: i
otherwise.

if Cle E Ilj and::; i
otherwise.

The sum and the product in this theorem are the logical operations OR and AND

respectively. Each term 11; (for i = 1,2"", L, and for j = 1,2"", M) is the
product of the variables corresponding to the connections that are established
at the same time or after the establishment of connection c; in the jth sequence.
Similarly, each term Hi; (for i = 1,2"", L, and for j = 1,2"", M) is the
product of the variables corresponding to the connections that are established
at the same time or before the establishment of connection Ci in the lh sequence.
Precedence relationships that have T on either side are always satisfied.

www.manaraa.com

155

An example will illustrate the use of theorem 7. The assembly shown in figure
6.1 has properties 1 and 2. For that assembly, the set of feasible sequences can
be obtained from the directed graph shown in figure 6.3. There are ten feasible
assembly sequences and they are:

({ CI}{ C2, C3}{ C4, CS}) ({ CI}{ CS}{ C2, C3, cd) ({ C2}{ c!, C3}{ C4, CS})

({ C2}{ C4}{ CI, C3, CS}) ({ C3}{ CI, C2}{ C4, CS}) ({ C3}{ C4, cs}{ CI, C2})

({ C4}{ C2}{ CI, C3, es}) ({ C4}{ C3, cs}{ Cl, C2}) ({ cs}{ cIl{ C2, C3, C4})

({ cs}{ C3, C4}{ Cl, C2})

Applying the result of theorem 7 to the above set of feasible sequences for the
assembly shown in figure 6.1, the precedence relationships having connection
CI alone on one side are:

CI < C2'C3'C4'CS+C2'C3'C4'Cs+C3'C4'CS+

C3 . Cs + C2 . C4 . Cs + C2 + C3 . es + C2 + C2 . C3 . C4 + C2

and

T+ T+C2 . C3 + C2 . C3 . C4' Cs + C2 . C3 + Cz • C3 . C4 . cs+

Cz . C3 . C4 . Cs + C2 . C3 . C4 . Cs + Cs + Cz . C3 . C4 . Cs :5 CI·

Using the rules of boolean algebra, these two precedence relationships can be
simplified yielding C! :5 Cz + C3 . Cs and T:5 CI . The second precedence rela­
tionship is always satisfied and can be ignored. Similarly, applying the result
of theorem 7, simplifying the logical expressions, and deleting those precedence
relationships that have T on either side, we obtain four addional precedence
relationships. The resulting set of precedence relationships is:

CI:5C2+C3' CS cZ:5cI+C3'C4 c3:5Cl'CS+Cz'C4
(Set 4)

C4 :5 Cs + C2 . C3 cs:5 C4 + CI . C3·

Set 4 of precedence relationships still contains some redundancies and can be
shown to be equivalent to:

(Set 5)

The simplest way to see the equivalence is to verify that Set 5 correctly dis­
criminates the feasible assembly sequences from the unfeasible ones.

It should be noticed that an unfeasible assembly sequence, such as the as­
sembly sequence whose representation as an ordered sequence of subsets of
connections is ({ cz} {cs} {CI' C3, C4}), does not satisfy Set 5 of precedence rela­
tionships. It should also be noticed that there are ordered sequences of subsets
of connections, such as ({ C3} {Cl' C4} {C2' cs}), that do not represent an assem­
bly sequence, but satisfy Set 5 of precedence relationships. The precedence
relationships obtained using the result of theorem 7 can only discriminate the

www.manaraa.com

156

feasible from the unfeasible assembly sequences. The information in the as­

sembly's graph of connections allows the discrimination of assembly sequences
from ordered sequences of subsets of connections that do not correspond to
assembly sequences.

Theorem 7 is a sufficient condition. The set of precedence relationships ob­
tained using this theorem is correct but not necessarily complete. For example
if the set of M ordered sequences of subsets of connections is

{ ({ C3}{ CI, C2}{ C4, cs}) ({ C3}{ C4, C5}{ CI, C2}) ({ CI}{ cs}{ C2, C3, C4}) }

the resulting precedence relationships are:

(Set 6)

Some of the feasible sequences, such as ({ CI}{ C2, C3}{ C4, C5}), satisfy Set 6 of
precedence relationships. Other feasible sequences, such as ({ C2} {CI' C3} { C4,

Cs }) and ({ cs} {CI} {C2' C3, C4}), do not satisfy Set 6. But if the set of M ordered
sequences of subsets of connections includes the representations of all feasible
assembly sequences, then the resulting set of precedence relationships consti­
tutes a correct and complete representation of the feasible assembly sequences.
This leads to the following corollary:

Corollary 8 If the set of of M ordered sequences of subsets of connections in
theorem 7 includes the representations of all feasible assembly sequences, the
resulting set of precedence relationships is a correct and complete representation
of the feasible assembly sequences.

Finally, it should be noticed that these precedence relationships can be obtained
by answering the following two questions for each connection:

1. What connections must be undone when the ith connection is established?

2. What connections must not be left to be done after the ith connection is
established?

De Fazio and Whitney[3] have proposed questions similar to these. The proof
of theorem 7[5] shows that if the assembly has properties 1 and 2, then these
questions lead to a correct and complete precedence relationship representation
of assembly sequences. Furthermore, in order to answer these questions one
must actually know what all the feasible assembly sequences are.

www.manaraa.com

157

<} 11::::======11 i~~~ --- (]
CAP HEAD

Cz

Cs

BODY TUBE

Figure 6.5: The ball-point pen

Cl
BODY 1-";":"--1

iNK BunON

Figure 6.6: The graph of connections for the ball-point pen shown in figure 6.5

6.7 The Ball Point Pen Assembly

Both Bourjault[2] and De Fazio and Whitney[3] have used a ball point pen to
illustrate their algorithms for the generation of mechanical assembly sequences.
Figure 6.5 shows the ball point pen. It contains 6 parts, namely the cap,
the body, the button, the head, the tube, and the ink. Although the ink is
not actually rigid, in this analysis it can be considered rigid as long as the
subassembly made up of the tube and the ink is considered unstable.

Figure 6.6 shows the ball point pen graph of connections. It has 6 nodes and 5
connections. In order to be consistent with previous work[2, 3], it is assumed
that there is no contact between the ink and the head. Therefore, the graph
of connections does not include an edge connecting the node corresponding to
the ink to the node corresponding to the head.

Directed graph of feasible assembly sequences

Figure 6.7 shows the directed graph of feasible assembly sequences. Each node
of the graph in figure 6.7 is labeled by a 5-dimensional binary vector that
represents a stable assembly state.

AND/OR graph of feasible assembly sequences

Figure 6.8 shows the AND/OR graph of feasible assembly sequences for the ball
point pen. Figure 6.8 does not include the nodes of the AND/OR graph that
cannot be reached from the top node, since they do not occur in any feasible
assembly sequence. These nodes correspond to the following subassemblies: {
CAP, BODY}, { BODY, HEAD, BUTTON }, { CAP, BODY, BUTTON }, { BODY,

HEAD, TUBE, BUTTON }, { CAP, BODY, HEAD, BUTTON }, and { CAP, BODY,

HEAD, TUBE, BUTTON } .

www.manaraa.com

158

Figure 6.7: The directed graph of feasible assembly sequences of the ball-point
pen shown in figure 6.5

Establishment conditions

The establishment conditions that are obtained from the directed graph of
feasible assembly sequences are:

FI (~) = Xl · X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs +
Xl . X2 • X3 • X4 • Xs + Xl • X2 • X3 • X4 • Xs

F2 (~) = Xl· X2 • X3 . X4 • Xs + Xl • X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 • Xs +
Xl . X2 . X3 . X4 . Xs + Xl • X2 • X3 • X4 . Xs

F3 (~) = Xl· X2 • X3 • X4 . Xs + Xl • X2 • X3 • X4 • Xs +
~.~.~.~.~+~ . ~ . ~.~.~

F4 (~) = Xl· X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs +
Xl . X2 . X3 • X4 . Xs + Xl . X2 . X3 • X4 . Xs

Fs (~) = Xl· X2 • X3 • X4 • Xs + Xl . X2 . X3 • X4 • Xs +
Xl . X2 • X3 • X4 . Xs + Xl • X2 • X3 • X4 . Xs

www.manaraa.com

159

Figure 6.8: AND/OR graph of feasible assembly sequences for the ball-point pen
C = CAP 0 = BODY H = HEAD T = TUBE I = INK U = BUTTON

Using the rules of boolean algebra to simplify the logical expressions above, we
obtain:

www.manaraa.com

160

Further simplification is possible if the simplification process takes into account
the fact that some states do not occur in any feasible assembly sequence. These
states are:

[FFFFT]

[FTFFT]

[TFFTF]

[TTFTT]

[FFFTF]

[FTFTF]

[TFFTT]

[TTTFF]

[FFFTT]

[FTFTT]

[TTFFF]

[TTTFT]

[FFTFT]

[FTTFT]

[TTFFT]

[FFTTT]

[FTTTT]

[TTFTF]

and the resulting further simplified establishment conditions are:

H(!f) = Xl . X4 + Xl . X2 = Xl . (X2 + X4)

F2(!f) = Xl . X2 + X2 . X4 = X2 • (Xl + X4)

F3(!f) = X3

F4 (!f) X4 · X3

FS(!f) = Xs· Xl

As pointed out in section 6.4, these last expressions can discriminate correctly
between feasible and unfeasible assembly sequences but they are not safe for
real time control. For example, these expressions indicate, correctly, that the
assembly sequence whose representation as an ordered sequence of states is
([F F F F F 1 [T F F F F 1 [T T F F F 1 [T T T F F 1 [T T T T F 1 [T T T T T]) and
whose representation as an ordered sequence of subsets of connections is ({ Cl}
{C2} {C3} {C4} {cs}) is not feasible because F2 ([T F F F F]) = F, and therefore
the second assembly task, in which the 2nd connection is established, is not
feasible. But should the assembly process accidentally reach the state whose
binary vector representation is [T T F F F 1 these expressions for the establish­
ment conditions would indicate, incorrectly, that it is feasible to establish con­
nections C3 , C4 , and Cs and therefore to complete the assembly. This happens
because this state ([T T F F F]) was considered a DON'T CARE condition.

Precedence relationships between the establishment
of one connection and states of the assembly process

There are 18 states that do not occur in any feasible assembly sequence, and
they have been listed previously. Therefore, the logical function that is true if
and only if is argument is a binary vector representation of a state that does
not occur in any feasible assembly sequence is

G(;£) = Xl · X2 • X3 • X4 • Xs + X l . X2 . X3 • X4 . Xs + Xl . X2 • X3 • X4 . Xs +
Xl • X2 • X3 • X4 . Xs + Xl • X2 • X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs +
Xl . X2 . X3 • X4 . Xs + Xl . X2 . X3 • X4 • Xs + Xl . X2 • X3 • X4 . Xs +
Xl . X2 • X3 • X4 • Xs + Xl • X2 . X3 . X4 . Xs + Xl . X2 • X3 • X4 • Xs +
Xl . X2 • X3 • X4 • Xs + Xl • X2 . X3 • X4 . Xs + Xl . X2 • X3 • X4 • Xs +
Xl • X2 • X3 • X4 . Xs + Xl . X2 • X3 • X4 • Xs + Xl • X2 • X3 . X4 • Xs·

www.manaraa.com

161

The expression of G(~} can be simplified using the rules of boolean algebra. A
simpler disjunctive form of this function is

G(~} = Xl· X2 . X4 + X3 • X4 + Xl . Xs

Therefore, the set of precedence relationships

(Set 7)

is a correct and complete representation of the assembly sequences. Set 7 of
precedence relationships is the same set that was obtained by De Fazio and
Whitney[3].

Precedence relationships between the establishment
of one connection and the establishment of another connection

From the Set 7 of precedence relationships obtained in the previous section,
the following conjunctions of precedence relationships can be derived:

(Set 8)

Another precedence relationship representation can be obtained using theorem
7 presented in section 6.6. There are 12 feasible assembly sequences and they
are:

({1}{3}{4}{2}{5}) ({1}{3}{4}{5}{2})
({1}{5}{3}{4}{2}) ({2}{3}{4}{1}{5})

({1}{3}{5}{4}{2})
({3}{1}{4}{2}{5})

({3}{1}{4}{5}{2}) ({3}{1}{5}{4}{2}) ({3}{2}{4}{1}{5})
({3}{4}{1}{2}{5}) ({3}{4}{1}{5}{2}) ({3}{4}{2}{1}{5}).

Applying the result of theorem 7 to the above set of feasible assembly sequences
for the assembly shown in figure 6.5 and using the rules of boolean algebra,
we obtain the following precedence relationship representation of assembly se­
quences:

Cl ::; Cs

C3 ::; C2 . C4 + CI • C4 • Cs

Cs ::; T

T::; C3

CI ::; Cs

(Set 9)

Set 9 can be further simplified. The precedence relationships that have T

on either side are always satisfied and can be dropped. Furthermore, since
CI ::; Cs the second and third precedence relationships can be simplified to
C3 ::; C2 . C4 + Cl . C4 and C4 ::; C2 + CI respectively. Furthermore, C4 ::; C2 + Cl

requires that either C4 ::; C2 or C4 ::; CI; in both cases C3 ::; C2 • C4 + Cl . C4

www.manaraa.com

162

is also satisfied because C3 ::; C4. Therefore, the following set of precedence
relationships

(Set 10)

constitutes a correct and complete representation of the the set of feasible
assembly sequences. Set 10 is similar to set 7.

References

[I] N. Boneschanscher et al. Subassembly stability. In Proceedings of AAAI-
88, pages 780--785. Morgan Kaufman, August 1988.

[2] A. Bourjault. Contribution a une Approche Methodologique de L'Assem­
blage Automatise: Elaboration Automatique des Sequences Operatoires.
These d'etat, Universite de Franche-Comte, Besanc;on, France, November
1984.

[3] T . L. De Fazio and D. E. Whitney. Simplified Generation of All Mechan­
ical Assembly Sequences. IEEE J. Robotics Automat., RA-3(6):640-658,
December 1987. Corrections ibid RA-4(6):705-708, December 1988.

[4] R. D. Ebbinghaus et al. Mathematical Logic. Springer Verlag, 1984.

[5] L. S. Romem de Mello. Task Sequence Planning for Robotic Assembly.
PhD thesis, Carnegie Mellon University, May 1989.

[6] L. S. Romem de Mello and A. C. Sanderson. Task Sequence Planning for
Assembly. In 12th World Congress on Scientific Computation, volume 3,
pages 390--392. IMACS - International Association for Mathematics and
Computers in Simulation, July 1988.

[7] L. S. Romem de Mello and A. C. Sanderson. Automatic Generation of
Mechanical Assembly Sequences. Technical Report CMU-Rl-TR-88-19,
The Robotics Institute - Carnegie Mellon University, December 1988.

[8] L. S. Romem de Mello and A. C. Sanderson. AND/OR Graph Representa­
tion of Assembly Plans. IEEE Trans. Robotics Automat., 6(2):188-199,
April 1990.

www.manaraa.com

Chapter 7

A basic algorithm for the
generation of mechanical
assembly sequences

Luiz S. Homem de Mello and Arthur C. Sanderson

This chapter presents an algorithm for the generation of mechanical assem­
bly sequences that is correct and complete. The algorithm takes a descrip­
tion of the assembly and returns the AND/OR graph representation of assembly
sequences[lOJ. It is assumed that exactly two parts or subassemblies are joined
at each time, and that after parts have been put together they remain together.
It is also assumed that whenever parts are joined forming a subassembly, all
contacts between the parts in that subassembly are established. Furthermore,
it is assumed that the feasibility of joining two subassemblies is independent of
how those subassemblies were built . These assumptions are consistent with the
trend towards product designs that are suitable for automatic assembly[l, 3] .

The correctness of the algorithm is based on the assumption that it is always
possible to decide correctly whether two subassemblies can be joined, based
on geometrical and physical criteria. This chapter presents an approach to
compute this decision. An experimental implementation for the class of prod­
ucts made up of polyhedral and cylindrical parts having planar or cylindrical
contacts among themselves is described.

www.manaraa.com

164

The amount of computation involved in generating the AND/OR graph repre­
sentation of assembly plans depends on the number of parts that make up
the product, on how those parts are interconnected, and also on the resulting
AND/OR graph. Bounds for the amount of computation involved are presented.

The algorithm described in this chapter operates on a relational model of an
assembly. The relational model used in this work provides an efficient data
structure which maintains contact geometry and connection information at
one level of representation and complete part geometry at a second level. This
hierarchy permits many of the planning decisions, such as local geometric fea­
sibility, to be made by accessing only the highest level of the representation.
In this sense, much of the planning process is carried out in terms of an ab­
straction of the actual assembly parts description. That is, the algorithmic
structure which we describe here operates primarily in the relational graph
domain, and not on the full part geometry unless needed for evaluation of a
particular feasibility predicate. The relational graph structures the search for
assembly plans by organizing the cut-sets of the graph. This organization of
the algorithm and data structure are a principal contribution of this chapter.

Many different types of feasibility predicates could be incorporated into this
overall structure. In this chapter, we discuss internal task predicates which are
related to constraints imposed by other factors such as availability of resources,
and stability predicates which assess the stability of the resulting subassemblies.
We do not attempt to explore these criteria and constraints exhaustively here.
We have focussed on the evaluation of local geometric feasibility as the princi­
pal criterion implemented for the studies described in this chapter. This local
geometric criterion is a minimal constraint for all feasible assemblies and pro­
vides a good means to illustrate and evaluate the performance of the algorithm.
This chapter should be viewed as a framework for assembly sequence planning
which provides a basis for the incorporation of many different possible specific
physical and geometric criteria. In many cases, the physical and geometric
reasoning required for such criteria are active topics of research in themselves,
and the development of extended feasibility criteria will be based on results of
that research.

7.1 A Relational Model for Assemblies

A mechanical assembly is a composition of interconnected parts forming a sta­
ble unit. Each part is a solid rigid object, that is, its shape remains unchanded.
Parts are interconnected whenever they have one or more surfaces in contact.
Surface contacts between parts reduce the degrees of freedom for relative mo­
tion. A cylindrical contact, for example, prevents any relative motion that is
not a translation along the axis or a rotation around the axis. Attachments
may act on surface contacts and eliminate all degrees of freedom for relative
motion. For example, if a cylindrical contact has a pressure-fit attachment,
then no relative motion between the parts is possible.

www.manaraa.com

165

The representations of products developed for high level robot programming
languages (e.g. AUTOPASS[14]) emphasized the geometric aspects such as the
shape of the parts and the contacts between parts. That emphasis is consis­
tent with the goal of generating a sequence of robot actions that will join two
subassemblies, given the sequence in which parts or subassemblies should be
put together. However for the generation of the assembly sequences, a purely
geometric description of the product is not sufficient. There are sequences that
would be feasible from a geometric point of view, but are unfeasible in practice
due to forces resulting from fasteners. Therefore, a model of assemblies to be
used in generating assembly sequences must represent explicitly the fastenings
that bind one part to another.

The representation of assemblies used by the algorithms described in sections
7.2 and 7.3 is a relational model that includes three types of entities: parts, con­
tacts, and attachments. It also includes a set of relationships between entities.
Both entities and relationships can have attributes. Formally, the relational
model of an assembly is a 5-tuple < P, C, A, R, a-functions> in which

• P is a set of symbols, each of which corresponds to one part in the
assembly. No two elements of P correspond to the same part.

• C is a set of symbols, each of which corresponds to a contact between
surfaces of two parts of the assembly. No two elements of C correspond
to the same contact. The two surfaces must be compatible. An example
of a pair of compatible surfaces are a cylindrical shaft and a cylindrical
hole. The same pair of parts may have more than one contact. And the
same surface of one part may be in contact with surfaces of two or more
other parts.

• A is a set of symbols, each of which corresponds to an attachment that
acts on a set of contacts. No two elements of A correspond to the same
attachment. An attachment always has an agent, which can be either
the attached contact, or another contact, or a part. The access to an
attachment may be blocked by one or more parts.

• R is a set of symbols, each of which corresponds to a relationship between
pairs of elements of PUC U A. No two elements of R correspond to the
same relationship.

• a-functions is a set of attribute functions! whose domains are subsets of
PUC U A U R. These functions associate entities or relationships to their
characteristics such as the type of attachment, the entities related by a
relationship, and the shape of a part.

Examples of each type of entity, of relationships and of attribute functions will
be discussed.

1 A function is defined as a subset of the cartesian product of two sets (the domain and the
range) that has no two pairs whose first elements are the same, and such that every element in the
domain appears in one pair.

www.manaraa.com

166

This definition of a relational model representation of assemblies is sufficiently
general to encompass a large class of assemblies including those with rigid parts
and no internal mechanisms. The set of functions can be enlarged to include
all the information that might be necessary to generate assembly sequences. In
practice, it may be convenient to restrict the class of assemblies represented.
Our current experimental implementation has the following restrictions:

• The contacts between parts involve one of the following pairs of compat­
ible surfaces:

- planar surface and another planar surface,

- cylindrical shaft and cylindrical hole,

- polyhedral shaft and polyhedral hole,

- threaded cylindrical shaft and threaded cylindrical hole.

• The types of attachments are:

- glue attachment,

- pressure fit attachment,

- clip attachment,

- screw attachment.

Examples of attribute functions are the following:

• The function that associates a part to a description of its shape:

shape: p~ S

where S is the set of all shape descriptions.

• The function that associates a part to a description of its location:

location: P ~ T

where T is the set of all 4 x 4 homogeneous transformation matrices. The
matrix n associated to part Pi corresponds to the position and orientation
of a reference frame attached to part Pi with respect to a global frame
of reference for the whole assembly. The choice of this global frame of
reference is arbitrary, but the same global reference must be used for all
parts.

• The function that associates a contact to its type:

type-oj-contact: C ~ contact-types

where contact-types = { planar, cylindrical, slot, threaded-cylindrical }.

www.manaraa.com

167

CAP STICK RECEPTACLE HANDLE

Figure 7.1: A four-part assembly in exploded view

• The function that associates a planar contact to the coordinates, with
respect to the assembly's global frame of reference, of a vector normal to
the contact plane:

normal: {c I [c Eel /\ [type-oJ-contact (c) = planar I} ~ R3

• The function that associates a planar contact to the part-relationship
that relates the contact to the part that is back of the contact, i.e. the
part that is such that the normal to the contact plane points to the part's
outside:

back: {c I [c Eel /\ [type-oJ-contact (c) = planar I} ~ R

This function must be consistent with the function normal.

• The function that associates a planar contact to the part-relationship
that relates the contact to the part that is forward of the contact i.e. the
part that is such that the normal to the contact plane points to the part's
inside:

Jorward : {c I [c Eel /\ [type-oJ-contact (c) = planar I} ~ R

This function must be consistent with the function normal.

• The function that associates a part or a contact to its part-contact rela­
tionships:

part-contact-relationships: PUC ~ TI(R)

where TI(R) is the set of all subsets of R .

• The function that associates a part-contact relationship to its part:

part: {rl [r E RIA [type-oJ-relationship(r) = part-contact]} ~ P

• The function that associates a part-contact relationship to its contact:

contact: {rl[r E RI /\ [type-oJ-relationship(r) = part-contact]} ~ C

The relational model of an assembly must be consistent. For example, if
part(rd = PI and contact(rd = CI then rl E part-contact-relationships (PI)
and rl E part-contact-relationships (CI) must hold. Furthermore, the relational

www.manaraa.com

168

RS

R14

Figure 7.2: The relational model graph for the assembly shown in figure 3

model of an assembly must satisfy some syntactic constraints, the most impor­
tant of which are:

• every contact must have exactly two part-contact relationships;

• every part must have at least one part-contact relationship, except in the
case the assembly has only one part;

• every attachment must have at least one target-attachment relationship,
and at least one agent-attachment relationship.

The relational model of an assembly can be represented by a graph plus the
associated attribute functions. Figure 7.1 shows a simple assembly, and figure
7.2 shows its corresponding relational model graph.

The nodes in figure 7.2 correspond to the entities. Nodes corresponding to part
entities are rectangles, nodes corresponding to contact entities are circles, and
nodes corresponding to attachment entities are triangles. All nodes contain la­
bels indicating their corresponding entities. The attribute functions associated
with the contact entities Cl, C2 and C3 are shown in Table 7.1.

The labeled lines connecting two nodes in figure 7.2 correspond to the rela­
tionships. Except for RS, R6, R13, and R14, all relationships are part-contact.

www.manaraa.com

169

Table 7.1: Attribute Functions for the Contact Entities in Figure 4

C1 C2 C3

type-of-contact planar threaded- cylindrical
cylindrical

normal (0 1 0) nil nil

back CAP nil nil

forward STICK nil nil

axis nil «000)(010)) «000)(010))

part-contact (Rl R2) (R3 R4) (R7 R8)

relationships

target-attachment nil (RS) nil

relationships

agent-attachment nil (R6) nil

relationships

Relationships RS and R13 are target-attachment; they indicate that the con­
tacts C2 and CS, respectively, are attached. Relationships R6 and R14 are
agent-attachment; they indicate that the agents of the attachments are the
target contacts themselves.

Given the relational model of an assembly < P, C, A, R, a-functions> a num­
ber of other useful representations may be generated. For example, the graph
of connections of the assembly, as defined by Bourjault[4J, is the simple graph
< V, E > in which

V=P

E = {(Pi,pj)l[Pi E PJ A [pj E PJA

3c3rt3r2[[c E C] A [{rt,r2} =part-contact-relationships(c)JA

[Pi = part(rdJ A [pj = part(r2)]]}

Figure 7.3 shows the graph of connections for the simple assembly shown in
figure 7.1.

www.manaraa.com

170

Figure 7.3: The graph of connections for the four-part assembly

7.1.1 Subassemblies

A subassembly is a nonempty subset of parts that either has only one element
(Le. only one part), or is such that every part has at least one surface contact
with another part in the subset. Although there are cases in which it is possible
to join the same pair of parts in more than one way, a unique assembly geometry
will be assumed for each pair of parts. This geometry corresponds to their
relative location in the whole assembly. A subassembly is said to be stable if its
parts maintain their relative position and do not break contact spontaneously.
All one-part subassemblies are stable.

Given the relational model of an assembly < P, a, A, R, a-functions> the rela­
tional model of a subassembly of that assembly is a relational model < Ps, as,
As, Rs, a-functionss > in which Ps E P, as E a, As E A, Rs E R, and
every function in a-functionss, is a subset of the corresponding function in a­
functions. In addition to the syntactic constraints mentioned above that every
relational model of an assembly must satisfy, the relational model < Ps , as, As,
Rs, a-functionss > of a subassembly of < P, a, A, R, a-functions> must also
satisfy the constraint:

'lic'lirl'lir2[[c E C] /\ [{rl' r2} = part-contact-relationships(c)]/\

[part(rd E Ps] /\ part(r2) E Ps] -+ [c E as]

This constraint corresponds to the assumption that whenever parts are joined
forming a subassembly all contacts between the parts in that subassembly are
established. It requires that those contacts in the model of the assembly whose
two part-contact relationships involve parts in the subassembly must also be
in the model of the subassembly. For example, for the assembly shown in
figure 7.1, there is no subassembly relational model in which Ps = {CAP, RE­
CEPTACLE, STICK} and as = {C2 C3}. If both the cap and the stick are in

www.manaraa.com

171

Ps, then contact Cl must also be in as. This constraint allow the charac­
terization of any subassembly < Ps, as, As, Rs, a-functionss > of an assembly
< P, 0, A, R, a-functions> by its set of parts Ps only. This feature will be used
in the algorithm for the generation of mechanical assembly sequences described
in the subsequent sections. In that algorithm, the intermediate subassemblies
will be characterized by their sets of parts. Given a subset of parts Ps, there is
a corresponding subgraph < Vs, Es > of the assembly's graph of connections
< V , E >. In this sub graph , the set of nodes Vs includes all the elements of
V that correspond to the parts in Ps. And the set of edges Es includes all the
elements of E that have both end points in Vs. A subset of parts Ps charac­
terize a subassembly if and only if the corresponding subgraph < Vs , Es > is
connected (i.e. has only one component). A predicate that is satisfied only by
the subsets of parts that correspond to subassemblies can be defined as follows:

Definition 1 The subassembly predicate associated to subassemblies of assem­
bly \I! =< P, 0, A, R, a-functions> is the predicate

saiIf : II(P) - {true,false}

with saiIf(l1) = true if the subgraph < Vs, Es > in which

Vs=O

Es = { (Pi,Pj)I[Pi E 0]/\ [pj E 0]/\

is connected.

3c3r13r2[[c E C] /\ [{rll r2} = part-contact-relationship(c)]

/\[Pi = part(rl)]/\ [Pj = part(r2)]] }

7.2 Decompositions of an Assembly

The problem of generating the assembly sequences for a product can be trans­
formed into the problem of generating the disassembly sequences for the same
product. Since assembly tasks are not necessarily reversible, the equivalence of
the two problems will hold only if each task used in disassembly is the reverse of
a feasible assembly task, regardless of whether this reverse task itself is feasible
or not. The expression disassembly task, therefore, refers to the reverse of a
feasible assembly task.

As mentioned in the introduction, it was assumed that exactly two parts or
subassemblies are joined at each time. It was also assumed that whenever
parts are joined forming a subassembly, all contacts between the parts in that
subassembly are established. In the disassembly problem, each task splits one
subassembly into two smaller subassemblies, maintaining all contacts between
the parts in either of the smaller subassemblies.

www.manaraa.com

172

A decomposition approach can be used to solve the disassembly problem. In
this approach the problem of disassembling one assembly is decomposed into
two distinct subproblems, each being to disassemble one subassembly. Every
decomposition must correspond to a disassembly task. If solutions to both
subproblems that result from the decompositions are found, a solution to the
original problem can then be obtained by combining the solutions to the two
subproblems and the task corresponding to the decomposition. For subassem­
blies that contain one part only, a trivial solution containing no assembly task
always exists. This decomposition approach lends itself to an AND/OR graph
representation of assembly sequences[lO]. The correspondence between the
AND/OR graph and the directed graph representations of assembly sequences is
discussed elsewhere[9].

From now on, references to products, to assemblies, or to subassemblies are
references to their relational models, which are always assumed to be consistent
and to satisfy the syntactic constraints of a relational model of an assembly.
A real product will be referred to as a physical product, a real assembly as a
physical assembly, and a real subassembly as a physical subassembly.

A decomposition of an assembly < P, C, A, R, a-functions> is a pair of its
subassemblies < PSI, CSI , ASI , RsI, a-functionsSI > and < PS2, CS2 , As2, Rs2,
a-functionsS2 > such that PSI U PS2 = P and PSI n PS2 = 0. The set CSI-S2 =
C - (CSI U CS2) is referred to as the contacts of the decomposition; they are
the contacts that belong to C and do not belong to either CSI or CS2. The
contacts of a decomposition of an assembly define a cut-set in that assembly's
graph of connections. Conversely, a cut-set in the graph of connections of an
assembly define a decomposition of that assembly.

A decomposition of an assembly is said to be feasible if it satisfies two predi­
cates: TASK-FEASIBILITY, and SUBASSEMBLY-STABILITY. These predicates
reflect the feasibility of joining the physical subassemblies to produce the phys­
ical assembly.

The TASK-FEASIBILITY predicate is true if it is feasible to join the two sub­
assemblies to form the assembly. It depends on a number of conditions such
as the existence of a collision-free path to bring the two subassemblies into
contact, the accessibility of fasteners, and the availability of force applying de­
vices. These conditions can be subdivided into two categories: internal and
external. The internal conditions depend exclusively on the assembly. The
existence of a collision-free path and the accessibility of fasteners are internal
conditions. The external conditions depend also on the devices available to
execute the assembly. The availability of force applying devices is an external
condition. There is some freedom in establishing the set of conditions as well
as their precise definition. For example, it may be required that the (collision­
free) path to bring the two subassemblies into contact be a combination of a
straight-line translation with a rotation whose axis is parallel to the straight
line of translation.

www.manaraa.com

173

The SUBASSEMBLY-STABILITY predicate is true if in the physical subassem­
bly there is a nonempty set of orientations for which there is a part p such that
if p is fixed the other parts maintain their relative positions and do not break
contact spontaneously. The stability of subassemblies depends on a number of
conditions such as the gravity and the friction in the contacts.

As discussed in section 7.1, the subassemblies of a given assembly W =< P, C, A,
R, a-functions > can be characterized by their sets of parts. In our current
implementation, the two predicates described above are defined as follows:

Definition 2 The task-feasibility predicate associated to subassemblies of as­
sembly W = < P, C, A, R, a-functions> in which P = {Pl,P2 ,'" ,PN}, is the
predicate

gfiJt : II(P) x II(P) ~ {true, false}

with gfiJt(fh, ()2) = true if and only if

• there is a collision-free path that is a combination of a straight-line trans­
lation with a rotation whose axis is parallel to the straight line of trans­
lation, and that brings the two physical subassemblies of W characterized
by ()l and ()2 into contact from a situation in which they are sufficiently
far apart; and

• it is feasible to establish the attachments that act on the set of contacts
between parts in ()l and parts in ()2.

Definition 3 The subassembly-stability predicate associated to sub­
assemblies of assembly W = < P, C, A, R, a-functions> in which P =
{Pl , P2, ... , P N }, is the predicate

stiJt : I1(P) ~ {true, false}

with stiJt(()) = true if and only if saiJt(()) = true.

The TASK-FEASIBILITY predicate is computed by first checking whether or
not there is an incremental motion that separates the two subassemblies from
their assembled relative position and that is a combination of a straight-line
translation with a rotation whose axis is parallel to the straight line of trans­
lation. If no incremental motion exists, the decomposition is unfeasible. This
predicated is called the local geometric feasibility predicate and is viewed here
as one of a hierarchy of such predicates to be evaluated.

For many types of contacts there are very few feasible motions between the
parts that are feasible . For example, the only direction along which a pin in

www.manaraa.com

174

a hole can translate is the direction of the axis. Similarly, the only feasible
relative motion for two parts or subassemblies that have a threaded-cylindrical
contact is a combination of a straight-line translation with a rotation whose
axis is parallel to the straight line of translation.

Whenever the part or subassembly has such a constraining contact, the feasi­
bility of local motion can be determined by checking the compatibility of the
most restrictive contact with all other contacts. In the case of the pin in the
hole, this consists of checking whether a translation of the pin along its axis is
not blocked by any of the other contacts between the pin and the other part
or subassembly.

This analysis is more difficult when the part or subassembly to be disassembled
is constrained by planar contacts only. Each planar contact leaves an infinite
number of unconstrained directions along which translation is possible. All
these directions have positive (i.e. greater than or equal to zero) projection over
the normal to the surface of the blocking part, pointing towards the outside of
the blocking part.

In order to decide that a set of planar contacts does not completely constrain
one part or subassembly, one must verify that there is a nonzero solution to
the system of linear inequalities:

3

LnijXj ~ 0
j=1

i = 1,2,···,N

where 11i = [nil ni2 ni3] is the normal to the surface of the ith contact. This
system of linear inequalities defines a polyhedral convex cone. It has been
shown[7] that such a polyhedral convex cone can be built up from its (unique)
d-dimensional face and its (d + I)-dimensional faces (if any), where d = 3 -
rank(M), and M is the matrix of the coefficients nij' If d is greater than
zero, then the polyhedral convex cone has a face of dimension greater than
zero and therefore the system of inequalities has a nonzero solution. If d is
equal to zero, then the system of inequalities has a nonzero solution only if the
polyhedral convex cone has at least one one-dimensional face. The existence of
a one-dimensional face can be determined by checking the N· (N -1) pairwise
intersections of the planes corresponding to the inequalities. Each intersection
of two distinct planes is a line. If one of the two unity vectors, 1 and -1 along
the intersection line of two planes has positive (Le. greater than or equal to
zero) projection over all the normal vectors !h,112, ' " ,'!lN, then the half-line
defined by that vector (1 or -1) is a one-dimensional face of the polyhedral
convex cone.

If there is a nonzero solution to the system of inequalities, then the part or
subassembly is not completely constrained. Otherwise the subassembly is com­
pletely constrained, and the decomposition is unfeasible.

Once the feasible incremental motions are determined, their corresponding
global motions can be tested for collisions by finding the intersection of the

www.manaraa.com

procedure FEASIBILITY- T EST(decomposition, assembly)
begin
return AND(TASK-FEASIBILITY(decomposition, assembly),

SUBASSEMBLY-STABILITY(decomposition))

end

Figure 7.4: Procedure FEASIBILITY-TEST

175

volume swept by the motion of one part and the other part. This predicate is
referred to as global geometric feasibility and provides a second level of test in
the hierarchy. In our current system we have not implemented this test but
have instead used virtual contacts to describe blocking relationships equivalent
to contacts. In the product shown in figure 7.1, for example, if the stick did not
touch the handle, the local analysis as described above would indicate that the
stick can translate (incrementally) along its axis. In a case like this, a virtual
planar contact, analogous to C4 on figure 7.2, would be added to the relational
model indicating the blocking of the stick by the handle.

The feasibility of establishing the attachments that act on the set of contacts
between parts in two subassemblies can be determined by inspection of the
relational model of the assembly. Our current implementation includes routines
that check whether the attachments acting on the contacts of the decomposition
are not blocked in the resulting assembly, and are not present in either one of
the subassemblies.

For the discussion in the next section, which presents the algorithm for gener­
ating the assembly sequences, it is assumed that there exist correct algorithms
for computing the TASK-FEASIBILITY and the SUBASSEMBLY-STABILITY
predicates discussed above, and that they are combined into the procedure
FEASIBILITY-TEST shown in figure 7.4.

7.3 The Algorithm for
Generating All Assembly Sequences

As discussed in the previous section, a decomposition approach has been used
to generate all assembly sequences. The basic idea underlying the approach
is to enumerate the decompositions of the assembly and to select those that
are feasible. The decompositions are enumerated by enumerating the cut-sets
of the assembly's graph of connections. Knowledge of the feasible decomposi­
tions allows the construction of the AND/OR graph representation of assembly
plans. Each feasible decomposition corresponds to a hyperarc in the AND/OR

graph connecting the node corresponding to the assembly to the two nodes
corresponding to the two subassemblies. The same process is repeated for the
subassemblies and subsubassemblies until only single parts are left.

www.manaraa.com

176

procedure GET-FEASIBLE-DECOMPOSITIONS(assembly)

begin
fsbl-dec +- NIL

graph +- GET-GRAPH-OF-CONNECTIONS(assembly)

cut-sets +- GET-CUT-SETS(graph)

while cut-sets is not empty do
begin loopl

next-cut-set +- FIRST(cut-sets)

cut-sets +- TAIL(cut-sets)

next-dec +- GET-DECOMPOSITION(next-cut-set)

if FEASIBILITY- TEST(next-dec)
then fsbl-dec +- UNIO N(fsbl-dec, LIST(next-dec))

end loopl

return fsbl-dec

end procedure

Figure 7.5: Procedure GET-FEASIBLE-DECOMPOSITIONS

It has been shown[6, 12] that the set of all cut-sets of a graph < V, E > is a
subspace of the vector space over the Galois field modulo 2 associated with the
graph. The vectors in this vector space are the elements of lI(E), the set of all
subsets of E. It has also been shown that the fundamental system of cut-sets
relative to a spanning tree is a basis of the cut-set subspace. Therefore, the
cut-sets of a graph can be enumerated by constructing a spanning tree of the
graph, finding the fundamental system of cut-sets relative to that spanning tree,
and computing all the combinations of fundamental cut-sets. In our current
implementation, the cut-sets are enumerated using a more efficient approach.
We first look at all connected subgraphs having the cardinality of their set of
nodes smaller than or equal to half of the cardinality of the set of nodes in the
whole graph. For each of these subgraphs, the set of edges of the whole graph
that have only one end in the subgraph defines a cut-set if their removal leaves
the whole graph with exactly two components.

Figure 7.5 shows the procedure GET-FEASIBLE-DECOMPOSITIONS which
takes as input the relational model of an assembly and returns all feasible
decompositions of that assembly. The procedure first generates the graph
of connections for the input assembly and computes the cut-sets of this
graph. Each cut-set corresponds to a decomposition. The procedure GET­
DECOMPOSITIONS is used to find the decomposition that corresponds to a
cut-set, and the procedure FEASIBILITY-TEST discussed in the previous sec­
tion is used to check whether or not that decomposition is feasible. The feasible
decompositions are stored in the list fsbl-dec which was empty at the beginning.
After all cut-sets have been processed, the procedure returns the list fsbl-dec.

www.manaraa.com

177

1 2 3

c2 C 3 • c4

4 ···· ·· ····· ·· ······ ········· :

: 6

Figure 7.6: The cut sets of the graph of connections for the assembly shown
in figure 7.1

An example will illustrate the computation of the feasible decompositions of
an assembly. When passed the relational model of the assembly in figure 7.1,
procedure GET-FEASIBLE-DECOMPOSITIONS will compute the graph of con­
nections shown in figure 7.3, and all its cut-sets, which are indicated in figure
7.6. The analysis of those cut-sets will indicate the feasible decompositions.
The first cut-set yields a feasible decomposition since it is feasible to join the
cap and the subassembly made up of the three other parts. The second cut-set
also yields a feasible decomposition because it is feasible to join the subassem­
bly consisting of the cap plus the receptacle, and the subassembly consisting of
the stick plus the handle. The third cut-set, however, does not yield a feasible
decomposition, since it is not possible to join the stick and the subassembly
made up of the three other parts. Similarly, the fourth and the sixth cut-sets
yield feasible decompositions while the fifth cut-set does not. Therefore, proce­
dure GET-FEASIBLE-DECOMPOSITIONS will return a list containing the four
decompositions that correspond to the first, second, fourth, and sixth cut-sets.

Figure 7.7 shows the procedure GENERATE-AND-OR-GRAPH which takes the
relational model of an assembly, and returns the AND/OR graph representation
of all assembly sequences for that assembly. The nodes in the AND/OR graph
returned are pointers to relational models of assemblies.

Procedure GENERATE-AND-OR-GRAPH uses the lists closed and open to store
the pointers to the relational models of the subassemblies whose decompositions
into smaller subassemblies respectively have and have not been generated.

www.manaraa.com

178

procedure GENERATE-AND-OR-GRAPH(assembly)

begin
open ~ LIST(GET-POINTERS(LIST(assembly)))

closed ~ NIL

harcs ~ NIL

while open is not empty do
begin loopJ

next-sub ~ FIRST(open)

open ~ TAIL(open)

closed ~ UNION(closed, LIST(next-sub))

dec-of-next-sub ~ GET-FEASIBLE-DECOMPOSITIONS(nerl-sub)

while dec-of-next-sub is not empty do
begin loop2

next-decomposition ~ FIRST(dec-of-next-sub)

dec-of-next-sub ~ TAIL(dec-of-next-sub)

subs ~ GET-POINTERS(next-decomposition)

harcs ~ UNION(harcs, LIST(LIST(next-sub, subs)))

while subs is not empty do
begin loop3

next-sub ~ FIRST(subs)

subs ~ TAIL(subs)

if next-sub is not in open or in closed, add it to open;
otherwise ignore it

end loop3

end loop2

end loopJ

return LIST(closed, harcs)

end procedure

Figure 7.7: Procedure GENERATE-AND-OR-GRAPH

www.manaraa.com

179

The procedure takes one element of open at a time, moves it to closed, and uses
procedure GET-FEASIBLE-DECOMPOSITIONS to generate all decompositions
of the relational model pointed by that element. For each decomposition, pro­
cedure GENERATE-AND-OR-GRAPH uses the procedure GET-POINTERS to
get the pointers to the relational models of the subassemblies. Procedure GET­
POINTERS checks whether each resulting subassembly has appeared before or
not. If the subassembly has appeared before, its pointer is used, otherwise a
new pointer is created. The new pointers are inserted into open. Each decom­
position yields one hyperarc of the AND/OR graph.

Figure 7.8 shows the resulting AND/OR graph for the product shown in figure
7.1.

A more efficient implementation of the method for the generation of assembly
sequences presented above will include additional tests aimed at avoiding un­
necessary computation2. One such test is to check whether the feasibility of a
decomposition follows from the feasibility of other decompositions. For exam­
ple, the feasibility of the decomposition corresponding to hyperarc 10 in figure
7.8 follows from the feasibility of the decompositions corresponding to hyper­
arcs 4 and 5. If it was geometrically and mechanically feasible to disassembZe
the handle from the whole assembly (hyperarc 4), then it is geometrically and
mechanically feasible to disassemble the handle from a subassembly. And since
the subassembly made up of the stick and the receptacle is stable (hyperarc 5),
it follows that the decomposition corresponding to hyperarc 10 is feasible. This
test indicates that if the decompositions corresponding to hyperarcs 4 and 5
have already been analyzed and found to be feasible, then it is not necessary to
perform the computation corresponding to procedure FEASIBILITY-TEST in
the analysis of the decomposition that corresponds to hyperarc 10. Similarly,
another additional test would check whether the unfeasibility of a decomposi­
tion follows from the unfeasibility of other decompositions already analyzed.
More efficient implementations that include these types of tests have been re­
ported recently[2, 8, 15].

7.4 Analysis of the Algorithm

Correctness and completeness of GET-FEASIBLE-DECOMPOSITIONS

The partial correctness of the algorithm GET-FEASIBLE-DECOMPOSITIONS
is immediate. The list fsbZ-dec is initially empty. Only feasible decompositions
are added to the list fsbZ-dec. Therefore, the list returned by GET-FEASIBLE­
DECOMPOSITIONS does not contain any element that is not a feasible decom­
position of the assembly input. The total correctness follows from the fact that
there is only a finite number of cut-sets in a graph. The list cut-sets contains
initially all cut-sets of the graph of functional connection corresponding to the

20ur current implementation consists of the basic algorithms presented in the text and does
not yet include these additional tests.

www.manaraa.com

180

Figure 7.8: The AND/OR graph of subassemblies for the assembly shown in
figure 7.1

-

www.manaraa.com

181

assembly input. At each execution of loopJ, one element is removed from the
list cut-sets. Therefore, after a finite number of executions of loopJ the list
cut-sets becomes empty, and the algorithm terminates.

There is a one-to-one correspondence between cut-sets in the graph of con­
nections of an assembly, and the decompositions of that assembly. Therefore,
since algorithm GET-FEASIBLE-DECOMPOSITIONS goes over all cut-sets of
the graph of connections, all feasible decompositions will be generated and the
algorithm GET-FEASIBLE-DECOMPOSITIONS is complete.

It was assumed that the algorithm for generating the cut-sets of a graph is
correct and complete. The enumeration of the cut-sets of a graph is studied
in graph theory; for example, Deo[6) and Liu[12) discuss that problem. It was
also assumed that it is possible to decide correctly whether a decomposition is
feasible or not, based on geometrical and physical criteria, as discussed in the
section 7.2.

Correctness and completeness of GENERATE-AND-OR-GRAPH

List closed is updated at only one point, and it only gets elements that were
previously in the open list. The open list contains initially a pointer to the
relational model of the assembly input, which is a node of the AND/OR graph.
List open is updated inside loop3 where it gets pointers to the relational models
of the subassemblies that are part of a feasible decomposition, and therefore,
are nodes of the AND/OR graph. Therefore, the elements in the open list, and
consequently the elements in the closed list, are always pointers to relational
models either of the original assembly, or of subassemblies that take part of a
feasible decomposition.

The harcs list is initially empty. It is updated only inside loop2 where it gets
the hyperarc corresponding to a feasible decomposition. Therefore, algorithm
GET-FEASIBLE-DECOMPOSITIONS can only return a set of nodes and a set
of hyperarcs of the AND/OR graph. This establishes the partial correctness of
GENERATE-AND-OR-GRAPH.

List open gets only subassemblies and no subassembly is inserted more than
once. Since there is a finite number of subassemblies, the algorithm terminates.
This establishes the total correctness of GENERATE-AND-OR-GRAPH.

Since algorithm GET-FEASIBLE-DECOMPOSITIONS is complete, all possible
decompositions of all subassemblies that are inserted into the list open yield a
hyperarc. Furthermore, all subassemblies that result from a decomposition are
inserted into list open, and later are moved to list closed. Therefore, the first
list returned contains all subassemblies that resulted from some decomposition,
and the second list returned contains one hyperarc for each decomposition of
each subassembly. This establishes the completeness of GENERATE-AND-OR­
GRAPH.

www.manaraa.com

182

Complexity

The amount of computation involved in the generation of the AND/OR graph for
a given assembly depends on the number N of parts that make up the assembly,
on how interconnected those parts are, and also on the resulting AND/OR graph.

The number of prospective decompositions (Le. cut-sets of the graphs of nmc­
tional connections) that must be analyzed will be used in this section as a mea­
sure of the amount of computation involved in the generation of all assembly
sequences3. Two models for how the parts in the assembly are interconnected
are considered in order to provide bounds in the estimate of computational
complexity:

1. a weakly connected assembly in which there are N -1 connections between
the N parts, with the ith connection being between the ith, and the (i+ 1)th

parts;

2. a strongly connected assembly in which every part is connected to every
other part.

And three possibilities for the resulting AND/OR graph are considered:

1. a balanced tree AND/OR graph in which there is at most one hyperarc leav­
ing each node and this hyperarc points to two nodes whose corresponding
subassemblies either have the same number of parts, or their number of

. parts differ by one;

2. a one-part-at-a-time tree AND/OR graph in which there is at most one
hyperarc leaving each node, and this hyperarc points to two nodes one of
which corresponds to a one-part subassembly; and

3. a network AND/OR graph in which there are as many hyperarcs leaving
each node as there are cut-sets in the graph of functional connections of
the node's corresponding subassembly.

The resulting total number D of decompositions that must be analyzed as a
function of the number N of parts that make up the assembly for each possible
combination of how the parts are interconnected and the type of the resulting
AND/OR graph is:

1. Weakly connected assemblies:

(a) Balanced tree AND/OR graph: the number of prospective decomposi­
tions that must be analyzed is N - 1 for the initial assembly, N - 2
for all subassemblies, N - 4 for all subsubassemblies, and so on.

3The overall complexity of algorithm GENERATE-AND-OR-GRAPH should take into account the
computation involved in generating the cut-sets of the graph of functional connections.

www.manaraa.com

Therefore4 ,

D = (N -1) + (N - 2) + (N - 4) + ... + (N _ 2int(1og2 N »)
int(1og2 N)

= L (N _2i) =
i=O

= N· [int(log2 N) + 1]- 2[int(log2 N)+1] + 1

183

(b) One-part-at-a-time tree AND/OR graph: the number of prospective
decompositions that must be analyzed is N ~ 1 for the initial assem­
bly, N -2 for the (N -2) part subassembly, N -3 for the (N -3)-part
subassembly, and so on. Therefore,

D = (N - 1) + (N - 2) + (N - 3) + ... + 2 + 1

N-1 ()
= L(N-i)=N. N-l

i=1 2

(c) Network AND/OR graph: the number of prospective decompositions
that must be analyzed is N - 1 for the N-part subassembly, N - 2
for each of the two (N - I)-part subassemblies, N - 3 for each of
the three (N - 2)-part subassemblies, and so on. Therefore,

D = 1· (N - 1) + 2 . (N - 2) + 3 . (N - 3) + ... + (N - 1) . 1
N-1

= Li. (N -i)
i=1

(N + 1) . N . (N - 1)
=

6

2. Strongly connected assemblies:

(a) Balanced tree AND/OR graph: the number of prospective decomposi­

tions that must be analyzed is (2(N-1) - 1) for the initial assembly,

(2int(¥) -1) + (2int(¥) -1) for all subassemblies, (2int(Nil) - 1) +
(2int(Ni 2) -1) + (2int(Ni 3) _ 1) + (2int(Ni ') -1) for all subsubassemblies,

and so on. Therefore,

int(log2 N) 2i_1
D = L L(2int(N-;{-1) - 1)

i=O j=O

(b) One-part-at-a-time tree AND/OR graph: the number of prospective

decompositions that must be analyzed is (2N - 1 - 1) for the N-part

4We use the notation int(x) to represent the largest integer that is less than or equal to x. For
example, int(3) = 3 and int(3.5) = 3.

www.manaraa.com

184

subassembly, (2N - 2 -1) for the (N -I)-part subassembly, (2N - 3 -1)

for the (N - 2)-part subassembly, and so on. Therefore,

D (2N- 1 - 1) + (2N- 2 - 1) + (2N- 3 - 1) + ... + (2 - 1)

= 2N-N-I

(c) Network AND/OR graph: the number of prospective decompositions

that must be analyzed is (2N - 1 - 1) for the N-part subassembly,

(2N - 2 -1) for each of the (:-1) (N -I)-part subassemblies, (2 N - 3 _

1) for each of the (:-2) (N - 2)-part subassemblies, and so on.

Therefore,

D = (Z)· (2N - 1 - 1) + (N~ 1) . (2N - 2 - 1) + ...

... +(~).(2-1)

For each of the three possibilities of the resulting AND/OR graph, table 7.2 shows
the number of decompositions that must be analyzed for weakly connected
assemblies and table 7.3 shows the number of decompositions that must be
analyzed for strongly connected assemblies, as a function of the number of parts
that make up the product. The figures in table 7.3 are given as a reference since
it is very unlikely that there would be a twenty-part assembly in which every
part is connected to every other part.

The results above take into account the fact that the type of the resulting
AND/OR graph is not known a priori. For example, for the weakly connected
assembly whose AND/OR graph is a balanced tree, all the N - 1 cut-sets of the
whole assembly were included in the number of decompositions that are tested,
although there is only one cut-set that yields two subassemblies that have the
same number of parts.

As discussed in the end of section 7.3, a more efficient implementation of the
method for the generation of assembly sequences presented in this chapter
will include additional tests aimed at avoiding unnecessary computation. One
such test is to check whether the feasibility of a decomposition follows from the
feasibility of other decompositions. In the case of strongly connected assemblies
in which all decompositions of all subassemblies are feasible, the computation
can be significantly reduced if this test is performed before analyzing each
decomposition. Since all decompositions of the whole assembly are feasible, all

www.manaraa.com

185

Table 7.2: The number of decompositions that must be analysed for each type
of resulting AND/OR graph, as a function of the number of parts, for weakly
connected assemblies.

Number Balanced One part Network
of parts tree at a time

2 1 1 1

3 3 3 4

4 5 6 10

5 8 10 20

6 11 15 35

7 14 21 56

8 17 28 84

9 21 36 120

10 25 45 165

15 45 105 560

20 69 190 1,330

25 94 300 2,600

30 119 435 4,495

www.manaraa.com

186

Table 7.3: The number of decompositions that must be analysed for each type
of resulting AND/OR graph, as a function of the number of parts, for strongly
connected assemblies.

Number Balanced One part Network
of parts tree at a time

2 1 1 1

3 4 4 6

4 9 11 25

5 20 26 90

6 39 57 301

7 76 120 966

8 145 247 3,025

9 284 502 9,330

10 551 1,013 28,501

15 16,604 32,752 7,141,686

20 525,389 1,048,555 1,742,343,625

25 16,783,550 33,554,406 423,610,750,290

30 536,904,119 1,073,741,793 102,944,492,305,501

www.manaraa.com

187

decompositions of all subassemblies should also be feasible. Therefore, with
a simple additional test, the total number of decompositions that must be
analyzed is reduced from eN

2+1 - 2N) to (2N - 1 - 1).

7.5 Conclusion

A correct and complete algorithm for the generation of all mechanical assembly
sequences was presented. The problem of generating assembly sequences was
transformed into the equivalent problem of generating disassembly sequences.
The algorithm operation consists in looking at all the decompositions of the
assembly, that is, all the ways the assembly can be split into two subassemblies.
This is done by generating all cut-sets of the assembly's graph of connections,
and checking which cut-sets correspond to feasible decompositions. A decom­
position is feasible if it possible to obtain the assembly by joining the two
subassemblies. The same process is repeated for the subassemblies, for the
subsubassemblies, and so on, until only single parts are left. At the end, the
AND/OR graph representation of assembly sequences is returned.

The algorithm also lends itself to an interactive implementation in which a
computer program generates questions that are answered by a human expert.
Each question addresses the feasibility of a decomposition. It is also possible to
have a computer program, instead of a human, to answer the questions directly
from a description of the assembly. Our current implementation, which has
the restrictions on the types of assemblies discussed in section 7.1, includes
programs that answer the questions.

An approach to compute the answer to the question of whether or not it is
feasible to obtain a given assembly by joining two subassemblies was presented.
This approach is based on the use of a relational model description of the
assembly. The model includes three types of entities: parts, contacts, and
attachments; it also includes a set of relationships between entities. Both
entities and relationships can have attributes. To decide whether or not a
given decomposition is feasible, two predicates must be computed, using the
data in the relational model:

• The TASK·FEASIBILITY predicate which is true if it is feasible to join
two subassemblies .

• The STABILITY predicate which is true if the parts in each subassembly
maintain their relative position and do not break contact spontaneously.

The key assumption in proving the correctness of the algorithm is that it is
always possible to decide correctly, based on geometrical and physical criteria
(Le. using the three predicates above), whether or not it is feasible to ob­
tain a given assembly by joining two subassemblies, and whether or not the
subassemblies are stable.

www.manaraa.com

188

The amount of computation involved in generating all mechanical assembly
sequences was assessed by determining the number of decompositions that must
be analyzed. That amount depends not only on the number of parts and on how
they are interconnected, but on the solution AND/OR graph as well. The least
amount of computation occurs for weakly connected assemblies in which each
subassembly has only one feasible decomposition and that decomposition yields
two subassemblies whose number of parts are either equal or differ by one. The
maximum amount of computation occurs for strongly connected assemblies in
which all decompositions of all subassemblies are feasible. This worst case,
however, is very unlikely to occur in practice. Furthermore, additional simple
tests discussed in section 7.3 can reduce the amount of computation.

In practice, an evaluation of the alternative assembly sequences generated by
the algorithm presented in this paper is needed in order to choose the se­
quence that will be actually used in the assembly process. Different evaluation
functions have been explored including a function based on parts entropy[13],
a function based on the complexity of assembly tasks and the stability of
subassemblies[10], a function based on number of different sequences in which
the assembly tasks can be executed[ll], and a function based on the parallel
execution of assembly tasks[ll] .

It is also possible to implement an interactive system in which a computer
program generates the alternative sequences, as described in this paper, and a
human expert then selects the best one. Still another possibility would be to
use an evaluation function for a preselection of good alternative sequences and
then have a human expert to make the final choice.

Whenever the amount of computation exceeds the available computational re­
sources, at least two strategies may be followed:

1. The number of parts can be artificially reduced by treating subassemblies
as single parts. An analysis of the graph of connections may indicate
the clusterings of parts that yield bigger reductions in the amount of
computation.

2. The algorithm generates fewer, hopefully the best, sequences using some
heuristics to guide the generation of assembly sequence. Such heuristics
should be compatible with the evaluation function used to choose among
the alternative assembly sequences.

In both strategies, the computation will be reduced at the expense of the com­
pleteness, since not all possible sequences will be generated. The devolpment of
a procedure to cluster parts into subassemblies to obtain a hierarchical model
of the assembly, and the development of good heuristics to guide the generation
of assembly sequences are issues for future research.

www.manaraa.com

189

References

[I] M. M. Andreasen et al. Design for Assembly. Springer Verlag, 1983.

[2] D. F. Baldwin et al. An Integrated Computer Aid for Generating and
Evaluating Assembly Sequences for Mechanical Products. IEEE Trans.
Robotics Automat., RA-7(1):78-94, Feb. 1991.

[3] G. Boothroyd et al. Automatic Assembly. Marcel Dekker, Inc., New
York,1982.

[4J A. Bourjault. Contribution a une Approche Methodologique de L 'Assem­
blage Automatise: Elaboration Automatique des Sequences Operatoires.
These d'etat, Universite de Franche-Comte, Besanc;on, France, November
1984.

[5J T. L. De Fazio and D. E. Whitney. Simplified Generation of All Mechan­
ical Assembly Sequences. IEEE J. Robotics Automat., RA-3(6) :640-658,
December 1987. Corrections ibid RA-4(6):705-708, December 1988.

[6] N. Deo. Graph Theory with Applications to Engineering and Computer
Science. Prentice-Hall, 1974.

[7] A. J. Goldman and A. W. Tucker. Polyhedral convex cones. In Lin­
ear Inequalities and Related Systems, pages 19-40. Princeton University
Press, 1956.

[8J J. M. Henrioud. Contribution a la Conceptualisation de l'Assemblage
Automatise: Nouvelle Approche en vue de Determination des Processus
d'Assemblage. These d'etat, Universite de Franche-Comte, Besanc;on,
France, December 1989.

[9] L. S. Homem de Mello and A. C. Sanderson. Task Sequence Planning for
Assembly. In 12th World Congress on Scientific Computation, volume 3,
pages 390-392. IMACS - International Association for Mathematics and
Computers in Simulation, July 1988.

[10] L. S. Homem de Mello and A. C. Sanderson. AND/OR Graph Representa­
tion of Assembly Plans. IEEE Trans. Robotics Automat., 6(2):188-199,
April 1990.

[11] L. S. Hornern de Mello and A. C. Sanderson. Evaluation and Selection
of Assembly Plans. In 1990 IEEE International Conference on Robotics
and Automation, pages 1588-1593. IEEE Computer Society Press, May
1990.

[12] C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill,
1968.

www.manaraa.com

190

[13] A. C. Sanderson and L. S. Homem de Mello. Planning Assembly lDis­
assembly Operations for Space Telerobotics. In W. C. Chiou, editor,
Space Station Automation III, volume 851 of SPIE Proceedings Series,
pages 109-115. SPIE - The International Society for Optical Engineering,
November 1987.

[14] M. A. Wesley et aI. A geometric modeling system for automated me­
chanical assembly. IBM J. Res. Develop., 24(1):64-74, January 1980.

[15] R. Wilson and J. F. Rit. Maintaining Geometric Dependencies in an
Assembly Planner. In IEEE Int. Con! Robotics Automat., pages 890-
895. IEEE Computer Society Press, May 1990.

www.manaraa.com

Chapter 8

LEGA: a computer-aided
generator of assembly plans

Jean-Michel Henrioud and Alain Bourj ault

In the field of Assembly Automation, Assembly Planning is an important problem
which is still handled empirically in most factories. For any product there are many
different assembly plans, and it is obvious that choosing one of them has an
influence on the cost of the assembly system. Moreover increasing need in
flexibility sometimes leads, for a given assembly system, to real time scheduling
requiring local changes in the assembly plan.

A first systematic method for the determination of all the assembly plans available
for any given product was proposed by A. Bourjault in 1984 [1]. This method was
focused in the liaisons between elementary parts, describing an assembly plan as a
sequence of liaisons. An interactive software, SAGA (proprietary), was derived from
this method ; it involved a set of questions a human expert was asked about the
precedence constraints between the liaisons. In practice the number of questions was
prohibitive and it was difficult for the operator to visualize the liaison concept. That
is why we have developed a new approach, focused on the parts, presented here and
which shares several features with the method concurrently developed by L.S.
Romem de Mello [9].

www.manaraa.com

192

Another approach, derived from Bourjault's work has been proposed by T. De Fazio
and D.E. Whitney [2], which used a different formalization of assembly constraints
leading to a reduction of the dialogue size with the user. Among the related work,
we must mention those of R. Jeannes [10] and of A.Delchambre [3] (also
[4],[11],[13]).

The basic points in the present method are :

- a product model, based on a liaison graph similar to the one used in our
previous method ;

- a classification and a formalization of assembly constraints

- an algorithm allowing a systematic determination of all assembly plans,
described by assembly trees (or part trees, according to a previous definition by
D.E. Whitney), satisfying the assembly constraints.

A resulting software, LEGA, has been developed in PROLOG. It has been applied to
different industrial products, and has proved to be quite more efficient than its
predecessor SAGA.

8.1 Assembly system

An Assembly System is a system having p input flows <Pi,e (i = 1, ... , p) and q

output flows <Pj,s (j=l, ... ,q). Each flow <Pi,e is composed of identical objects Ci

and each flow <Pj,s is composed of identical objects Pj. Relatively to the considered

Assembly System each Ci object is a component and each Pj object is an end­

product. The assembly of complex products is carried out through several assembly
systems, so that a same object may be an end-product for one system and a
component for another.

In this chapter we shall consider assembly systems involving up to thirty
components. Thus we assume that more complex products have already been split
into smaller parts and we consider either the assembly of a part or the assembly of
the end product from the preassembled parts.

Moreover we shall only consider implicitly assembly systems having a single
output. In fact most industrial assembly systems have several outputs. Generally
the objects Pj are very similar, they share the same structure and differ mostly:

- by some components, called options, which may be present or absent (e.g. an
arithmetic processor in a computer).

www.manaraa.com

193

- by different components, called variants, fulfilling the same function (e.g.
different engines for a same car model).

In practice the method presented in the following sections may be applied to
multiproduct systems. There is no real difficulty with the options (provided they are
not mutually exclusive), for it is sufficient to consider the product bearing all the
options. As to the variants, problems may arise when their morphologies are really
different, but we have not developed yet any general method to deal with all the
possibilities.

8.2 Product model

The method proposed in this paper for the generation of assembly plans for any
product P is based on the modelling of P by a 5- tuple <C, r, L, ~, f> where:

* C is the set of the components of P. The concept of component refers to an
assembly system and describes the objects entering this system, they may be
some subassemblies produced by another assembly system. In the same way P
may be a subassembly for another assembly system.The securing components

like screws, bolts and nuts, rivets are not included in C.

* r is the set of liaisons, between the components of P. We say that there is a
liaison between to components x and y iff there is at least one mechanical
liaison between x and y inside the product P for at least one orientation of P.

It is convenient to associate to r the set {l, ... , nJ (n = card (r». [C, n defines
a graph called liaison graph which is both simple and connected.

* L is the set of the attachments in P. An attachment is all what contributes
to secure at least one liaison. An attachment may be :

- one or several securing components: screws, bolts and nuts, rivets ...
- some matter: glue, solder
- some energy: fitting, setting, crimping.

* .1 is the set of the complementary features in P, they are some features
which have to be included in P and are defined in the requirement list for P.
They are mainly : labels, painting, machining, functional tests, tuning,
cleaning, ...

www.manaraa.com

194

Cover (co)

Crystal (cr)

Base(ba)

cr I

•
ba 2
•

co
•

Figure 8.1: A quartz with i ts liaison graph

* f is a function which defines, for each attachment or each complementary feature,
the set of elements of P which are concerned:

f: pee) xP CL u~)

(P(E) is the set all of the subsets of E)

Example : A quartz is presented in figure 8.1. Its model is given by :

* e = (cr, ba, co)
· cr is the crystal
· ba is the base which includes the electrodes
· co is the cover

*r=(1,2}
The liaison graph [e, n is also depicted in figure 8.1

*L =(wl' w2)

· wI is a welding between cr and ba

· w2 is a welding between co and ba

* ~ = (el, la, va, sq)
· el is an electric test
· la a label printed on the cover which specifies the quality of the
quartz as defined by the electric test
· va is the vacuum created between the cover and the base
· sq is the squeezing which shuts the tube extending the cover.

www.manaraa.com

* f is defined as follows :
f(wI) = ({cr, bal. <1»

f(W2) = «(ba, co}, <1»

f(el) = «(ba,cr), (wI})

f(la)=«(co}, (el})
f(va) = ({ba, co), (w2})

f(sq) = ({co), {va))

195

Let's notice that in f(la) we have included co, the component which will support la,
and also el since its result is an element of lao

Definition 1 : A virtual subassembly (X, A) of a product P is an object
composed of:

- a set X of components of P
- the set of all the liaisons which bind the components in X inside P
- a set A of attachments and complementary features of P

and is such that:
- the subgraph of [e, rJ generated by X is connected
- each element a of A is such that:

fray C (X, A)

We shall now refer to virtual subassemblies as VSA.

Definition 2 : A virtual subassembly (X, A)for a product P is a subassembly
iff there is at least one assembly process for P where the object (X, A) is produced.

Examples: For the quartz previously described :«(cr), <1», «(cr, ha), <1», «(cr, ba),
(WI' el}), «(cr, ba, co}, (WI' w2' el,la, va, sq}) are subassemblies. The frrst one is

also a component (the crystal) and the last one is the end product; the second and
third ones are subassemblies in the usual meaning. «(co, ba), (w2}) is VSA but

obviously cannot be a subassembly in any assembly process for the quartz.

8.3 Assembly trees

Definition 3 : Two VSA (Xl' A 1) and (X2 , A 2) are said to be

complementary VSA iff :
Xj nX2 =4> and Aj nA2 =4>

and there is at least one liaison between one component of X j and one component

of X2·

www.manaraa.com

196

Thus two complementary VSA are two objects which are liable to be assembled to
produce a new object (X 1 u X2' Al u A2)'

Definition 4 : A geometric operation is the production of a VSA (X. A)
realized by mating two complementary VSA (Xi' Ai) and (Xj • Aj) with:

X =X·uX· and A =A·uA·
l J l J

Such an operation will be noted «Xi' Ai)' (Xj' Aj))'

Definition 5 : A non gemetric operation is the production of a VSA (X.
A) realized by the adding of either an attachment or a complementary feature p to
the VSA (X. A - (p}).

Such an operation will be noted p(X, A - {p n. A non gemetric operation will be
called securing operation or complementary operation according as p is an
attachment or a complementary feature.

Definition 6 : An assembly tree for a product P is a rooted tree whose:
- root is the end product P
- nodes are VSA of P
- leaves are the components of P

and such that every non terminal node may be obtained from its k successors:
- by a geometric operation if k = 2
- by a non geometric operation if k = 1

Two assembly trees for the quartz presented in figure 8.1 are shown in figure 8.2.
They are depicted horizontally and each node is represented by a label which is either
an elementary part or what has been added to the partes) associated to its
predecessor(s). The horizontal presentation symbolizes the underlying assembly
system. The liaisons labelling the nodes resulting from a geometric operation may
be omitted for they are redundant.

From the definition of the assembly trees it follows recursively that all VSA
associated to the nodes of any tree are subassemblies.

Fundamental assumption:

Each assembly plan we shall consider can be represented by an assembly tree.

This fundamental assumption imposes two restrictions to the assembly plans:

1 - The assembly plans cannot include geometric operations mating more than two
parts. This is quite sufficient for most assembly processes. Nevertheless some
special situations may require the mating of more than two parts. Such situations
are studied in [6], where the way of incorporating them a posteriori into the
assembly process is described.

www.manaraa.com

0"--,
ba........l1- wl- ell

2- w2..- va-!lJ- la
00_-----..... 1

0".
l-wl---t ba......l .. I

2-w~ va -!lJ- el-Ia
00....----.... 1

Figure 8.2 : Two assembly trees for the quartz given as exemple.

197

2 - Definitions I, 4 and 6 require that when two parts are put together, which is
described as a geometric operation, aU the liaisons between their components have to
be set. It does not matter if they are set simultaneously or sequentially, the point is
that no other operation can take place before they are aU set. This requirement does
not obviously make trouble for rigid products but may prove restricting for non rigid
products. In fact, for non rigid products the liaison approach proposed by
A.Bourjault [1] is more exhaustive. A detailed discussion of this problem is
proposed in [6].

8.4 Assembly constraints

A good assembly process has to involve easy operations (at least as easy as allowed
by the product design) and has to follow some logic in order to avoid useless
reorientations or useless tool changing. We say that assembly planning is subjected
to assembly constraints. Some are local and concern the assembly operations, we
call them operative constraints while the others are global and concern the assembly
process, we call them strategic constraints.

8.4.1 Operative constraints

We have divided the operative constraints in three categories. To describe these
constraints we shall refer to the two parts of any operation. This refers directly to the
geometric operations which involve two parts but also, by extension, to the non
geometric ones for which the second part may be some tool or some tool bearing
some attachment component.

Geometric constraint

When mating two parts there must be at least one collision-free trajectory allowing

www.manaraa.com

198

to bring the two parts in contact. The geometric constraint is absolute, intrinsic to
the product and thus is liable to be automatically deduced from a 3D representation
of the product.

Stability constraint

Each part produced in the course of the assembly process must be stable, that is all
its components have to keep their spatial relationships. In fact stability is mostly a
relative concept since it depends largely upon data unknown in the assembly
planning stage : mainly the motions the part will have to do. Moreover, some loose
components may be held by some convenient fIxture.

We have defined three stability levels. A part is:

- stable when all its components keep their spatial relationship for any
orientation and any move,

- partly stable if there is at least one orientation for which all its components
keep their spatial relationship, possibly with help of some holding equipment,

- unstable if neither stable nor partly stable.

The stability constraint, which makes it necessary that no VSA of any assembly
tree be unstable is neither absolute nor intrinsic to the product, since it refers to
possible holding equipment

Material constraint

The effective realization of any geometric operation requires some equipment
handling each involved part, with still the necessity of collision-free trajectory
between the two objects which are the base part with its fIxture and the secondary
part with its handling device (gripper and arm). A material constraint is so neither
absolute nor intrinsic to the product.

We have presented in fIgure 8.3 some illustrations of the operative constraints.

Example A illustrates a geometric constraint, it is impossible to place the black
component inside the closed box.

In example B it is difficult to mate components a and c because of the tube b. The
diffIculty may turn into an impossibility if b is too long or if c is fitted tightly in
b . The decision whether there is or there is not a material constraint is difficult and
belongs to the expert.

In example C we suppose that components a and b are secured to c through other
components (for instance leads on c). The resulting subassembly will be obviously
very difficult to handle and may be considered unstable. There again the decision
belongs to the expert.

www.manaraa.com

199

A : Geometric constraint B : Material constraint

C : Stability constraint

Figure 8.3 : Illustrations of operative constraints.

8.4.2 Strategic constraints

According to definitions 4, 5 and 6, each assembly tree respects the operative
constraints since all its operations are feasible. The problem is that the number of
assembly trees available for any given product is very large (some 104 for products
having from 15 to 20 components) and that most of these assembly trees describe
obviously awkward assembly processes, involving too many assembly direction
changes or tool changes.

In order to avoid the determination of inefficient solutions a set of global constraints
may be introduced before the process of assembly trees determination begins. These
constraints have to express some reasonable strategies for the assembly process and
are to be deduced from the product structure. The principal strategic constraints are
described hereafter.

Imposed subassemblies

Very often it is possible to define from the end product some subassemblies which
are to be produced in the assembly process (for storage purpose, because they are to
be used as maintenance spare parts, for functional or stability reason). This leads to a
strategic constraint such that only the assembly trees including these subassemblies
are to be produced.

www.manaraa.com

200

Group of components

In a manufactured product, some components have similar shapes and similar sizes
and are liable to be handled by the same gripper, or they have an identical securing or
the same assembly direction. In such cases it may be advisable to group the
operations in which they are involved. This leads to a strategic constraint which
requires that in each assembly-tree the leaves standing for the components belonging
to a same group be consecutive. When some subassemblies are imposed a
subassembly may be an element of a group. This concept of group has proved very
efficient when applied to several industrial products; it is equivalent to the concept
of cluster developed concurrently by C.J.M. Heermskerk [5]. It should be noticed
that it is possible to define subgroups of components inside a same group . Two
basic structures for some groups of components, studied in [12] are presented
hereafter, which lead to more selective constraints.

Stacks: A stack is a group of k (k ~ 3) parts Ci (components or subassemblies)

such that there is a liaison between Ci and Ci+1 (for i = 1, ... , k - 1) and such that a

part Ci may be added to a part S including C1 (respectively Ck) iff S includes already

Ci-l (respectively Ci + 1)'

Each time a stack C1, ... , Ck is declared inside a product P a special strategic

constraint is issued so that any resulting assembly tree must include the sub-tree
(... «C l , C2)' C3)" " Ck), securing and complementary operations being not

included.

Example: given the product P depicted in figure 8.4 if we defme the stack (A,B,
C, D, E) there is only one resulting assembly tree T 1 presented also in figure 8.4.

If we define the stack (B, C, D, E) there are only two resulting assembly trees: T 1

and T2. Without any stack, we would find 14 assembly trees.

Ordered Layers: A layer is a group of k parts C1, ... , Ck such that each part Ci

has a liaison with a same component B. The subgraph associated to the set
(Cl , ... , Ck) u {B} is generally star shaped but the possibility of some liaisons

between the Ci is not excluded. When a layer is such that its assembly order is

obviously indifferent then it is useless to provide all the possible orders (k!). In such
a case the user may choose an arbitrary order by declaring an ordered layer. It is still
possible to declare an ordered layer when there is some precedence constraints
between some of the C j components if a convenient order is obvious.

www.manaraa.com

E

D

C

8

A

T1 = ««A,B),C),D),E)
T2 =(A, «(B,C),D),E»

Figure 8.4 : Example of stack strategic constraint

T1 = «««A,B),C),D),E),F),G)
T2 = «««A,F),G),B),C),D),E)
T3 = «««A,D),E),B),C),F),G)
T4 = «««A,F),G),D),E),B),C)

Figure 8.5 : Example of layer strategic constraint

201

www.manaraa.com

202

Each time an ordered layer (Cl , ...• Ck) is declared inside a product P, a strategic

constraint is issued so that each resulting assembly tree must include the subtree
(... «X,C l), C2)' .. . , Ck)' securing and complementary operations being not

included.

Example : given the product P depicted in figure 8.5, several possibilities arise for
the introduction of strategic constraints :

1. There are two groups of components. according to assembly directions, with
layers structures: (B,C,D,E) and (F,G). There are 48 resulting assembly trees .

2. If each layer is declared to be ordered then there are only 2 assembly trees (Tl and
T2 in figure 8.5).

3. If (B,C,D,E) is considered as including two sublayers (B,C) and (D,E) then there
are 24 assembly trees .

4. If each layer (B,C). (D,E) and (F.G) is declared to be ordered, then there are 4
assembly trees (T I.T 2' T 3' T4 on figure 8.5).

Layers (B,C,D,E), (B,C) and (D,E) may be declared ordered because their assembly
order is indifferent. Layer (F,G) has only one assembly order. Without any strategic
constraint the number of assembly trees would be 360 .

Linear Assembly Trees

An assembly tree is said to be linear when each node having two successors (the tree
being oriented from the root to the leaves) has at least one leaf for successor. So a
linear assembly tree describes an assembly process where one single component is
added to the current subassembly in each geometric operation.

From our experience of industrial products we have noticed that most of the
assembly processes are linear. As we said before we consider assembly systems
involving a limited number of components. An assembly process for a whole car is
highly parallel but fortunately it is dispatched on several assembly systems which
involve mostly linear processes.

So. we have integrated in our method the possibility to restrict the determination of
assembly trees to the linear ones. However this constraint is considered weaker than
the one dealing with the imposed sub-assemblies. Thus, when some imposed sub­
assemblies have been defined and when the restriction to linear assembly trees is
chosen, the resulting trees are linear relatively to the imposed sub-assemblies and to
the other components.

This concept of linear assembly tree is also proposed by 1.D.Wolter [14] inside a
classification of assembly plans.

www.manaraa.com

203

Advantages and drawbacks of strategic constraints

Any assembly tree which satisfies the operative constraints describes a feasible
assembly process. Let us say that such an assembly tree is valid. Practically, it turns
out that the number of valid assembly trees increases dramatically fast with the
number of components of the end product. The number of valid assembly trees for

products having 20 components ranges from 104 to 106. So it is obviously
useless to know all the valid assembly trees unless we can select the best ones.

In order to reduce the set of resulting assembly trees to a few best ones we have
proposed a method presented in [6] and [8]. Succinctly, we consider all the different
operations involved in all the assembly trees (for products having 20 components
there are hundreds of different operations). The complexity of each operation is
evaluated, which requires the choice of the base component as well as its orientation.
When there are several possible choices, then several different operations (which then
are called oriented) are issued and have to be evaluated. A new set of assembly trees,
also called oriented, is produced. For each of them an operative cost is computed
from its operations and a logistic cost is deduced from the number of assembly
direction changes between its operations. These two costs are then combined in a
global cost which allows their ranking. Unfortunately this method is quite time
consuming for the expert, who has to evaluate some hundreds of operations, and
thus cannot be effectively applied until this evaluation process is partly automated.

In the present state of our work the most efficient tool allowing the determination of
a reasonable set of assembly trees (e.g. 10 to 50) is the introduction of strategic
constraints.This tool has proved very efficient and it had been applied to different
industrial products (14 to the present day). It requires some time to the user to study
the product to assemble before the process of assembly tree generation begins, but it
is quite reasonable. Moreover, this is a creative task, more rewarding than the one
involved in the interactive determination of the assembly trees presented in the
following section.

Thus we may conclude that the introduction of strategic constraints is a practical and
efficient tool for assembly planning.The only drawback is that the choice and
definition of assembly constraints is left to the user, so that subjectivity is
introduced inside a systematic process. The method quoted above, with a numerical
evaluation of each resulting assembly tree would be better, but there is still a lot of
work to be done towards a system that is adequate for practical industrial use.

To conclude this section, we must emphazise that for a given product, the user may
hesitate between mutually exclusive strategic constraints. Then he will have to
define several sets of constraints, each set leading to a corresponding set of assembly
trees. When such a situation arises, the different sets of resulting assembly processes
will have to be kept to be compared when the resulting assembly systems are

www.manaraa.com

204

sufficiently defined (equipment costs and performances) to allow a precise
comparison.

8.5 Generation of all Assembly Trees

8.5.1 Basic formulation

Informally, the approach we have developed for the systematic generation of
assembly trees is a decomposition one. Starting from the end product P we search all
the feasible operations having P for result. The set of these operations dermes a set
of subassemblies. For each resulting subassemblies (X, A) we search again all the
feasible operations having (X,A) for result. And we proceed recursively until the
resulting subassemblies are reduced to components of P.

This algorithm is quite similar to the one defined by L.S. Romem de Mello [9]. To
find the geometric operations which have a subassembly (X, A) for result we search
all the cut sets of the graph associated to (X, A) that is all the pairs X I' X2 such

that:

and such that the graphs associated to X 1 and X2 are connected. But, according to the

model proposed here, we have also to search all the non geometric operations having
(X, A) for result. So we have to look, for each p belonging to A, if the operation
p(X, A-{p}) is feasible.

More formally, we define now an assembly tree in the following way, where Vp is

the set of all the VSA for a given product P.

Definition 7: T is an assembly tree for (X, A) E V p iff:

1. X={ci},ciEC and A=11>

then T= ci

or 2. 3(Xi , Ai)' (Xj , Aj)EVp such that

- Ti is an assembly tree for (Xi' Ai)

- Tj is an assembly treefor (Xj , A)

- The geometric operation ((Xi' Ai)' (Xi' A) isfeasible

then T = (Ti, Tj)

or 3. 3PEA
- T' is an assembly tree for (X, A-{p})
- The non geometric operation p (X, A -{p}) is feasible

then T = peT').

www.manaraa.com

205

" "'" """ M2

Decomposition Algorithm l-

\... ~

~ 4 + 4
IC «Xi. Ai). (Xj.Aj» (p(X.A)

J J
,

1~ M3 1~ '" ,
"

()
Ml

Operations checking .. Product Model
Strategic Constraints

t .t
l(J3) J2) B \.(Jl)~

\. ~

Assembly trees
, , • , "'" , "'"

EUCLID USER

\. ~ '" ~

Figure 8.6 : Organisation of LEGA .

www.manaraa.com

206

Defmition 8.7 is composed of three disjunctive clauses which lead directly to three
Prolog clauses. These clauses are the basic part of our present program for
generating assembly tree. This prototype program, named LEGA ("Logiciel
d'Elaboration des Gammes d' Assemblage") is written in Prolog II. Its architecture is
depicted in figure 8.6, which includes three main modules:

* M I describes the product model and the set of strategic constraints. All data in
Ml are provided by the user. Ml is able to check the coherence of this data. Jl
is the user's interface.

* M2 provides the decomposition algorithm. It is mainly composed of the
clauses resulting from Definition 7. M2 provides only decompositions
consistent with the strategic constraints defined in MI. M2 provides candidate
operations (geometric and non geometric) resulting from the product
decomposition.

* M3 checks all the operations issued by M2 first by searching a database B
which contains the already known operative constraints, and then, when no

answer is found in B, by questioning the user. The user's answer is used to
enrich B. J2 is the user's interface. M3 includes also an optional interface J3
with an external program, connected to a CAD software containing a 3D solid
geometric model of the product, which allows an automatic checking of the
geometric constraint. This connexion has been successfully tested in association
with CAD software EUCLID.

* Module "operations checking" includes a set of rules allowing the deduction of
new operative constraints from the ones already registered in B and from the
product model (see section 8.6).

8.5.2 Modified algorithm

The third condition given in Definition 7, which allows to check all the feasible non
geometric operations having for result subassembly (X, A), is quite inefficient in
practice. This condition leads to check for every p in A the feasibility of operation p
(X, A - (p)). In fact, it appears that most of the non geometric operations have to
take place as soon as the conditions for their realization (defined by f function in the
product model) are fullfilled. Thus a securing operation is usually carried out as soon
as the components to be secured are in a subassembly and this for stability purpose.
In the same way a checking operation is carried out as soon as the components
necessary to the function to be checked are in a subassembly. To add more
components before the checking would lead to reject or to rework a more complex
subassembly. That is why we have added to LEGA the following rule:

www.manaraa.com

207

Role :Any subassembly (X, A) is authorized to enter a geometric operation
«X ,A) , (» iff:

\I p[pE L U 61\ Pc (f(p» C XI\ PrU6 (f(p)) C A => pE A]

where Pc and PI.U6 denote the projections respectively on C and Lu6.

Informally, any subassembly is allowed to enter a geometric operation only once it
has been provided with all its attachments and all its complementary features.

Nevertheless, there are obviously a few exceptions to this rule . So when the user
thinks that it would be interesting to delay the introduction of some attachment or
some complementary feature p, he has to declare it in the product modelling stage.
This leads to the issue of a formula free (P).

8.6 Formalization of operative constraints

8.6.1 The CG relation

Definition 8 : the CG relation for a product P is a binary relation on Vp such
that:

((Xi' Ai)' (Xj , Aj)) E CG iff:

1. (Xi' Ai) and (Xj , Aj) are two complementary VSA

and 2. Any geometric operation ((Xp, Ap), (Xq Aci) such that:

Xi C Xp and Xj CXq

is unfeasible.

Properties :

The three properties below follow directly from definition 8

1. \I (Xi' Ai)' (Xj' Aj)E Vp [CG «Xi' Ai)' (Xj , Aj»~ CG «Xj , Aj), (Xi' Ai»]

2.\1 (Xi' Ai)' (Xj , A j), (Xp, Ap), (Xq Act E Vp

[CG«Xi' Ai)' (Xj' Aj» 1\ Xi C Xp 1\ Xj C Xq => CG «Xp, Ap), (XC}' A<i)]

3.\1 (Xi' Ai)' (Xj , Aj), (Xp, Ap), (Xq A<i EVp

rCG «Xi' Ai)' (Xj' Aj» 1\ Xp C Xi 1\ Xq C Xj => -, CG «Xp, Ap), (Xq A<i)]

www.manaraa.com

208

C --f"=B-1

b--.-"

a

A

a ----I:~:...JJ
b-~N

d --Po<:t--'r

B
Figure 8.7 : Two examples illustrating material constraint.

In LEGA, each time a candidate geometric operation «Xi,Ai)' (Xj.Aj» issued by the

decomposition algorithm is rejected because of the geometric constraint, then a
clause CG «Xi' Ai)' (Xj , Aj» is created in database B. The reason is that since

there is no free collision trajectory allowing to bring the two parts (Xi' Ai) and

(Xj' Aj) in contact, the problem will be the same or even worse if we add more

components to these parts.

When a candidate geometric operation «Xi' Ai)' (Xj , Aj» satisfies the geometric

constraint but does not satisfy the material constraint, the user is allowed, under his
responsibility, to force in LEGA a clause CG «~, Ai)' (Xj , Aj». This may be done

when there is obviously no room between the two parts for any possible gripper.
Thus there is a geometric constraint between the objects constituted by the involved
subassemblies and any possible handling device.

This situation is illustrated by example A in figure 8.7. There is no geometric
constraint for the operation « {a, b, d} , <1», ({ c} ,<1») but this operation may be judged
impossible or too difficult by the user. Obviously the impossibility will stand or
even increase if more components are added to any of the two involved parts.

However the possibility to express a material constraint by means of relation CG
must be used carefully, for it may lead to some mistakes as, for instance, in the
example B in figure 8.7. Operation «{a, b}, <1», ({c}, <1») may be judged impossible
while operation «{a,b}), <1», ({ c, d), <1») may be a rather easy one.

8.6.2 The CS relation

Definition 9 : the CS relation for a product P is a property (or unary relation)
on V p such that:

(Xi' Ai) E CS iff the subassembly (Xi' Ai) is unstable.

www.manaraa.com

209

We have shown in [6] that some automatic deductions about the stability of the
subassemblies issued by the decomposition algorithm could be derived from the
product model and from the CS clauses already created in database B.

8.6.3 The CM relation

Definition 10 : the eM relation for a product P is a binary relation on Vp

such that:
((Xi' Ai)' (Xj , Aj)) E CM iff

1. ((Xi' Ai)' (Xj , Aj))~ CG

and 2. (Xi' Ai) ~ CS A (Xj , Ai ~ cs
and 3.operation ((Xi' Ai)' (Xj , Aj)} is unfeasible

An example of use of CM relation is given by product B in figure 8.7. If the user
wants to reject operation «{c)), ({a, b}) we have seen that it was not correct to use
relation CG, so we would instead create a clause: CM « (c}.cI», ({a, b}.cI»)

8.6.4 The AG relation

Definition 11 : the AG relation for a product P is a property on (Luii) x V p

such that: (p, (X, A)) E AG

iff any non geometric operation p (Y, B) such that XC Y is unfeasible.

Properties :

1. V pe :£ u A, (Xi' Ai)eVp [AG (p, (Xi' Ai»/\ Xi C Xj => AG (p, (Xj , Aj)]

2.V pe :£ u A, <Xi, Ai) eVp rAG (p, (Xi' ~»/\ (Xj C ~)

=> ~G (p, (Xj' Aj)]

In LEGA, each time a candidate non geometric operation p(Xi, Ai) issued by the

decomposition algorithm is rejected because of a geometric constraint, then a clause
AG (P, (Xi' Ai» is created in database B.

An example is given in figure 8.8 where it is impossible to screw the components a
and b when the component c is mounted on b, so we have: AG (s, ({a, b, c). cI»)

www.manaraa.com

210

Figure 8.8 : Geometric constraint for a securing operation.

8.6.5 The AM relation

Definition 12 : the AM relation for a product P is a property on (LuL1) xV p

such that: (p, (Xi' Ai» E AM iff

1. (p, (Xi' Ai» 6! AG

0IUi 2. The non geometric operation p(Xi, Ai) is unfeasible.

In practice the AM relation is not used frequently. Its main use is to correct an
insufficient definition of the f function in the product model. For instance, consider
the quartz presented in section 8.1. Labelling la has to be set in the cover co. If the
user does not include the electric state in the defintion of f (la) and declares
f(la) = ({co), <1», then the decomposition process will suggest the operation
la ({ co), <1» which may be realized before the electric testing. This operation is
impossible because the label cannot include the quality of the resulting quartz. In
this case this operation may be rejected by using a clause AM (a clause CG would
obviously eliminate every assembly process).

8.7 User's part in assembly tree generation

As described in section 8.5, LEGA produces a set of operations whose feasibility has
to be checked. Whenever the feasibility of an operation cannot be decided from the
database B and the set of rules included in LEGA, the user is questioned. According
to the operation category (geometric or not) two different dialogues may be issued
which are presented in figure 8.9.

The first one, issued for a geometric operation decides its feasibility and, when the
operation is unfeasible, the nature of the operative constraint involved.The operation
is noted (S,T) where S and T are the two involved subassemblies. Moreover, when
there is a stability problem, the unstable part is defined.

The second one, issued for a non geometric operation is quite similar but, since there

www.manaraa.com

211

is only one subassembly involved, when there is a stability problem there is not
need to ask which part is unstable.The operation is noted p(S).

In both dialogues we have presented the clauses deducible from the user's answers. In
fact, the work in LEGA is more complex than the simple creation of these clauses.
Properties of CG and CS relations are used to eliminate redundant clauses in B.

Also the knowledge included in B allows LEGA, sometimes, to skip some
questions in the dialogue. Thus when at least one part (Xi' Ai) or (Xj' Aj) is known

to be stable (because one is reduced to a component or because all its components
are secured), no question is asked about the unstable part. Moreover, if the two parts
are known to be stable and if there is a clause:

with

then the answer that the operation «Xi' Ai)' (Xj , Aj» is unfeasible implies that a

material constraint is involved, a geometric constraint being excluded.

In practice. the number of dialogues issued in the assembly tree generation of a
product or subassembly having 20 components, without any strategic constraint, is
of some hundreds. Moreover the waiting time between two dialogues increases as the
data that is added to database B (which is empty at the beginning) enables LEGA to
do more and more automatic deductions without the user's help. Thus, the generation
of all valid trees with LEGA is not interesting in practice because it requires too
much time from the user and produces too many assembly trees.

The connection to a CAD software reduces substantially the number of questions but
increases the computing time. Thus the good use of a CAD software is to have
LEGA working in two stages. A first stage completely automatic which defines the
whole set of geometric constraints in B, and a second stage which starts again the
whole process interactively with the user.

However LEGA is most efficient when supplied with strategic constraints.Typically
only a few of them are needed to reduce considerably both the number of questions
and the number of resulting assembly trees. In the next section we shall present a
simplified version of LEGA which has proved to be very effective for most of the
products we have studied, and has been considered more practical by engineers
working on assembly.

www.manaraa.com

212

ye

"'CG(S,T)
-'CM(S,T)

"'CS(S)
"'CS(S)

-'AG(p, S)

-'AM(p, S)

"'CS(S)

I

Is : (S,T) feasible?

material geometri.-----'----....
'1---..,

-'CG(S,T) CM(S, T)

.., CG(sl T) CG(S, T)
S etT I
c!(S) CS(S) .., CS(S)

"'CS(T) CS(T) "'CS(T)

Is p(S) feasible, no

, ,material
Operative constramt ?

I
stability

S(S)
AM(p, S)

"'AG(p, S)

"'CS(S)
I

Figure 8,9: Dialogues issued between LEGA and the user,

www.manaraa.com

213

8.8 Simplified version of LEGA

As we have stated in section 8.5, when two parts are assembled, if they are to be
secured, usually they are secured immediately. That is why we have added a
corresponding general rule in LEGA. Thus, let P be an attachment securing two
subassemblies (Xi' Ai) and (Xj' Aj)' that means, with f(P) = (X, <1» :

and X C X·uX·
I J

LEGA will produce successively the two following operations:

1. is P(Xi u Xj' Ai u Aj) feasible?

2. is «(Xi' Ai)' (Xj ' Aj» feasible?

In fact it is far better for the user to consider globally these two questions and to find
out at the same time whether it is possible to mate and to secure these two
subassemblies. So we have introduced a new kind of operation.

Definition 13 : An assembly operation is the production of a VSA (X. A)
realized by mating and securing two complementary VSA (Xi' Ai) and (Xi' Ai)

with.' X =Xi uXi and A =AiuAiu a
where a = [pIp E I: .' Pc (j(p)) C X APe (j(p)) fL Xi A P c(j(p)) fL Xl

Accordingly we have developed a simplified version of LEGA which deals mainly
with assembly and complementary operations. Nevertheless, it is still possible to
declare that some attachment may be delayed by means of predicate free. For such
attachments the concept of assembly operation will only appear in the trees where
their setting follows immediately the mating of two corresponding parts. In other
trees the user will still have to deal separately with the geometric operation and the
securing operation.

To close this section it is important to state that for many products having few
complementary features and when their placing in the assembly process appears to
be easy, it is more convenient for the user not to include them in the product model.
They will be introduced later in the definition of the assembly system. Such a way
to deal with complementary features may not be satisfactory from a theoretical point
of view but it greatly simplifies the user's work. Thus, ultimately LEGA may be
simplified to the point where the only operations involved are the assembly ones as
defined above. This implies the merging of relation CG and AG on the one hand and
relations CM and AM on the other hand, and a slight change in the dialogue between
LEGA and the user. This simplified version of LEGA has been presented in [7]
while a complete description of the full version was given in [6].

www.manaraa.com

214

8.9 Conclusion

The method proposed in this paper allows to fmd all the valid assembly sequences
for any product to assemble. The resulting assembly sequences, represented by
assembly trees, include not only the assembly operations (mating and securing of
parts), but also every complementary operation imposed by product defmition.The
resulting program, LEGA, which is still a prototype, has been written in Prolog
which proved quite suitable to the formalization we have chosen both for the
decomposition algorithm and for the assembly constraints.

The current version of LEGA is still quite prohibitive for products having more than
ten components, both because it requires too much time from the user and produces
too many valid assembly trees. We are studying a partially automatized evaluation of
the operations involved in the different resulting trees allowing to rank them, but
obviously there is still a lot of work to be done.

The key to tum LEGA into an efficient generator of assembly plans was to define
some strategic constraints which may be introduced by the user in the product
modelling stage. These constraints allow, for most products, a considerable reduction
of the number of resulting assembly trees and of the user's work. The drawback is
that their choice depends upon the user's expertise and that there is no proof that they
select the best trees. Anyway this impoverishment in the theoretical aspect is
compensated by a real increase in efficiency. It is now possible to generate assembly
trees for products having about twenty components in reasonable time, and even to
deal with more complex products by splitting them into subassemblies. It is
important to emphasize that only a few strategic constraints are needed and, however
subjective they are, they are registered so that the user's decision may be easily
discussed.

www.manaraa.com

215

References

[1] A. Bourjault. Contribution a une approche methodologique de [,Assemblage
Automatise : Elaboration Automatique des Sequences Operatoires. These
d'Etat, Universite de Franche-Comte, December 1984.

[2] T.L. De Fazio and D.E. Whitney. Simplified Generation of all mechanical
assembly sequences. IEEE J. Robotics and Automation, Vol. RA.3, 640-658.
December, 1987.

[3] A. Delchambre. Conception assistee par ordinateur des gammes operatoires
d' assemblage. These de Doctorat, Universite libre de Bruxelles,May 1990.

[4] B. Frommherz and J. Hornberger. Automatic Generation of Precedence
Graphs. Proceedings of 18th ISIR, Lausanne, 453-466, IPS Publications,
Avril 1988.

[5] C.J.M. Heermskerk. A Concept for Computer Aided Process Planning for
Flexible Assembly. Ph.D.Thesis, Delft University of Technology, May 1990.

[6] J .M.Henrioud. Contribution a la conceptualisation de l' assemblage automa­
tise: nouvelle approche en vue de la determination des processus d' assembla­
ge. These d'Etat, Universite de Franche-Comte, December 1989.

[7] J .M. Henrioud and A.Bourjault. Determination des arbres d' assemblage, APII
vol. 24, 547-564, November 1990.

[8] J.M. Henrioud, F. Bonneville and A. Bourjault. Evaluation and Selection of
Assembly Plans, APMS'90,Espoo, Finland, 212-219, August 1990.

(9) L.S. Homem de Mello. Task Sequence Planning for Robotic Assembly.
Ph.D.Thesis, Carnegie Mellon University, May 1989.

[10] RJeannes. Methodologie d' analyse des produits pour leur reconception en
vue du montage automatique.These de Doctorat, ENSAM, 1986.

[11] W. Jentsch F. Kaden. Automatic Generation of Assembly Sequences. Art.Int.
and Inf. Control systems of Robots,Tchecoslovaquie, 197-200, 1984.

[12] M. Meunier. Elements methodologiques pour la conception des systemes
flexibles d' assemblage. These de Doctorat, Universire de Franche-comte,
June 1989.

[13] H. Selcigushi et al. Study on Automatic Determination of Assembly Sequen­
ces, Annals of the CIRP, VoI.32/1,,371-374, 1983.

[14] J.D. Wolter. On the Automatic Generation of Assembly Plans. Proceedings of
the 1989 IEEE Int. Conf. on Robotics and Automation Scottsdale, 62-68.

www.manaraa.com

Chapter 9

Maintaining geometric
dependencies in assembly
planning

Randall H. Wilson and Jean-Fran~ois Rit

Used as a tool to get manufacturability feedback in early design stages, an
assembly sequence planner would be a boon to designers. By pressing a button,
an engineer could receive an assembly plan or set of plans for the product being
designed, along with estimates of production time and cost. The design could
then be adjusted to make it easier to build. But to be most useful, such a
tool must be both autonomous and fast. If the designer has to do a great deal
of geometric reasoning for the planner or wait days for the system to do it
automatically, the assembly planner will be used infrequently, and the impact
on the design will be minimal.

In this chapter we describe GRASP, an assembly planner designed for use in
a concurrent design environment. GRASP generates assembly sequences di­
rectly from a geometric model of the target assembly, and includes a method
that makes assembly planning more efficient by establishing a tight connection
between physical reasoning and sequence planning. In our approach, the geo­
metric reasoner constructs an expression describing the conditions under which

www.manaraa.com

218

the result of a geometric calculation will still be valid. These expressions are
then evaluated at later steps, often avoiding costly geometric computation. In
our experiments the method has caused large speed increases when planning
for real assemblies.

In our treatment of assembly sequence planning, we make some simplifying
definitions. First, parts are placed directly into their final positions relative
to each other, and no connection between two parts is ever changed after it
is established. No assembly operation mates more than two subassemblies. In
addition, each intermediate subassembly must be connected.

We also make assumptions about the geometry of the parts in the assembly:
the parts are rigid, they have exact geometry, and their positions have no tol­
erances. This has the disadvantage that the planner cannot accurately reason
about springs, snap-fit connections, or other flexible parts, but it allows the
planner, with a geometric model of the final assembly, to describe any partial
assembly with just a list of the parts contained therein. Although the methods
we discuss could be generalized further, the solid modeler we use reasons about
3D polyhedral objects, with a limited added ability to reason with cylindri­
cal, conical, and spherical surfaces. Moreover, our planner can only mate two
subassemblies with a single translation.

Finally, in this chapter we only allow assembly operations that mate a single
part with a subassembly; Woo [21] and Wolter [20] call this the linear case,
while De Fazio and Whitney [7] call it "precluding a plurality of unconnected
subassemblies." Chapter 10 examines the general case, when two subassemblies
can be placed together in an assembly operation.

9.1 GRASP

We have implemented an assembly sequence planner called GRASPl. GRASP
takes as input just the 3D geometric models of a set of parts comprising a
target assembly, automatically builds a model of the assembly including the
parts and contact relations between them, and finally generates an AND/OR
graph representing a set of possible assembly sequences.

9.1.1 Building the Assembly Model

Most of the geometric information in GRASP is contained in the description
of the goal assembly, which is built and maintained using Vantage [1], a 3D
polyhedral modeling system. A user defines the geometry and position of each
part using constructive solid geometry, then the modeler creates a boundary

1 GRASP stands for "Geometric Reasoning Assembly Sequence Planner." It has nothing
to do with grasp planning.

www.manaraa.com

blo ckl
~

~
1'\

r T
I

peg

'-

~
(block2 (name "Block 2")

(assembly blocks-and-peg)
(b-rep block2z)
(part-number 2)

~

~
.Cl..

-J
block2

;;.....;

~

(contacts «peg (cylinder-contact (1.0 0.0 0.0)
(0.0 20.0 20.0»

(planar-contact (- 1.0 0.0 0.0»)
(block1 (planar-contact (0.0 0.0 -1.0»»»

Figure 9.1: GRASP's contact representation

219

representation from the eSG tree. The boundary representations for the parts
of the target assembly are the only input to GRASP.

From the part models, the procedure COMPLETE-ASSEMBLY deduces all the
contacts between faces of parts and records the contact information in a con­
nection graph, where each node corresponds to a part and each edge is a contact
between two parts. The connection graph, much like Homem de Mello's rela­
tional model [8], forms the basis of the planning process. In a real model of an
assembly, contact information could be ambiguous due to tolerances or small
distances between parts, requiring explicit human clarification. However, since
we assume no tolerances on our parts, GRASP constructs its relational model
of the assembly autonomously.

To find contacts between parts, GRASP checks each pair of surfaces from
different parts for a possible contact. For every pair of surface types, a special­
purpose routine determines whether there is contact between an instance of
each; for example, two planar faces are in contact if they are coplanar, have
opposing normals, and intersect in their common plane. Routines have been

www.manaraa.com

220

Screw2 I;::::;=J -
Box ~

2 1 •
Lid Cargo ~

L •

~ ..
Screw 1 I;::::;=J

C •
.----1
B

Figure 9.2: A crate assembly and its AND/OR graph

written to check for face-face, face-cylinder, and cylinder-cylinder contacts.
Although Vantage approximates curved surfaces with faces, it remembers the
parameters of the real surfaces, allowing accurate detection of curved contacts.

The contacts for each part and parameters describing each contact-the inward­
pointing normal for a planar contact, the direction and position of the axis for a
cylindrical contact-are stored in the connection graph of the assembly. Figure
9.1 shows the Vantage drawing of a three-part assembly and the representa­
tion of one part and its connections. Once the connection graph has been
constructed, sequence planning can begin.

9.1.2 Building the AND/OR Graph

GRASP adopts Romem de Mello and Sanderson's AND/OR graph represen­
tation of the space of possible assembly sequences (Chapter 6). Associated
with each node in the graph is a partial assembly that might be reached in the
process of building the final product. An AND-arc represents the operation of
putting two child assemblies together to make the parent, while OR-arcs give
different ways of creating the same parent assembly. Thus each AND-subtree
of a full AND/OR graph represents a partial assembly order for the product.
Figure 9.2 shows a simple assembly and the AND/OR graph GRASP generated
for it.

Figure 9.3 gives the main algorithm of GRASP, which follows loosely the one
given by Romem de Mello and Sanderson in Chapter 7. It builds the AND/OR
graph from the top down, beginning at the goal assembly. This corresponds
to the disassembly heuristic of taking the assembly apart, then reversing the
order to find an assembly plan. Since GRASP only models free flying rigid
parts with no uncertainty, removing a part is exactly the reverse of placing it.

Before expanding a node in the AND/OR graph, GRASP checks for instability

www.manaraa.com

Procedure GENERATE-AND/OR-GRAPH(goal-assembly)
open +- {goal-assembly}
until empty(open)

S +- pop(open)
If STABLE(S)

For each part pES
If CONNECTED(S - p) and MOVABLE(p, S)

expand(S,p, S - p)
unless expanded(S - p)

push(S - p, open)

Figure 9.3: Main algorithm of GRASP

221

of the corresponding assembly using techniques described below. If it is stable,
the planner considers removing each part in the assembly. GRASP verifies that
removing the part will leave the rest of the assembly connected, then calls the
procedure MOVABLE to determine whether a geometrically feasible path exists
to remove the part from the assembly.

9.1.3 Local Motion

MOVABLE performs two types of geometric calculations to find a path to re­
move a part. The first is a local-motion check based on computing the part's
local translational freedom. If a part can be removed, it can be moved a very
small distance; conversely, if no small motion is allowed by the part's contacts,
it cannot be removed.

A part's local translational freedom is the set of directions in which the part can
translate an infinitesimal distance from its current position, given the geometry
of the rest of the assembly considered as a solid. We can compute the local
translational freedom of a part p by analyzing p's contacts with other parts
(figure 9.4). Each planar face in contact restricts the translational freedom of
p to a half-space on one side of that plane; each cylindrical contact restricts p
to translate along the axis of the cylinders. The intersection of all the spaces of
freedom is the part's local freedom. In general, the local translational freedom
of a part in three dimensions takes the form of a convex cone as in figure 9.5.
If the cone is not nuli, then we say that the part is locally free in that assembly.

9.1.4 Global Motion

If a part is not fully constrained by its contacts with the rest of the assembly,
GRASP tries to sweep the part in some of the legal directions from its current

www.manaraa.com

222

Figure 9.4: Local freedom computation

x

Figure 9.5: A 3D convex cone of removal directions

www.manaraa.com

223

position to infinity. The directions to sweep are chosen heuristically based on
the shape of the local freedom cone. For instance, for a half space, the normal
of the plane facing into the half-space and four perpendicular directions in the
bounding plane of the half space are chosen as sweeping directions. For a cone
such as the one in figure 9.5, GRASP sweeps along vectors parallel to the edges
of the cone.

To sweep a part, the faces of each possible interfering part are compared pair­
wise with the faces of the translating part to check for collision. If the two
faces intersect when projected into the plane perpendicular to the vector of
translation, and the face being swept is "behind" the interfering face at one
of the points of intersection, then a collision exists. This sweeping check is
quite expensive to calculate, but it is necessary to ensure the global validity of
assembly operations.

If one of the chosen directions is free from collision with all other parts present
in the assembly, it constitutes a valid insertion path for the part. Note that even
when all sweeping directions result in collision, a straight path along another
vector or a bent path might exist. To find such insertion paths, a more sophis­
ticated motion planner [12, 18] could be called as discussed in Section 9.5 .2,
but this could be expensive. In Chapter 7, Romem de Mello and Sanderson
mention the creation of virtual contacts to express global constraints between
two parts in the assembly model. Since such constraints must come from ei­
ther human input or a calculation similar to sweeping, we chose sweeping as a
simple solution.

To minimize sweeping computations, GRASP saves the result of each sweep
for later retrieval. Previous-sweeps[pl, P2] is a two-dimensional array holding a
list of pairs (d, collides). When a part Pl needs to be swept against part P2 in
direction d1 , previous-sweeps[pl, P2] is searched for a pair whose first element
is d1 • If one exists, collides is true if Pl hits P2 in direction d1 , and false if
not. If no pair (d1 , collides) is found, Pl is swept against P2 as above, and the
result is stored in the table. We call this method sweep caching, and in our
experiments it has accelerated planning considerably.

9.1.5 Stability

GRASP has a limited ability to reason about the environment in which assem­
bly will happen. The user can describe fixed objects that are not part of the
target assembly, for instance a table and fixtures. A node in the AND/OR
graph is then considered an undecomposable subassembly if it consists of only
one part or only fixed objects. In this mode GRASP also does a fast stabil­
ity check on each assembly. If the local translational freedom of anyone part
includes a downward component, the part is free to slide (figure 9.6). This
algorithm is not exact; figure 9.6c shows a simple unstable assembly that the
method does not identify because two parts will slide together. The general

www.manaraa.com

224

a: Unstable Assembly

Local Freedom Unstable Cone

V t
\ I

I
Part will slide

b: Slability Computation c: Undetected Unstable Assembly

Figure 9.6: Single-part stability computation

stability problem is very difficult [5], but in practice the local stability check
has proved to be quite valuable, pruning much of the search space and leaving
few unstable assemblies.

Figure 9.7 shows GRASP planning for the assembly of an electric bell, discussed
further in Section 9.4.2. It has generated the partial AND/OR graph seen in
the upper left, and the graphics window shows the current operation it is adding
to the graph: placement of the battery into its case.

9.2 Maintaining Movability Dependencies

The obvious algorithm given above for generating the AND/OR graph just
checks the movability of each part at each node in the AND/OR graph. How­
ever, this repeats a great deal of computation about the geometry of the as­
semblies. Because there is little change in geometry between assemblies and
their children in the AND/OR graph, most of the geometric reasoning about
the movability of parts in the parent assembly should still be valid for the same
parts in each child subassembly. For instance in the assembly of figure 9.2,
screw2 is movable whether screwl is present or not, while the cargo is not mov­
able as long as the box and the lid are there, independent of screw! and screw2.
Essentially, we would like to exploit regularities in the geometry of assemblies
and their subassemblies to reduce the geometric computation necessary to plan
assembly sequences.

9.2.1 Principles of Dependency Maintenance

In the algorithm above there is a very weak link between the geometric rea­
soning modules and the symbolic reasoner constructing the AND/OR graph.
For each query about the movability of a part in an assembly, the geometric

www.manaraa.com

Rnt.t .aet.lcnl <t.l.ct UClns
0: c;>OrlUr'UI COIIIpUtfiion

tic) <cl) :r-M

<cl) {mq *NIfIOooIeIT4Phlc ..

I
<01> <aetq .~ic_ U

225

"----- --------~~ -- -~--- -- -~---

Figure 9.7: GRASP in operation

reasoner only answers that yes, the part is movable, or no, it is not. GRASP
significantly reduces the number of geometric reasoning steps by having the
geometric module return an expression stating the conditions under which the
given part would be movable. When this precedence expression is still valid in
descendants of the current assembly, evaluating it is usually much faster than
performing a full geometric check.

In general, a precedence expression cannot fully describe the conditions ofmov­
ability for a part. It only gives some sufficient and some necessary conditions.
In order to manage this easily, we use a direct extension of the classical propo­
sitional calculus where each expression can take the value true, false, or maybe.
The truth tables of this calculus are given in figure 9.8. The main property
that we use is the following: given a proposition M (for movability) that has
(Ni)iEI as necessary conditions and (Sj)jEJ as sufficient conditions, then the
expressIOn

(maybe 1\ /\ Ni) V V Sj (9.1)
I J

www.manaraa.com

226

OR T ? F AND T ? F NOT
T T T T T T ? F T F
? T ? ? ? ? ? F ? ?
F T ? F F F F F F T

Figure 9.8: Truth tables for GRASP's three-valued propositional calculus

T T
T F
F T
F F

(? AN) V S

aln GRASP, conditions are always Tor F. When no necessary or sufficient conditions are
present,./If and S are set respectively to T and F.

bin GRASP, only proven necessary or sufficient conditions are used. Thus this case -
which should return a contradiction - does not appear.

Figure 9.9: Necessary and sufficient conditions represented in a single formula.

will be true whenever one of the Sj is true, false whenever one of the Ni
is false, and maybe in all other cases (figure 9.9). Therefore, expression 9.1
embodies conditions on M, the movability of a part. This is the general form
of a precedence expression. In the following, we will use the notation M(p, A)
to represent the movability of a part p from an assembly A.

Passing down movability properties from an assembly to its subassemblies can
be implemented by passing down precedence expressions. To prove that the
precedence expression M(p, S), inherited by a subassembly S of A, still denotes
movability in S, we only need to have implications of the form:

'VS ~ A, 'Vp E S, S:::} M(p, S)
-,N:::} -,M(p, S) (9.2)

where Nand S are necessary and sufficient conditions on the movability of p
in A. Several types of expressions of this form are given in Section 9.3.

We thus replace the MOVABLE procedure, called in the main algorithm, by a
more sophisticated version given in figure 9.10. MOVABLE must return true
if a part p is removable from an assembly S and false if it is not. It also has
the side effect of setting the precedence expression of a part, which is maybe
by default. Real geometric computation only occurs in the PRECEDENCE
procedure, which is called when the movability of the part cannot be deduced
symbolically from the inherited precedence expression.

Notice that in general, each node in the AND/OR graph has many parents,
and so the choice of parent assembly from which to inherit is arbitrary. It
would be possible to combine the precedence expressions from the different
parents for the child node's expression , sometimes saving more geometric com-

www.manaraa.com

Procedure MOVABLE(p,S)
A +- A.PARENT.OF(S)
M(p, S) +- M(p, A)
If M(p, S) evaluates to

False: return False
True: return True
Maybe: M(p, S) +- PRECEDENCE(p, S)

If M(p, S) evaluates to True
return True

Else return False

227

Figure 9.10: Procedure MOVABLE, taking advantage of precedence expressions

putation than with the single·inheritance method. However, it is not clear that
the savings would outweigh the extra overhead and complexity of combining
precedence expressions.

9.3 Precedence Expressions

We tested three kinds of precedence expressions, called simple, contact, and
local precedence expressions. They are increasingly complex and accurate in
describing symbolically when a part is movable. They are all built from atomic
propositions Pi, each of which represents the assertion that part i is present in
the assembly under consideration.

9.3.1 A Simple Sufficient Condition

When parts are removed from an assembly A, the free space for the remaining
parts is broadened. Thus if a part is movable in A it is guaranteed to be
movable in any subassembly S of A:

VS ~ A, Vp E S, M(p, A) ~ M(p, S) (9.3)

The simple type of precedence expression takes advantage of this. Homem de
Mello [8, page 168] mentions the possibility of performing a check similar to
the one that simple precedence expressions achieve, but does not elaborate.

From equation 9.3, whenever a part p is movable in an assembly A, true is a
sufficient condition for M(p, S). Therefore, from expression 9.1, the precedence
expression is set trivially to true. When subassemblies inherit their precedence
expressions from A, geometric computation will not have to be done for parts

www.manaraa.com

228

that were movable in A. On the other hand, the movability computation will
need to be redone in subassemblies of A for each unmovable part. For instance,
after expanding the root node in the crate assembly in figure 9.2, the simple
precedence expression for screw2 will be true, and will not need to be re­
computed in the subassembly with screwl removed.

9.3.2 A Necessary Condition on the Parts In Contact

In the next version, contact precedence expressions, the geometric module sup­
plies the planner with a list of parts that constrain a part p in the assembly A.
This is a list of all parts pi in A such that either pi is in contact with p or in at
least one chosen direction of sweeping, p collides with p' . In subassemblies of
A, movability does not need to be recomputed when all of these parts are still
in the subassembly:

'VS ~ A, 'Vp E S, -,M(p, A) /\ 1\ q E S :::} -,M(p, S) (9.4)
qEC(p,A)

where C(p, A) is the set of parts in A in contact with or swept into by p.

From equations 9.2 and 9.4, we can infer that when p is not movable in A,
PRECEDENCE(p, A) must return an expression

M(p, A) = maybe /\ -, 1\ Pq

qEC(p,A)

In subassemblies S this expression will evaluate to false as long as all of the
original contacting parts C(p, A) are present. When one of them is removed,
the truth value of a Pq will become false, causing M(p, S) to evaluate to maybe.
Geometric computation will then have to be done for p.

In addition, PRECEDENCE(p, A) returns true when p is movable, so the simple
sufficient condition of the previous section is maintained.

For instance, after expanding the root node A in the crate assembly, the contact
precedence expression for the cargo in A will be

M(cargo, A) = maybe /\ -,(Pbox /\ PUd)

because the cargo is constrained to move left by the box, and sweeps into the
lid in that direction. In subassemblies resulting from removing one screw, the
cargo will still be unmovable but no geometric calculation will be done.

9.3.3 Necessary and Sufficient Conditions

In the final and most complicated version, called local precedence expressions,
the geometric reasoner returns a precedence expression more closely stating

www.manaraa.com

229

the conditions under which a part might be movable. The parts in contact
with a part p in A are grouped such that all the parts in a group constrain
the freedom of p in the same way, either along the same plane or in parallel
cylindrical contacts. Moreover, the parts swept into along one direction are
also grouped together. In subassemblies of A, p will not be movable unless all
of the parts in one such group are missing. Furthermore, if all swept-into parts
along a vector are missing, a sweep in that direction must be valid, and so p is
guaranteed to be movable:

'VS ~ A, 'Vp E s,
....,M(p, A) 1\ [A/EF(P,A) V qE/ q E S]

1\ [AdEV(P,A) Vq/Ed q' E S] =>,M(p, S)

....,M(p,A) 1\...., [AdEV(P,A) VrEd r E S] => M(p,S)

(9.5)

(9.6)

:F(p, A) is a set indexed by facets of the freedom cone of p in A, where f is
the set of parts constraining a given facet, and 'D(p, A) is a set indexed by
directions of sweep, d being the set of parts swept into when p moves along one
given direction.

Thus when a part is not movable, we have one necessary (9.5) and one suffi­
cient (9.6) condition, so the full expression 9.1 applies and PRECEDENCE(p, A)
returns an expression

M(p,A) = [maYbe 1\...., 1\ V pq] v...., 1\ V Pr

/E:F(p,A) qE/ dEV(p,A) rEd

For example, the local precedence expression for the cargo after the expansion
of the root node A will be2

and the local precedence expression for the lid after expanding S will be

M(lid,A) = maybe 1\,[(P.crewl V Pscrew2) 1\ (Pbo.,)]

Since the lid is completely constrained by contacts, no sweep term is included in
the local precedence expression. Notice that using contact precedence, GRASP
would recompute the movability for the lid after removing one screw.

Local precedence expressions subsume contact ones. To see this, consider that
the contact expression C for a part p lists the Pi that are ground propositions

2 Actually, G RASP does not simplify its precedence expressions, and so Pbo:r is listed three
times because the box contributes three facets to the local freedom cone of the lid.

www.manaraa.com

230

a: A stack of plates b: A stack in a box c: A trivial assembly

Figure 9.11: Three simple types of assemblies

in the local precedence expression L for p. The truth value of L can only change
when the truth value of a Pi changes to false, which would change C to maybe.
As a result, L will be recalculated the same or fewer times than C would have
been.

9.4 Evaluation

We introduced precedence expressions in order to accelerate the process of
assembly sequence planning. We have evaluated the three types of precedence
expressions theoretically and experimentally and found that they shortened
planning time considerably.

9.4.1 Theoretical Complexity

Because of the complex ways in which the geometry of an assembly can affect
the size of its AND/OR graph, it is difficult to find meaningful bounds on
the computation required to build it. For instance, given an assembly with
N parts, the number of nodes in the AND/OR graph can range from 2N - 1
when there is only one legal sequence, to 2N - 1 when all sequences are legal.
Below we analyze the complexity for three types of assemblies and for each
type of precedence expressions. We assume that the number of calls GC to
the geometric reasoner is the overriding factor for the total running time of the
algorithm to generate the AND/OR graph.

Consider the situation in which all parts are free to move in the initial assembly,
but only one sequence satisfies stability considerations, as in Figure 9.11a. With
N parts, the AND/OR graph has N -1 non-terminal nodes. The time required
to generate the graph using each type of precedence expression is:

None At each step in the generation of the AND/OR graph, all of the parts in
the subassembly being considered must be checked for movability. There-

www.manaraa.com

231

fore, without precedence expressions GC = 2:f:~1 N - i = N(~+1) =
O(N2)

Simple Using simple precedence expressions, the accessibility will be com­
puted for the original N parts, finding each expression to be true. These
expressions will be inherited downward, and no more geometric reasoning
will be necessary. Thus GC = O(N).

Contact and Local The complexity is the same as in the simple case.

In assemblies like the one in Figure 9.Ub with N - 1 plates inside a box, only
one sequence is valid because just one part is removable in each subassembly.
Again the complexity depends on the type of precedence used:

None The obvious algorithm will again require GC = O(N2) calls to the
geometric reasoner.

Simple In this case simple precedence gains us nothing. In each node, only
one part is movable, so no true precedence expressions will be inherited.
As a result, GC = O(N2).

Contact Since each plate Pi is constrained by the box and parts Pi -1 and Pi+1,
when we remove part Pi+l only the contact precedence expressions of the
box and part Pi will evaluate to maybe, forcing a geometric call. Thus
the number of calls will be 2 at each step except the last where only the
box remains, so GC = N + 2N - 1 = O(N).

Local The local precedence expressions for the plates will result in the same
behavior as in the contact case. However, since the last plate PN-I con­
tributes to each of the constraints on the box, the box's precedence ex­
pression will not evaluate to maybe until PN-I is removed, so GC =
N+N-l=O(N) .

Finally, consider an assembly in which all sequences of assembly are valid, such
as in Figure 9.Uc. Without precedence expressions, the accessibility of every
part in each of the 2N - 1 nodes would be computed. Using simple (or any
other) precedence expressions, the accessibility would be found to be true for
each part in the final assembly. This information would be inherited down
the tree, making the total number of geometric calls N, even though there are
2N - 1 nodes in the AND/OR graph.

9.4.2 Experimentation

GRASP is implemented in Common Lisp, and runs on a DECstation 5000
under Allegro Common Lisp. We have planned the construction of about 10

www.manaraa.com

232

Precedence Geometric Time in
Type Calls Sweeps Seconds
none 14 11 9.0

simple 12 9 8.8
contact 9 6 8.5

local 6 5 8.9

Table 9.1: Planning times for the crate assembly

assemblies with GRASP, including two-dimensional assemblies using the pro­
totype previously written [19]. Table 9.1 shows the number of geometric calls
required for the prototype to generate the full AND/OR graph for the crate
assembly in figure 9.2 using each kind of precedence expression. The coura­
geous reader can check it by hand to help understand the method. Note that
the time to generate the graph was greater using local precedence expressions
than with contact expressions; the geometry is so simple that the time required
to create complex precedence expressions outweighs the savings.

A more interesting example is the assembly from industry (figure 9.12) with
which De Fazio and Whitney [7] illustrate their method for generating assem­
bly sequences. Figure 9.13 shows the assembly's liaison diagram as given there.
It is a model of a transmission with 11 parts, 21 when the geometry of the bolts
is explicitly represented. It is symmetric around an axis of revolution, and as
such its geometry can be fully modeled in the two dimensions of the GRASP
prototype. Figure 9.14 shows the assembly sequences for the transmission with­
out bolts in De Fazio and Whitney's graphical representation of all valid liaison
sequences. Single-part assemblies are not included in the diagram, and assem­
blies are shown by filling the box corresponding to each liaison that has been
established in that assembly (liaisons 1-6 in the first row, etc.). For example,
the leftmost assembly in the third row down has all connections established
except for 4, 5,16,17, and 18; this corresponds to the assembly with all parts
except K and L.

The set of sequences shown in figure 9.14 is not quite the same as the ones given
in [7]. These differences are a result of GRASP generating its AND/OR graph
from geometry alone, while De Fazio and Whitney compute their sequences
from precedence constraints incorporating human geometric and mechanical
insight. For example, De Fazio and Whitney find six possible ways to start
the assembly process; GRASP finds eight (the bottom row of figure 9.14). One
of these, the assembly consisting of parts C and D, cannot result in a finished
assembly because the bolts connecting C to A are not accessible when C and
D are connected. Because the bolts are not represented explicitly, GRASP
cannot take this into account. However, when GRASP is run on the full model
including bolts, it does not find any sequences using the assembly of only C
and D.

www.manaraa.com

233

Figure 9.12: De Fazio and Whitney's transmission

Figure 9.13: Liaison diagram for the transmission

Precedence Geometric Time in
Type Calls Sweeps Seconds
none 2508 26343 1151

simple 2035 20526 943
contact 669 6645 445

local 121 1193 99

Table 9.2: Planning times for the transmission, with bolts

www.manaraa.com

234

Figure 9.14: Assembly sequences for the transmission

Precedence Geometric Time in
Type Calls Sweeps Seconds
none 11125 581 578

simple 6377 559 325
contact 1369 559 113

local 638 559 60

Table 9.3: Planning times for the electric bell

The number of geometric calls and the time required for GRASP to generate
the AND/OR graph for the transmission, with bolts as separate parts, is shown
in table 9.2. Sweep caching is not used in the 2D prototype, and consequently
the number of sweeps and total planning time is quite large. The resulting
AND/OR graph has 295 subassembly nodes and 668 AND-arcs.

Figure 9.15 shows an assembly with which we have tested the full three­
dimensional version of GRASP. It is an electric bell kit with 22 parts, not
including the flexible wires that GRASP cannot reason about. Two contacts
in the real bell are threaded, but for these experiments GRASP models them
as pegs. The AND/OR graph representing all the linear sequences of assembly
for the bell has 1389 nodes and 5486 AND-arcs. Table 9.3 shows the number
of geometric calls and the time required to generate the AND/OR graph for
the bell assembly.

www.manaraa.com

235

Figure 9.15: The electric bell

9.5 Possible Extensions

We have used precedence expressions to encode the conditions under which a
single part will have the same local freedom or set of swept-into parts. However,
precedence expressions are general enough to encode other geometric results,
and with some modifications could be used in planners that have significant
differences from GRASP.

9.5.1 Non-linear Sequence Planning

All the algorithms we have given are easily extensible to the non-linear case,
where two subassemblies can be mated in the same operation. A quick justi­
fication is that a subassembly can be considered as a part for the purpose of
movability, as long as it remains stable throughout the removal motion.

As far as dependency maintenance is concerned, the general mechanism and
the MOVABLE procedure are identical. Furthermore, all the necessary and
sufficient conditions (equations 9.3, 9.4, 9.5 and 9.6) are valid for a subassembly
S just as for a part p. The important thing to note is that they still depend on

www.manaraa.com

236

block3

plate
block2 blockl

- r--

I bolt 1 bolt 2 I
- '--

bracket

Figure 9.16: A bracket assembly

the presence of parts in contact or being swept. In other words, the precedence
expressions are identical, with each atom denoting the presence of a part. Thus,
after expanding the root node in the crate example of figure 9.2, the local
precedence expression for the subassembly {box, cargo,screwl} would be:

M({box, cargo, screwl}, A) = maybe /I. -,[(PUd V P. crew2) /I. (Plid)]

However, the theoretical validity of maintaining dependencies for subassem­
blies does not mean that the method is practical. Managing and evaluating
precedence expressions is notably more costly in the non-linear case because
the number of precedence expressions is larger. A node with n parts can have
as many as 2n -2 expressions in the non-linear case (one for each subassembly)
compared to at most n in the linear case. Chapter 10 describes a more practical
approach to speeding up non-linear sequence planning.

9.5.2 General Path Planning

A part's movability could be computed in other ways than contact analysis and
sweeping. For example, a part may not be fully constrained by its contacts with
other parts, yet the planner can find no straight path to disassemble it, as is
the case with the bolts in figure 9.16. We might then call a more powerful path
planner [3, 18] to try to find a curved path for the part.

In a sequence planner using a global path planner, precedence expressions could
be incorporated by adding some functionality to the path planner. Checking

www.manaraa.com

237

for the movability of a part p in assembly A under this scheme, there are three
cases to express:

• Contacting parts fully constrain the part. In this case local precedence
expressions can be used.

• The global path planner finds a (possibly curved) path. We then set
M(p, A)' = true.

• The path planner cannot find a path. To construct the precedence ex­
pression for this case, the motion planner used must be modified to find
a set of parts that together constrain p. The changes to the path planner
will depend heavily on the planning technique employed.

For instance, if the planner builds an adjacency graph based on a cell
decomposition of the configuration space of p [13, chapters 5-6], it may
return a list of the parts contributing boundaries to the connected com­
ponent that contains the starting position of p. If the motion planner is
based on a local exploration of the configuration space [3] it may return
the list of parts with which p collided during the search process.

A motion planner with such abilities would allow us to construct a contact
precedence expression

M(p, A) = maybe 1\..., /\ Pc

cEC(p,A)

where C(p, A) is the set of parts the motion planner returns as constrain­
ing p in A. Furthermore, if we use sweeping as a first check for global
motion, or our motion planner is able to find sets of parts whose removal
would allow a path for p, we can build an expression

M(p, A) = [maYbe 1\..., /\ Pc] Y..., /\ V P r

cEC(p,A) dEV(p,A) rEd

where V(p, A) is a set indexed by possible paths or directions of sweep
and d is the set of parts p collides with along one blocked path. In
subassemblies, if all of the blocking parts d are missing in one direction
then that path is valid, while if any of the parts directly blocking a curved
path are missing, then such a path might exist.

For example, bolt 1 in figure 9.16 would be given a precedence expression
like

M(boltl, A) = [maybe 1\ ",,(Pblockl 1\ Pbolt2 1\ Pplate 1\ Pbracket)]

Y",,(Pbolt2 Y Pbracket Y PblQck2)

www.manaraa.com

238

9.6 Relation to Other Work

The assembly planning problem has been addressed by several authors. This
paper builds upon the work of some of them, while the techniques found here
may coordinate well with the ideas of others.

Bourjault [6] proposes a procedure to enumerate all the sequences of assembly
for a product through a series of structured questions to a human. He uses a
subset rule, somewhat like simple precedence expressions, and its contrapositive
the superset rule to reduce the number of questions to the human. De Fazio
and Whitney [7] drastically reduce the number of questions asked of the human
by requiring each answer to state the situations in which one connection can be
established. Baldwin [2] implements and compares these and other methods.
Because a human is an integral part of these approaches, the emphasis has been
on reducing the number of questions to the user and increasing the utility of
each answer. It would be possible to have the human enter a reason for each
decision, and use this somewhat like a precedence expression; however, it is not
clear that doing so would be a more efficient method of entering constraints on
assembly sequences.

Homem de Mello and Sanderson [9] introduce the AND/OR graph represen­
tation of the space of assembly sequences. Homem de Mello [8] also gives a
rigorous method for local motion analysis in three dimensions. GRASP is built
upon their framework and basic techniques of assembly planning. However,
Homem de Mello and Sanderson do not concentrate on questions of speed and
reducing computation. In this chapter we demonstrate that maintaining geo­
metric results can improve the efficiency of their methods considerably.

The problem of finding assembly sequences has been addressed by other au­
thors, but few attempt to completely automate geometric reasoning. Wolter
[20] assumes that geometric reasoning has already resulted in a list of directions
in which each part might move, along with lists of other parts that interfere
with those motions. Ko and Lee [11] present a method for assembly planning
but give no experimental results. Miller and Hoffman [15] use ray casting tech­
niques much like GRASP's sweeping to derive assembly sequences, reasoning
especially about fasteners. Their system finds one sequence of assembly for a
mechanical mouse in 6-9 minutes, which it appears could be shortened using
techniques such as precedence expressions.

A great deal of research has been conducted into the physical reasoning needed
to accomplish single steps in an assembly plan. Motion planning to assemble
single parts or subassemblies has been studied by a number of authors [12,
14, 16,18]. Palmer [17] showed that in general deciding whether an assembly
is stable is an NP-complete problem. Grasp [10] and fixture planning [4] will
also be crucial to the development of competent assembly planners. Since
these authors generally consider one step in the planning process, they do not
address the issue of saving computation between steps. However, we believe

www.manaraa.com

239

precedence expressions are general enough that they can be applied to many
different geometric reasoning methods.

Conclusion

The task of assembly planning is very dependent on geometry. As a result,
capable automatic assembly planners will need to incorporate powerful yet fast
geometric reasoning methods. In addition, the assembly planning problem
imposes special requirements on the algorithms used. In this work we have ex­
plored the close links between assembly planning and geometric reasoning and
proposed a compromise solution that allows a computer to generate assembly
sequences strictly from the geometry of the target assembly, with no human
input.

This compromise includes checking the movability of each part in a target as­
sembly by analyzing the part's contacts to find its local translational freedom,
then sweeping the part along chosen directions in the resulting cone to ensure
global validity of the paths found. Though not as expensive as calling a motion
planner, these computations are numerous and costly. However, it is possible
to exploit the similarity between the geometry of an assembly and that of its
subassemblies to replace, in many cases, a geometric calculation by a symbolic
one, using previously computed results. Encoding results in precedence expres­
sions for later use yields large improvements in running times and the number
of calls to the geometric reasoner in our experiments on real assemblies.

While our experimental results can only justify the use of precedence expres­
sions with the current geometric reasoning techniques, the method is much
more general. It could be used to save computation when assembly operations
are not limited to single-part insertions, or when it is necessary to call a more
time-consuming motion planning algorithm. Furthermore, precedence expres­
sions pinpoint the kinds of information that are both obtainable with existing
geometric reasoning methods and profitable once put in symbolic form. As a
link between the two levels, precedence expressions are a prototype of the richer
forms of communication between geometric and symbolic reasoning methods
that will be necessary to solve real-world planning problems efficiently.

References

[1] P. Balakumar, J.-C. Robert, R. Hoffman, K. Ikeuchi, and T. Kanade.
VANTAGE: A Frame-Based Geometric Modeling System - Program­
mer/User's Manual Vi.O. The Robotics Institute, Carnegie Mellon Uni­
versity, 1989.

www.manaraa.com

240

[2] D. F. Baldwin. Algorithmic methods and software tools for the generation
of mechanical assembly sequences. Master's thesis, Massachusetts Institute
of Technology, 1990.

[3] J. Barraquand and J .-C. Latombe. Robot motion planning: A distributed
representation approach. To appear in International Journal of Robotics
Research, 1991.

[4] J. J. Bausch and K. Youcef-Toumi. Kinematic methods for automated
fixture reconfiguration planning. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1396-1401,1990.

[5] N. Boneschanscher, H. van der Drift, S. J. Buckley, and R. H. Taylor. Sub­
assembly stability. In Proceedings of the National Conference on Artificial
Intelligence, pages 780-785, 1988.

[6] A. Bourjault. Contribution Ii une approche methodologique de l'assem­
blage automatise: elaboration automatique des sequences operatoires. PhD
thesis, Faculte des Sciences et des Techniques de l'Universite de Franche­
Comte, 1984.

[7] T. L. De Fazio and D. E. Whitney. Simplified generation of all mechani­
cal assembly sequences. IEEE Journal of Robotics and Automation, RA-
3(6):640-658, December 1987. Errata in RA-4(6) :705-708.

[8] L. S. Homem de Mello. Task Sequence Planning for Robotic Assembly.
PhD thesis, Carnegie Mellon University, 1989.

[9] L. S. Homem de Mello and A. C. Sanderson. AND/OR graph represen­
tation of assembly plans. Technical Report CMU-RI-TR-86-8, Robotics
Institute - Carnegie-Mellon University, 1986.

[10] J . Jones and T. Lozano-Perez. Planning two-fingered grasps for pick-and­
place operations on polyhedra. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 683-688, 1990.

[11] H. Ko and K. Lee. Automatic assembling procedure generation from mat­
ing conditions. Computer Aided Design, 19(1):3-10, February 1987.

[12] A. Koutsou. Planning Motion in Contact to Achieve Parts Mating. PhD
thesis, University of Edinburgh, 1986.

[13] J .-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, November 1990.

[14] T . Lozano-Perez. Spatial planning: A configuration space approach. IEEE
Transactions on Computers, C-32(2):108-120, 1983.

www.manaraa.com

241

[15] J. M. Miller and R. L. Hoffman. Automatic assembly planning with fas­
teners. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 69-74, 1989.

[16] D. K. Pai and B. R. Donald. On the motion of compliantly-connected
rigid bodies in contact, part I: The motion prediction problem. Techni­
cal Report 89-1047, Computer Science Department - Cornell University,
October 1989.

[17] R. S. Palmer. Computational Complexity of Motion and Stability of Poly­
gons. PhD thesis, Department of Computer Science - Cornell University,
1989.

[18] J .-M. Valade. Geometric reasoning and automatic synthesis of assembly
trajectory. In Proceedings of the International Conference on Advanced
Robotics, pages 43-50, 1985.

[19] R. H. Wilson and J.-F. Rit. Maintaining geometric dependencies in an
assembly planner. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 890-895, 1990.

[20] J. D. Wolter. On the A utomatic Generation of Plans for Mechanical As­
sembly. PhD thesis, The University of Michigan, 1988.

[21] T. C. Woo. Automatic disassembly and total ordering in three dimensions.
In Conference on Intelligent and Integrated Manufacturing Analysis and
Synthesis, pages 291-303, 1987.

www.manaraa.com

Chapter 10

Efficiently partitioning an
assembly

Randall H. Wilson

The previous chapter introduces the assembly planner GRASP and describes a
method to efficiently build an AND/OR graph representing the linear assembly
plans for a product. However, the best assembly sequence might not be linear,
and indeed some assemblies cannot be built one part at a time. This chapter
introduces an algorithm to facilitate generating non-linear assembly sequences
quickly.

Specifically, I present an algorithm that efficiently solves the physical partition­
ing problem. Physically partitioning an assembly consists of finding all ways to
divide the parts of an assembly into two subassemblies, such that the operation
of bringing them together is physically feasible. In Chapter 9 the partitioning
problem is simplified to the question of whether anyone part can be placed in
the assembly; here the general case of placing a subassembly is considered.

Other researchers [2, 3] have described complete algorithms based on a
generate-and-test approach that can be very slow for many assemblies. Here
I introduce a new algorithm to partition assemblies, prove its correctness and
completeness, and show a worst-case time bound that is polynomial in the
number of features in the assembly and the number offeasible decompositions.

www.manaraa.com

244

GRASP, the assembly planner described in Chapter 9, has been extended to
include the new partitioning algorithm, and experimental results are shown for
real assemblies.

As in the previous chapter, the following presentation assumes that all parts
have a rigid, exact, certain geometry; that all parts are assembled along a single
translation directly to their final relative positions and not moved later; and
that no assembly operation mates more than two subassemblies.

10.1 Get-Feasible-Decompositions

An obvious method to physically partition an assembly is to generate all divi­
sions of the parts of the assembly into two sets, then test the assembly operation
bringing each pair of subassemblies together according to a set of constraints.
If the assembly has n parts, there are 2n partitionings to test, making this ap­
proach prohibitive. However, the efficiency of the algorithm can be improved
by integrating feasibility considerations into the generating stage, so that many
infeasible decompositions are never generated .

In Chapter 7, Homem de Mello and Sanderson present an algorithm to physi­
cally partition assemblies, GET-FEASIBLE-DECOMPOSITIONS, that generates
all cut-sets of the assembly 's connection graph, then tests the assembly opera­
tion corresponding to each cut-set for physical realizability using the predicate
FEASIBILITY-TEST. Since by definition a cut-set divides a graph into two
connected components, the procedure only explicitly generates those partition­
ings that have two connected subassemblies. In other words, GET-FEASIBLE­
DECOMPOSITIONS requires both subassemblies to be connected and includes
this constraint in the generation process. Other criteria, including geomet­
ric interference, stability of the two partitions, and mechanical feasibility, are
checked in FEASIBILITY- TEST.

Specifically, Homem de Mello and Sanderson show how to compute the local
translational freedom of one subassembly with respect to the other. Recall from
Chapter 9 that for a part with planar contacts, the set of possible infinitesimal
translations forms a convex cone in three dimensions (figure 10.1), and if the
cone is empty the part cannot be removed. To calculate the range of motion
for a subassembly, we can consider it as a single part and calculate its cone
of removal directions in the same way. Each small motion inside the cone is a
removal trajectory, and if at least one exists, we say the two subassemblies are
locally free from each other.

Although GET-FEASIBLE-DECOMPOSITIONS is more efficient than the obvi­
ous approach, many assemblies have a large number of cut-sets, and as a result
it can still be very slow. When automating the method, Baldwin could not plan
for assemblies with more than 11 parts because of this fact [2, page 96]. Wolter
[8] limited assembly plans to single-part insertions because of the complexity

www.manaraa.com

245

x

Figure 10.1: A 3D convex cone of removal directions

of generating decompositions, and GRASP originally focused on linear plans
(as in Chapter 9) for the same reason . A faster method of physically partition­
ing an assembly will make non-linear assembly sequence planning feasible for
much more complex assemblies. The algorithm presented in the next section
integrates geometric interference constraints as well as connectedness criteria
into the generation process, thereby achieving greater efficiency.

10.2 Partitioning Assemblies

For simplicity in the following description, assume that all parts meet only in
planar contacts and that only translations are allowed to separate subassem­
blies. Section 10.6 shows how the method can be generalized to correctly and
efficiently reason about cylindrical and threaded contacts, and motions includ­
ing rotation.

The new algorithm to physically partition an assembly, PARTITION, gains effi­
ciency by incorporating two necessary constraints on assembly decompositions
into the generation process:

Connectedness The two subassemblies to be separated must each constitute
a connected subassembly.

Local freedom A removable subassembly must be free to move a small dis­
tance with respect to the rest of the assembly.

These two constraints are encoded in the procedure GROW-SUBASSEMBLY,

www.manaraa.com

246

described below, which takes a small subassembly as input and adds to it all the
parts that must be removed with it from the full assembly. Since PARTITION
includes these necessary constraints in the generation process, it generates only
the partitionings in which one subassembly is locally free from the rest of the
assembly. As a result, far fewer decompositions must be tested against the
predicate FEASIBILITY- TEST.

To accomplish this , PARTITION divides the physical partitioning problem into
three parts:

• find a set of critical directions that is sufficient to allow all the locally free
decompositions of the assembly to be disassembled

• for each critical direction, use GROW-SUBASSEMBLYto find all the sub­
assemblies that are locally free from the rest of the assembly in that
direction

• test each locally free decomposition with FEASIBILITY- TEST.

10.2.1 Finding Critical Directions

The procedure CRITICAL-DIRECTIONS takes an assembly A as input and re­
turns a list of possible removal trajectories T such that for every decomposition
of A into S and A - S where S is locally free from A - S, at least one of the tra­
jectories in T is included in the local freedom cone of S with respect to A - S.
In other words, if an assembly can be partitioned into two subassemblies that
are locally free from each other, then one of the directions in T will allow the
subassemblies to be separated.

Computing this set of critical directions T is quite simple. Any two subassem­
blies that meet in planar contacts will be separable, if at all, in a set of transla­
tions given by a 3D convex cone, as in figure 10.1. Since each face on a convex
cone results from one or more planar constraints, every edge of a cone is at the
intersection of two planes. Thus the set of critical directions T includes two
trajectories (a vector and its inverse) parallel to the intersection of each pair
of planar contacts that exists in the assembly; duplicate vectors are removed.
In the special case where all the contacts in an assembly are in parallel planes,
CRITICAL-DIRECTIONS returns a s ingle vector parallel to the plane, allowing
the parts to slide in that plane. As a result, for every cone that could result
from the planar contacts in the assembly, there exists a trajectory in T that is
a translation along one of its edges. Therefore the set T is sufficient to allow
removal of all locally free subassemblies of the assembly.

In general, with n planar contacts in an assembly there are O(n2) removal
directions in T . However, in practice many of these turn out to be parallel,
and in most of our experiments CRITICAL-DIRECTIONS returns only a small
number of trajectories. In fact, many assemblies can be built using only motions

www.manaraa.com

247

parallel to the major axes, and the step of generating critical directions might
be skipped if it is known a priori that the target is such an assembly.

10.2.2 Generating Decompositions

The procedure PARTITION proceeds as follows. First, it calls CRIT/cAL­
DIRECTIONS to enumerate a sufficient set of trajectories to remove all sub­
assemblies from the assembly A. For each trajectory t, it starts one seed par­
tition S for each part in A, and calls GROW-SUBASSEMBLY(S, t). GROW­
SUBASSEMBLY adds to the subassembly S all the parts that must be removed
with S if it is to be moved a small distance along trajectory t away from a
connected complementA-S. Thus when GROW-SUBASSEMBLYreturns, one
of two conditions must be true: (1) S contains over half the parts in A, in
which case PARTITION goes on to another seed partition (the smaller half will
be found as a free subassembly in the reverse direction if it exists), or (2) S
is a subassembly that is locally free from A. If the latter is true and S hasn't
already been found in direction t, S is put on the list of free subassemblies
and new seed partitions are generated, each consisting of S and one other part
in contact with S. Then the procedure chooses another seed partition, and
the process repeats . After generating all the subassemblies that are locally
free from the rest of the assembly, the decomposition corresponding to each
subassembly is checked against FEASIBILITY- TEST for global validity. Figure
10.2 gives a more precise description of PARTITION.

GROW-SUBASSEMBLY uses two functions to compute the generating con­
straints that add parts to a partial subassembly. The first, LOCALLY­
COMPATIBLE, allows generation with regard to the local freedom constraint.
If the current subassembly includes a part PI and a contact between PI and
another part P2 keeps Pl from moving along the selected trajectory, then P2
must be added to the subassembly to allow it to move. Therefore LOCALLY­
COMPATIBLE(PI, P2, t) returns true if and only if the local freedom of part P2
with respect to Pl includes trajectory t. It simply finds the contacts between PI
and P2 and returns true if all of them are compatible with the motion of Pl in di­
rection t. A planar contact interferes with a translation t when the dot-product
of t with the outward normal of the contacted face of P2 is negative.

The second function, OTHER-PARTITIONS, allows the use of connectedness
as a generating constraint. OTHER-PARTITIONS(S, A) returns a list of the
connected components Ci of the connection graph of assembly A once the
current subassembly S has been removed. If A - S is not connected, then
there will be more than one Ci. It is clear that no superset S' of S will have a
connected complement unless S' contains all but one of the Ci. Furthermore,
for S' to encompass half of the parts of A or less, the one Ci not included in S'
must have half or more of the parts in A. If A has n parts, there can only be
one connected component C i with at least n/2 parts. If each of the Ci contains

www.manaraa.com

248

Procedure PARTITION(full-assembly)
feasible-decompositions ;- {}
all-directions ;- CRITICAL-DIRECTIONS(full-assembly)

(1) for each dir E all-directions
d-locally-free ;- {}
seed-stack ;- {}

(2) for each part E full-assembly
push({part}, seed-stack)

(3) until empty(seed-stack)
subassembly ;- pop(seed-stack)

(4) subassembly +-

GROW-SUBASSEMBLY(subassembly, dir, full-assembly)
(5) if length(subassembly) ~ length(full-assembly) j 2 and

subassembly (j. d-locally-free
push(subassembly, d-locally-free)
for each part2 E full-assembly - subassembly

if part2 contacts subassembly
push(subassembly U {part2}, seed-stack)

(6) for each SEd-locally-free
if {S, full-assembly - S} (j. feasible-decompositions and

FEASIBILITY- TEST(S, full-assembly)
push({S, full-assembly - S}, feasible-decompositions)

return feasible-decompositions

Figure 10.2: Procedure PARTITION

fewer than nj2 parts, then for no superset 5' of 5 will A - 5' contain over half
the parts of A. Thus, whenever A - S has several connected components Gi,
GROW-SUBASSEMBLY adds all the C except the one with the most parts to
S. In the case where the largest Gi has fewer than nj2 parts, the resulting
subassembly will be rejected after GROW-SUBASSEMBLY returns.

Note that because only parts in contact with S are ever added to it, S is
always a connected partition and does not need to be checked. In addition,
because the connected components Gi only contact parts that are already in 5,
they cannot have any contacts with other parts that need to be checked with
LOCALLY-COMPATIBLE. Figure 10.3 gives a more formal description of the
procedure GROW-SUBASSEMBLY.

10.2.3 Checking Global Interference

Once locally free connected subassemblies are identified, each decomposition
must be checked using the predicate FEASIBILITY- TEST. The global feasibility

www.manaraa.com

Procedure GROW-SUBASSEMBLY(subassembly, dir, full-assembly)
part-stack - subassembly
until empty(part-stack)

partl - pop(part-stack)
for each part2 contacting partI

if part2 ~ subassembly and
..., LOCALLY-COMPATIBLE(partl, part2, dir)

push(part2, subassembly)
push(part2, part-stack)

others - OTHER-PARTITIONS(subassembly, full-assembly)
others - others - largest(others)
for each partition E others

subassembly - subassembly U partition
return subassembly

Figure 10.3: Procedure GROW-SUBASSEMBLY

249

of motions in GRASP is computed by heuristically choosing a set of directions
in the local freedom cone of the subassembly, and sweeping the subassembly
against the rest of the assembly. One way to do this would be to construct a
solid model of the subassembly and sweep it against the rest of the parts. In
experiments, building this model turns out to be more expensive than sweeping
all the individual parts. Chapter 9 explains GRASP's sweeping algorithms in
more detail.

10.3 An Example

Figure 10.4 shows the crate assembly from Chapter 9 during various stages of
the procedure PARTITION. The three dimensional assembly is shown in figure
lO.4a, and a side view in lO.4b. For this example we will consider the "screws"
as square pegs.

Each planar contact in the crate assembly is parallel to either the XV-plane, the
YZ-plane, or the XZ-plane. The pairwise intersections between these planes
yield vectors parallel to each of the major axes. Figure lOAa shows the six
vectors returned by CRITICAL-DIRECTIONS.

Starting with the trajectory +z, each part of the crate forms a seed subassem­
bly. Consider the seed subassembly S consisting of just the lid (figure lOAc).
GROW-SUBASSEMBLY now finds the parts in contact with the lid, which are
screw I , screw2, and the box. LOCALLY-COMPATIBLE(lid , box, +z) returns
true, since the dot-product of +z with +x, the normal of the planar contact,
is 0; thus the box is not added to S . However, the bottom planar contact of

www.manaraa.com

250

z

Jk-' Box t
Screw}

Lid Cargo

Screw2

a b c

t t

d e f

g h

Figure 10.4: The crate during procedure PARTITION

www.manaraa.com

251

the lid with screw1 prevents the lid from moving in the +z direction, and so
LOCALLY-COMPATIBLE(lid, screw1, +z) returns false and screw1 is added to
S, as is screw2 (10.4d) .

Since screw1 has been added to S, its contacts with other parts are now exam­
ined. The box prevents screw1 from moving along the +z trajectory, so the box
is added to S. Screw2 is considered, but all of its contacted parts are now in S
already. Finally, the bottom planar contact between the box and the cargo pre­
vents the box from moving upward, and so the cargo is added to S (10.4e) . Since
S now contains the whole crate assembly, there are no connected components
returned by OTHER-PARTITIONS(S, Crate), and GROW-SUBASSEMBLYre­
turns.

At this point S contains more than half of the parts in the crate, so it is not
entered in d-Iocally-free as a removable subassembly, and no seed subassemblies
are generated from it. A similar process will happen with the seed subassem­
blies starting from each of the other parts of the crate: each will be grown to
include the whole assembly. Thus no locally-free subassembly can be removed
in the +z direction from the crate, and the same is found for the -z, +y, and
-y trajectories.

Now consider the +x trajectory and the seed subassembly consisting of just
the box (figure 10.4f). No contacts constrain the box in the +x direction, so
o THER-PARTITIONS ({lid, box}, Crate) is called, and returns the connected
components {lid, screw1, screw2} and {cargo} (lO.4g). The component with
fewer parts is added to S (lO.4h), and then S={box, cargo} is entered as a
locally-free subassembly. The resulting seed partitions {box, cargo, lid}, {box,
cargo, screw1}, and {box, cargo, screw2} each constitute over halfthe assembly,
so they are eventually eliminated.

The last three decompositions of the crate result from the -x direction, since
the seed partitions {screw I}, {screw2}, and {cargo} are all locally-free along the
-x trajectory. However, when FEASIBILITY-TEST tries to find a global path
to remove {cargo}, it finds that the cargo collides with the lid (lO.4i). There­
fore the three globally removable connected subassemblies found are {screw1},
{screw2}, and {box, cargo}.

10.4 Soundness and Completeness

The soundness of PARTITION follows immediately. Feasible-decompositions
starts out empty, and only partitionings that satisfy FEASIBILITY-TEST are
added to it. Therefore, as long as FEASIBILITY-TESTis accurate, PARTITION
will only return decompositions that are physically feasible.

The partial completeness of PARTITION is also easy to show. The only loop
that might not have finite iterations is that on line (3) , which loops until the

www.manaraa.com

252

seed-stack is empty. The list of seeds starts with a finite number of assemblies,
and each time through the loop, one is removed from it. Each seed added to
the stack has more parts than the one removed. But since a subassembly is
limited to one-half the number of parts in the full assembly, this process must
end. Therefore PARTITION will terminate.

For PARTITION to be complete, the function LOCALLY-COMPATIBLE must
have the locality property:

'it'VS1VS2 LC(S1,S2,t) <==> (10.1)

VS3VS4 (S3 ~ S1 1\ S4 ~ S2 => LC(S3, S4, t))

Equation 10.1 states that a subassembly can be removed along a trajectory
from a set of parts if and only if that trajectory allows removal from any subset
of those parts. This property is true, specifically, for interference checking
between rigid parts. If subassembly S1 can be removed from S2 using a certain
path, then taking parts from S2 will never cause an interference to appear,
since the free space of S1 will monotonically increase; furthermore, if all the
individual parts do not interfere with S1 's path, their sum will not either.

Note that the locality property does not hold true for many constraints on
assembly sequences. For instance it very often happens that an assembly is
stable but removing a part will leave it unstable. Fine motion planning and
flexible parts also violate the locality property.

A special case of equation 10.1 is the fact that if a part p interferes with the
motion of a subassembly S in a direction, then any set of parts including p will
also interfere with the motion of S:

(10.2)

Therefore, when any part p interferes with the removal of a subassembly S
along a trajectory, then any removable superset of S must include p.

To show completeness of PARTITION, first remove the call to GROW­
SUBASSEMBLY in line (4), and add a connectedness check to FEASIBILITY­
TEST. The procedure that remains generates all possible decompositions of
an assembly and checks each against FEASIBILITY-TEST, once for each crit­
ical direction of assembly. Each part in the assembly is a seed assembly, and
every connecting part is added to each of these, and so on, thus generating
every connected set of parts in the assembly. Each subassembly is checked for
removal from the rest of the assembly using FEASIBILITY- TEST. Subassem­
blies for which the rest of the assembly is not connected will be caught by
FEASIBILITY-TEST. This is equivalent to generating all cut-sets of the con­
nection graph and testing them, so this modified algorithm is complete.

When line (4) is placed back in PARTITION, some of the subassemblies above
are no longer generated . Take any subassembly S that was generated by the
modified algorithm and passed FEASIBILITY- TEST. At least one trajectory

www.manaraa.com

253

Figure 10.5: An assembly with 2 feasible decompositions

t in the set of critical directions allows separation of S from A - S (Section
10.2.1). Along trajectory t, S is locally-compatible with A - S, so by equation
10.2, all of the subassemblies of S are locally-compatible with the parts of
A - S. As a result, GROW-SUBASSEMBLY will never insist on adding parts
from A - S to the seed subassembly that built into S, and so this cut-set is not
removed from the ones generated. Furthermore, because A - S is connected
and includes at least half the parts in A, A - S will always be in the largest
connected partition found by OTHER-PARTITIONS, and none of its parts will
be added to S for that reason. Therefore no parts of A - S are added to S by
GROW-SUBASSEMBLY, and the decomposition into Sand A-S is not removed
from the ones generated. Since S was taken to be any feasible decomposition
of A, the procedure generates the same list of decompositions as the modified
version above. PARTITION is therefore complete.

10.5 Complexity

Because in general the connection graph for an assembly with n parts can have
O(2n) cut-sets, the worst-case time complexity of GET-FEASIBLE-DECOM­
POSITIONS is O(2n). For instance, the sandwich assembly in figure 10.5 has
an exponential number of cut-sets, but only two feasible decompositions.

The geometry of assemblies with the same number of parts can vary a great
deal, so another measure of assembly complexity is the number of mating fea­
tures m in the assembly. Since each center part in the sandwich assembly
has a constant number of contacts with other parts, the number of parts is
n = em for some constant e ::; 1. Therefore the worst-case time complexity of
GET-FEASIBLE-DECOMPOSITIONS is at least O(2cm).

Now consider PARTITION. Assume that there are m mating features in the
assembly, n ::; m parts, and the assembly has s decompositions that both
satisfy LOCALLY-COMPATIBLE in at least one direction and have internally
connected subassemblies. CRITICAL-DIRECTIONS will find one direction for
every pair of planar contacts in the assembly, or O(m2) total directions in the
worst case. Loop (1) will be executed once for each direction. Line (3) will
loop once for each subassembly on the seed stack; since each seed is put on the

www.manaraa.com

254

stack either by line (2) or as the sum of a locally-free decomposition and one
connecting part, loop (3) will execute at most n + sn times for each direction.
Checking each contact takes constant time, and each contact includes exactly
two parts, so LOCALLY-COMPATIBLE will be called at most 2m times in one
call to GROW-SUBASSEMBLY. Using a depth-first marking algorithm, OTHER­
PARTITIONS also takes O(m) time, so GROW-SUBASSEMBLY is O(m). Line
(5) requires looking through a list of up to s subassemblies. In total, each time
through loop (3) will take O(m + s) time. Finally, loop (6) might take s2 time
to make sure duplicate decompositions are not in the final list. Combining
these nested loops, PARTITION could take time

in the worst case, plus the time to evaluate FEA SIBIL IT Y- TEST on s decom­
positions. In fact, in practice the time to compute the global constraints in
FEASIBILITY-TEST become the dominant factor in running time (see Section
10.7).

In our implementation, d-Iocally-free and feasible-decompositions are kept as
hash tables, making lookup times essentially constant. The effective complexity
then becomes

and if we assume that the number of mating features is proportional to the
number of parts (which is not always the case), then PARTITION has time
complexity O(sn4).

Note that if the target assembly has an exponential number s of locally free
subassemblies, PARTITION takes exponential time. For instance, if the cen­
ter parts in the sandwich assembly (figure 10.5) were not interlocking, there
would be O(2n) locally-free decompositions to test. Both GET-FEASIBLE­
DECOMPOSITIONS and PARTITION must test all the partitionings they gen­
erate; the former generates all cut-sets and the latter all locally free decom­
positions. Because every locally free decomposition corresponds to a cut-set,
PARTITION will always test the same number or fewer decompositions than
GET-FEASIBLE-DECOMPOSITIONS. In our experiments, local freedom has
proven a very strong constraint on decompositions, and as a result PARTITION
generates a short list of partitionings to test.

10.6 Extensions to the Basic Algorithm

The version of PARTITION described above only considers parts that meet each
other in planar contacts, and only uses those contacts and connectedness as gen­
erating constraints. The description has been limited to these simple assembly

www.manaraa.com

255

geometries partly to make the discussion more understandable to the reader.
However, it is possible to include other types of assemblies and constraints in
the algorithm without much modification. I have analyzed and implemented
several extensions to PARTITION, allowing GRASP to handle cylindrical con­
tacts, no connectedness constraint, and helical motions, while global sweeping
constraints and general rotational motions have been investigated.

10.6.1 Cylindrical Contacts

To extend PARTITION to handle full cylindrical contacts such as a peg in a
hole, the two geometric procedures CRITICAL-DIRECTIONS and LOCALLY­
COMPATIBLE must be modified. CRITICAL-DIRECTIONS adds a trajectory
parallel to the axis of the cylinder, and its inverse, to the list of translations,
since any decomposition breaking the peg-in-hole contact will need to move
along the axis of the cylinder. In LOCALLY-COMPATIBLE if a contact c is a
cylindrical contact, c interferes with translation t unless the axis of the cylinder
is parallel to t. Cylinder-face contacts are much like planar contacts. With
these changes, PARTITION finds all translational partitionings of assemblies
with both planar and cylindrical contacts.

10.6.2 Unconnected Subassemblies

PARTITION need not include the connectedness of subassemblies as a generat­
ing constraint. Although assembly planners usually assume subassemblies are
connected, the constraint forbids some valid assembly sequences. For instance,
one might want to connect two subassemblies by a fixture, mate them with
another subassembly, and then remove the fixture: imagine putting together
the wheels and axles of a wagon, then lowering the body onto the two axles
simultaneously. Without the connectedness constraint, however, there may
be a much larger number of feasible decompositions. This change has been
implemented in GRASP, but few experiments have been done.

10.6.3 Threaded Contacts

PARTITION as given above cannot easily be applied to most mechanical prod­
ucts, since it only allows translational motions to separate parts . Many assem­
blies have threaded connections, where the two parts to be mated must follow
a helical trajectory relative to each other, and thus cannot be assembled with
translations only. A simple example consists of a nut and a bolt. However,
PARTITION can be extended to handle screw contacts, and any other type of
connection that allows only a finite set of mating trajectories to assemble the
two connected parts.

www.manaraa.com

256

To correctly partition assemblies with threaded contacts, the trajectories con­
sidered by the algorithm must be extended to encompass both translations and
motions with an element of rotation about an axis parallel to the translation.
LOCALLY-COMPATIBLE thus must be able to discern whether another con­
tact will prevent such helical motions. This is more complicated when screwing
motions are allowed. In addition, a threaded contact is incompatible with any
motion between the two parts except for a helical motion with the same axis
and pitch as the contact.

Furthermore, CRITICAL-DIRECTIONS must add the finite set of removal tra­
jectories associated with each such contact to the list of those considered. Since
any feasible partitioning of an assembly that breaks a screw contact s must fol­
low one of the feasible trajectories allowed by s, this augmented list will be
sufficient to find all partitionings of the assembly using these new trajectories.

Once a locally-free subassembly is generated along a helical motion, the global
validity of the operation must be checked. This requires that a part be swept
along a curved path, which is more difficult than sweeping along a translation.
GRASP conservatively approximates this calculation by rotating the subassem­
bly around the axis of the helical motion to compute an object that is then
translated along the axis to check for collisions.

Note that in certain cases rotational motions might allow additional partition­
ings of an assembly that has only planar contacts, and these decompositions will
not be found by the augmented PARTITION (see figure 10.7). Instead, in cases
of rotational motions separating partitions with planar contacts, PARTITION
will find the same set of decompositions as GET-FEASIBLE-DECOMPOSITIONS
does. Section 10.6.5 discusses how both algorithms can be extended to handle
infinitesimal rotational motions in a complete way.

10.6.4 Global Constraints

Since the basic partitioning algorithm only considers contacts, it may return
a large number of decompositions that do not satisfy global constraints. In
particular, FEASIBILITY-TEST sweeps parts to check for the existence of a
straight motion to remove each locally-free subassembly; however, the require­
ment of a single translation to separate subassemblies can be included as a
generating constraint in the procedure. PARTITION can be modified to find
all the pairs of subassemblies that can be completely separated by a single
translation, in polynomial time on the number of such decompositions and the
number of features in the assembly. In fact, because GRASP currently only
sweeps a subassembly along a few heuristically-chosen directions, the extended
procedure would find decompositions that are missed by the current geometric
reasoner.

In an assembly A, the set of directions an subassembly S can translate with

www.manaraa.com

257

x

Figure 10.6: A non-convex cone of removal translations

respect to its complement A - S an infinitesimal distance is always included
within a convex cone, as in figure 10.1. To find the set of directions that S
can translate indefinitely, we can project the obstacles corresponding to the
parts of A - S back onto the unit sphere to obtain a cone of straight removal
directions, which is in general not convex (figure 10.6). Each face of this cone
that is not in common with the local translational freedom cone will arise
either from a vertex of S and an edge of A - S, or from an edge of S and a
vertex of A - S. Each vertex-edge pair defines a plane constraint, and all non­
convex cones arising from partitionings of A will be made up of these planes.
Thus we can find a set of global critical directions that includes the edges of
all non-convex cones arising from an assembly. If there are m features, there
are m2 planar constraints, and m4 global critical directions. When generating
assemblies, the function LOCALLY-COMPATIBLE is replaced by GLOBALLY­
COMPATIBLE, which sweeps parts as well as checking contacts. As a result,
the modified procedure will generate all globally feasible decompositions of the
target assembly, and no more.

Arkin et al [1] present a procedure to find globally valid separation transla­
tions for polygons in the plane using the notion of a monotone path between
obstacles, and show how to use this to physically partition two-dimensional
assemblies of polygons. Their method has since been extended to three dimen­
sions in a way very similar to the above [5]; however, it is unclear how easily
their algorithm could be extended in other ways, such as using a connected­
ness generating constraint, cylindrical contacts, or motions with a rotational
component.

www.manaraa.com

258

Figure 10.7: A rotation to remove a part that cannot translate

10.6.5 General Rotations

That a subassembly have local translational freedom is a necessary constraint
on assembly decompositions only when the global motions for assembling parts
are limited to translations. Consider for instance the planar assembly in figure
10.7. Because no translations exist for the inside part, its local translational
freedom cone is null . However, a rotation around the point shown can free the
part. PARTITION will not generate this decomposition, even when augmented
with the methods of Section 10.6.3, because this rotation is not included in
the list of removal directions for anyone contact. It is possible to extend the
procedure to find all such decompositions while preserving the polynomial time
bound. This method is preliminary and not implemented, and it will only be
sketched here.

The positions of a rigid part p translating and rotating in three dimensions can
be represented as points in a configuration space C = R3 x 50(3). A motion
direction at a position q E C is a tangent at q to a trajectory going through
q. A direction can be represented by a 6D vector of the tangent space [4] .
Moreover, a set of contacts constrains the set of motion directions into a 6D
local freedom cone which is linear and convex for planar contacts [6].

This formalism can be immediately included in GET-FEASiBLE-DECOM­
POSITIONS. The 6D local freedom cone for the contacts of the decomposition
corresponding to each cut-set of the connection graph is calculated, and if it
is null the decomposition is not feasible. This version of the cut-set method
is truly complete for rigid parts: it will find all possible decompositions of the
target assembly.

PARTITION can also be extended to use 6D cones. Each cone is defined as
the intersection of several half-spaces delimited by hyperplanes corresponding
to well chosen contact points. It can be shown that the lines generated by
combining all groups of five hyperplanes form a set of critical directions. Thus

www.manaraa.com

259

with m contact points, there are O(m5) directions in which to partition the
assembly. The function LOCALLY-COMPATIBLE tests whether any such rota­
tion and translation is incompatible with a single contact, although this will
be a much more complicated calculation.

With the extension to 6D freedom cones, PARTITION operates in the worst
case in polynomial time on the number of point-plane contacts and feasible
decompositions. However, note that the degree of the polynomial and the
complexity of the geometric reasoning involved would make it advantageous to
use this method only when the number of parts is quite large. In addition, the
combination of 6D freedom cones with the global sweeping constraints of the
previous section would not be straightforward, since non-instantaneous motions
cannot be embedded in a vector space and the freedom cones will no longer
have planar sides. Indeed, checking for collisions along a helicoidal path is
already much harder than the translational case.

10.6.6 Maintaining Geometric Dependencies

As discussed in Chapter 9, the direct extension of precedence expressions to
GET-FEASIBLE-DECOMPOSITIONS is straightforward yet not very useful in
practice. A large number of cut-sets might be generated , few of which corre­
spond to feasible decompositions, and a precedence expression must be main­
tained and evaluated for each one. On the other hand, because PARTITION
does not explicitly build the local freedom cone for each decomposition, depen­
dency maintenance cannot be applied to this aspect of the partitioning process
easily.

However, PARTITION still calls FEASIBILITY-TEST to assess the constraints
on assembly operations that are not used as generating constraints in the al­
gorithm. Precedence expressions could be used to hold the results of other
expensive calculations in FEASIBILITY- TEST and the conditions under which
they will still be valid. These precedence expressions would only be stored or
evaluated once a subassembly is found to be locally free , thus keeping the num­
ber of expressions manageable. Such a capability has not been implemented
in the current version of the planner; as a result, GRASP finds either linear
assembly sequences using precedence expressions, or non-linear assembly se­
quences using PARTITION. Further investigation should investigate combining
the two techniques.

10.7 Experimentation

The algorithm PARTITION has been implemented in the assembly sequence
planner GRASP, which is described in Chapter 9. The experiments described
here were performed using a version of the algorithm extended to include the

www.manaraa.com

260

Figure 10.8: The electric bell

methods of Sections 10.6.1 and 10.6.3. There are a number of cylinder-cylinder
and cylinder-plane contacts in the 22-part electric bell (figure 10.8), as well as
two threaded contacts.

Table 10.1 compares the running times of GET-FEASIBLE-DECOMPOSITIONS
and PARTITION when run on the electric bell . It gives the time required to
partition the bell according to local motion and connectedness constraints only,
to partition including global motion checking, and to build the full AND/OR
graph. With non-linear assembly sequences allowed, the AND/OR graph for
the bell has 1,710 nodes and 12,447 AND-arcs. Note that the total AND/OR
graph generation time is comparable for the two algorithms. This results from
PARTITION being slower than the cut-set method when partitioning the many
small assemblies close to the leaves of the graph.

With larger assemblies the cut-set algorithm quickly becomes intractable. For
instance, GRASP has planned for the assembly of a skin-machine product
composed of 36 parts. Using PARTITION, GRASP finds one assembly plan for
the skin-machine in about a minute. Planning for the same assembly, GET­
FEASIBLE-DECOMPOSITIONS was stopped after two days without partition­
ing the root node of the AND/OR graph.

www.manaraa.com

261

Decomposition First Swept First AND/OR
Algorithm Partitioning Partitioning Graph

GET-FEASIBLE 54 62 3894
PARTITION 1.1 9.1 1032

Table 10.1: Time to plan for the electric bell, in seconds

Conclusion

The problem of automatic assembly sequence planning requires two relatively
distinct types of reasoning: largely symbolic reasoning about sets of assembly
sequences and more physical methods to evaluate the geometric and mechanical
feasibility of individual assembly operations. This dichotomy leads naturally
to a generate-and-test methodology for solving the assembly planning problem,
in which assembly operations and sequences are proposed and then critiqued
by the geometric reasoning module.

The physical partitioning problem-finding all ways to divide an assembly into
two subassemblies that can be mated obeying physical constraints-lies on the
boundary between the symbolic and geometric sides of assembly planning. A
generate-and-test approach can end up evaluating a large number of infeasible
decompositions for some assemblies; PARTITION addresses this problem by
including the geometric constraint of local motion freedom in the generation
process. By tightly merging the symbolic and geometric reasoning required
in physical partitioning, the algorithm achieves much greater efficiency. As a
result, it will prove an invaluable technique to help make automatic assembly
sequence planning practical for real world assemblies with many parts.

References

[1] E. M. Arkin, R. Connelly, and J. S. B. Mitchell. On monotone paths among
obstacles, with applications to planning assemblies. In Proceedings of the
ACM Symposium on Computational Geometry, pages 334-343, 1989.

[2] D. F. Baldwin. Algorithmic methods and software tools for the generation
of mechanical assembly sequences. Master's thesis, Massachusetts Institute
of Technology, 1990.

[3] L. S. Homem de Mello. Task Sequence Planning for Robotic Assembly. PhD
thesis, Carnegie Mellon University, 1989.

[4] J .-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, November 1990.

[5] J. S. B. Mitchell. Personal communication, December 1990.

www.manaraa.com

262

[6] M. S. Ohwovoriole. An Extension of Screw Theory and its Application to
the Automation of Industrial Assemblies. PhD thesis, Stanford University,
April 1980.

[7] R. H. Wilson. Efficiently partitioning an assembly. In Proceedings of the
lASTED International Symposium on Robotics and Manufacturing, 1990.

[8] J. D. Wolter. On the Automatic Generation of Plans for Mechanical As­
sembly. PhD thesis, The University of Michigan, 1988.

www.manaraa.com

Chapter 11

On the automatic
generation of assembly
plans

Jan D. Wolter

One of the primary goals of robotics research has been the development of flexi­
ble manufacturing systems that allow a manufacturer to bring new product de­
signs into production rapidly. This has led to the development of programmable
machine tools, manipulators, and workholding systems that can be adapted to
new manufacturing tasks simply by loading new software. However the full
benefits of such tools can only be attained if reliable software can be rapidly
generated. The ideal system would be one which could automatically program
itself to produce a new product given only a description of the product. It is
in the pursuit of this goal that the assembly planning problem arises.

Assembling a mechanical structure is typically seen as being performed by a
series of operations, such as the insertion of a peg into a hole. Under this
model, the first stage in programming an assembly system must be to identify
the operations necessary to manufacture the given assembly, and to specify the
sequence in which they are to be performed. The selection of such a sequence
of operations is called the assembly planning problem.

www.manaraa.com

264

This paper describes the XAP /1 assembly planning system. It will begin by
describing in detail the problem solved by XAP /1. Although several assembly
planning systems have been developed, each has been based on a slightly dif­
ferent definition of the assembly planning problem. To clarify the relationship
between XAP /1 and other planners, four key questions will be discussed in
section 11.1:

• What kinds of operations are allowed?

• How much detail is included in the plans generated?

• How is the input assembly described?

• How much optimization is done on the plans generated?

It will be seen that it is XAP /1 's strong orientation toward optimization that
distinguishes it from other assembly planners, and to a large extent determines
the design of the planner.

Section 11.2 will describe some theoretical bounds on the computational com­
plexity of the assembly planning problem. Although finding a solution to an
assembly planning problem can be quite difficult in general, polynomial algo­
rithms exist for many special cases. In particular, given the inputs used by
XAP /1, it is possible to find some valid plan in polynomial time. However, the
problem solved by XAP /1, that of finding an optimal plan, is NP-hard.

Section 11.3 will describe the operation of the XAP /1 planner. Most assembly
planners plan sequentially, starting with the finished product and removing
parts until it is completely decomposed. XAP /1 , on the other hand, plans by
posting constraints and is able to make decisions in any order. This allows it
to plan opportunistically, making obvious decisions first and rapidly narrowing
the search space. Its search is guided by advice from a collection of plug-in
criterion modules.

Section 11.4 presents some example results and studies the performance of the
planner experimentally. XAP /1 generates plans for reasonably sized assemblies
very quickly, but its time complexity does grow exponentially with the number
of parts. This section will conclude by describing work in progress on the
XAP /1 planner .

11.1 Problem Definition

This section will describe the assembly planning problem in terms of its inputs
and outputs. Some of the important differences between the problem definition
used here and those used in other assembly planners will be detailed.

www.manaraa.com

265

(a) (b)

(c) (d)

Figure 11.1: Two dimensional assemblies which cannot be built by (a) a se­
quential plan, (b) a monotone plan, (c) a contact-coherent plan, and (d) a
linear plan.

11.1.1 Legal Operations

All assembly planning systems place some constraints on the types of opera­
tions that may be used. The most common is the sequentiality assumption.
A plan is sequential if it can be decomposed into a sequence of operations
such that each operation involves moving one set of parts along one common
trajectory. Thus, a sequential plan is any plan that could, in theory, be ex­
ecuted by a one-handed robot. Each operation would consist of grasping a
set of parts, moving them, and then releasing them. Sequential plans are not
sufficient for the construction of all assemblies. The two-dimensional assembly
in figure ILIa, for example, requires that part A and part B be simultane­
ously inserted along distinct trajectories, and so would require a two-handed
robot. All assembly planners developed to date produce sequential plans. This
is because finding mating trajectories that involve the coordinated motion of
many parts is difficult, and because such mating operations are rarely needed
in practice.

Another common assumption is monotonicity. A plan is monotone if no oper­
ation ever separates any pair of parts that were already in their goal positions
relative to each other, and every operation leaves all moved parts in their goal
positions relative to some unmoved part. The monotonicity restriction excludes

www.manaraa.com

266

operations which place parts in temporary positions. For example, the assem­
bly in figure ll.lb could only be built if part C was first temporarily inserted
fully into part B, and then slid to its goal position only after part A had been
installed. Such a plan would not be monotone because it leaves C in a tempo­
rary position while A is inserted. Generating non-monotone plans is challenging
because of the difficulty of finding appropriate temporary positions for parts.
Only Hoffman's assembly planning system has significant capabilities in this
respect[lO,9]. In practice, non-monotone plans are most commonly needed for
assemblies with moving parts, which may be moved to different positions for
different assembly operations.

We call the set of parts which are placed in their final relative positions by
an operation a partial assembly. Many planners restrict the kinds of partial
assemblies which may be produced through a coherence restriction. Given any
connected graph G whose vertices correspond one-to-one with the parts of the
assembly, a plan is coherent for G if every partial assembly that occurs in the
plan forms a connected subgraph in G.

One commonly used form of coherence graph is a contact graph. A contact
graph has an edge connecting the nodes for any two parts that touch each
other in the goal assembly. Plans which are coherent for a contact graph only
allow operations which place the moved parts into contact with some other part .
Not all assemblies can be built by contact-coherent plans. Figure ll.lc is an
example of assembly which cannot. There is only one way to split the complete
assembly into two sets of parts and that is by removing part A from the rest.
But doing so leaves an unconnected partial assembly, {B,Bl,C,Cl,C2} , so
the plan is not contact-coherent. In practice, non-coherent plans are often used
when fixtures are available that can accurately position parts not in contact[15].

Contact graphs were first used by Jentsch and Kaden[13]. Homem de Mello
and Sanderson's "relational model graphs" can be viewed as augmented contact
graphs[ll]. The "liaison graphs" used by Bourjault[l] and by De Fazio and
Whitney[4,5] are similar to contact graphs, but are more loosely defined. All
these systems generate only coherent plans. Of course, this restriction can be
eliminated by using a complete graph as the coherence graph, however this
would entail a significant performance penalty for most systems.

This paper considers the generation of plans which are sequential and mono­
tone, but without coherence constraints. In the generation of optimal plans,
the XAP /1 planner applies an additional constraint , that of linearity. A plan
is linear if no more than one part is moved at a time. Such plans will contain
no subassemblies and will be constructed entirely in a single fixture. There are
many common assemblies in which the use of subassemblies is necessary (as in
figure ll.ld) or desirable. To plan such systems with XAP/l, the user would
have to supply a breakdown of the parts into subassemblies. The system could
then generate a separate linear plan for each subassembly.

www.manaraa.com

267

Assembly So:
(1) Insert part P1 with trajectory (3.
(2) Insert part P2 with trajectory /.
(3) Insert subassembly Sl with trajectory (3.
(4) Insert part P5 with trajectory (3.

Subassembly Sl:
(1) Insert part P4 with trajectory a.

(2) Insert part P3 with trajectory a.
(3) Insert part P6 with trajectory a .

(a)

(b)

Figure 11.2: A plan to build a six part assembly using one subassembly. This
can be represented as (a) a sequence of insertions for each subassembly or (b)
a subassembly tree diagram.

11.1.2 Level of Detail

Assembly planning is the first step toward producing a complete production
plan for the product. This complete plan might include executable robot pro­
grams, workcell layouts, and fixture designs. Normally the assembly planner
will not decide on all these details. Instead it will make only high-level deci­
sions, and leave the lower-level details to be determined by lower-level planners.

The amount and type of detail to be included in the plans produced by an
assembly planner is a critical design issue. The planning problem becomes
more difficult as plans become more detailed, and the number of different kinds
of decisions the planner must be able to make increases. However, to have any
value, a planner must produce plans which are detailed enough so they can be
meaningfully evaluated. A planner cannot find "good" plans, unless it knows
enough about those plans to be able to judge them.

www.manaraa.com

268

The planners described by Homem de Mello and Sanderson and by De Fazio
and Whitney produce plans composed of assembly operations which combine
two sets of parts. Though neither system stores mating trajectories for these
operations, both check if a feasible one exists. They do not, however , decide
which of the two sets of parts is to be held by a fixture. Homem de Mello and
Sanderson produce a partially-ordered tree of assembly operations, while De
Fazio and Whitney produce a totally-ordered linear sequence. These models
of a plan include all the detail necessary to allow the geometric feasibility of a
plan to be determined.

The XAP /1 planner is based on slightly lower-level operations, called insertion
operations. An insertion operation consists of inserting a part or subassembly
into a fixture. A plan consisting of insertion operations may be drawn as a
subassembly tree, as shown in figure 1l. 2. Each internal node corresponds to a
subassembly, where a subassembly is defined as a set of parts that is assembled
in one fixture, and then inserted as a unit into a larger assembly. The children
of a subassembly are the ordered sequence of parts and subassemblies that are
inserted to create it. Thus, for the example in figure 11.2b, subassembly So is
built by inserting first part Pi, followed by part P2 , subassembly 51 and part
h so these are the children of node So .

Subassembly t rees contain considerably more detail than the plans produced
by Homem de Mello and Sanderson and De Fazio and Whitney. For an n­

part assembly, each of the plans produced by those systems will correspond
to between ~(2y'2)n and 2(311) different subassembly trees. The subassembly
tree representation makes it possible to uniquely determine such facts as the
number of subassemblies used, and the order in which the parts are inserted into
a fixture. It is possible to extract a fixture specification from a subassembly tree
plan- one that tells for each fixture what parts it must hold, what directions
those parts will be inserted from, and what assembly forces it must restrain
those parts against once they are placed. Since plans described in terms of
assembly operations do not distinguish between held and moved parts, this
kind of information cannot be extracted from them.

Of course, since the XAP /1 planner is currently limited to the generation of lin­
ear plans, it produces trees of only one level. Thus it is restricted to producing
plans which are simply totally-ordered sequences of insertion operations.

11.1.3 System Inputs

Ultimately, an assembly planner should be able to generate plans directly from
a CAD model of the goal assembly. Several systems already support such
interfaces, including those described by Hoffman and by Homem de Mello and
Sanderson. Both of these systems query the geometric models directly during
the planning process.

www.manaraa.com

269

XAP /1, like De Fazio and Whitney's system, does its planning based entirely
on a symbolic description of the problem. All the information that makes up
this description is to be computed before the actual planning begins, and the
geometric model is not accessed during planning. This is in contrast to the
planners described by Hoffman and by Homem de Mello and Sanderson, which
make geometric queries during the plan generation.

The XAP /1 planner represents the problem with two kinds of information.
First, a set 0p of insertion trajectories are proposed for each part P. Second,
sequencing constraints are generated by checking which parts would block the
insertion of a given part by a given trajectory. If moving part P along trajectory
(J E 0p causes P to collide with another part Q then we have a constraint of
the form:

if P is inserted along (J, then it must precede Q.

All constraints in XAP /1 take this form.

These trajectory proposals and sequencing constraints are generated manually
and input to the current system. However, insertion trajectories could be
proposed automatically by recognizing common relationships between nearby
parts in a CAD model. Some might be generated based on the geometry of
the assembly, while others might be found using some higher-level knowledge
about the assembly. Generally the number of trajectories proposed for each
part can be quite small-perhaps between two and a dozen.

Geometrically, trajectories perpendicular to planar contact surfaces or parallel
to the axis of cylindrical contact surfaces might be proposed. These will often
work well where the parts do not interlock in complex ways. More sophisticated
geometrical techniques are known that can be used to find straight-line trajec­
tories to separate pairs of adjacent parts in two or three dimensions[19,16].
In the relatively rare cases where two parts interlock in very complex ways, a
general geometric path planner could be applied to separate them.

Perhaps more promising than purely geometrical techniques for proposing tra­
jectories are techniques which use higher-level knowledge about common struc­
tures in assemblies. Knowledge about fasteners is especially useful. For ex­
ample, if a structure where a nut and bolt hold together a set of parts can be
recognized, then we can propose spiral trajectories for the threaded parts, and
straight trajectories parallel to the axis of the bolt for both the threaded parts
and all the parts they hold together. Similarly other types of fasteners suggest
certain trajectories might be used both for the fasteners and the parts they
fasten. This would allow us to find trajectories for many common deformable
parts, such as C-rings, cotter pins and rivets.

Knowledge about other types of part features, such as tabs, slots and holes
can also be used to guess mating trajectories. Some research has been done
on methods to identify such features from geometric models[2,8,14] . It seems

www.manaraa.com

270

likely, however , that identifying such features in assemblies would be easier
than identifying them on individual parts. For example, for a depression in
the surface of a part to be classified as a slot , there should be another part
which has a tab that fits into it . There is also research in progress aimed at
the development of functional CAD systems which would make this kind of
feature-based planning much easier[20].

11.1.4 Optimization

All plans must be geometrically feasible, in the sense that it must be possible to
perform the operations without causing any intersection between parts. How­
ever there are usually many feasible plans, so the planner must use some other
basis to choose the best of them. Ideally it would always choose a plan with
minimal set-up and production costs , but in practice this is difficult to achieve
because the actual costs can only be computed if the plan is very detailed.
Since assembly planners produce only high-level plans, we must be content to
evaluate those plans on the basis of some estimate of how likely they are to
have an inexpensive implementation.

Homem de Mello and Sanderson evaluate their plans for flexibility and paral­
lelism. A flexible plan is simply one that has many possible implementations .
Such a plan is certainly more likely to have a good implementation. Highly par­
allel plans can reduce production time when multiple manipulators are present .
It is worth noting, however, that plans with high parallelism will also tend to
use large numbers of subassemblies. In a single manipulator environment this is
a disadvantage because each additional subassembly will require one additional
insertion operation. This situation is typical of nearly all evaluation criteria in
all assembly planners: different criteria must be applied in generating plans for
different manufacturing environments.

The XAP /1 planner addresses this by implementing criteria as independent
"plug-in" modules that can be installed as needed and that can be given dif­
ferent weights for different applications. Because the XAP /1 planner generates
more detailed plans than most other planners, it is also able to evaluate plans
with respect to a wider range of more realistic criteria than other planners.
Currently criterion modules have been implemented for the following three
criteria:

1. Directionality. We would prefer to insert all parts, as much as possi­
ble, from a single direction. This simplifies the fixtures , requires a less
dexterous robot, and avoids extra operations to reorient the work piece.

2. Fixture Complexity. We would like to sequence the operations so
that the partially built assemblies hold themselves together as much as
possible. For example, if we wish to place ten washers on a peg, it is

www.manaraa.com

271

better to place the washers on the peg one by one than to hold the ten
washers in place while inserting the peg.

3. Manipulability . We would like to perform the more difficult operations
with the more easily handled parts. For example, if we wish to attach a
bolt to an engine block, we would prefer to fixture the engine block while
screwing in the bolt, rather than fixture the bolt while screwing on the
engine block.

Note that none of these criteria could easily be implemented in a planner that
describes the plan only in terms of assembly operations, because they cannot
be assessed without knowledge of the fixturing and manipulation'requirements
of the plan.

In practice, the number of different criteria which are relevant to a particular
planning problem may be large. It is the need to be able to plan efficiently
with a large and variable set of conflicting criteria that drove the design of the
XAP/1 planner.

11.2 Computational Complexity

In this section we will discuss the computational complexity of the assembly
planning problem. In certain special cases, it has been shown that an assem­
bly plan can be found rapidly, if we do not require optimality. Dawson [3]
has shown that for any set of star-shaped parts in k-dimensional space there
exists a non-sequential assembly plan which can be generated in linear time.
Guibas and Yao[7] give an O(n log n) time algorithm to find a linear, monotone,
mono directional plan for any two-dimensional assembly of convex parts of total
complexity n. For three dimensions, however, Dawson[3] has shown that there
are assemblies of convex parts which cannot be built by any sequential plan
(i.e ., no set of parts can be moved without disturbing some others).

On the other hand, it can be shown that finding a non-monotone assembly
plan is PSPACE-hard even in two-dimensions. Only exponential algorithms
are known for PSPACE-hard problems. Hopcroft, Schwartz and Sharir have
shown that moving a set of parts from a given starting position to a given
goal position is PSPACE-hard[12] . Though no initial position is specified in
assembly planning problems, it is possible to design assemblies which must
pass through a specific intermediate position, and moving from that interme­
diate position to the final position requires the solution of a problem of this
type. Using this observation, it is possible to modify Hopcroft, Schwartz and
Sharir's proof to produce a proof that finding a non-monotone assembly plan
is PSPACE-hard[21].

As described in section 11.1.3, the XAP /1 planner is given planning problems
described by sets ' of proposed trajectories for each part and a set of constraints

www.manaraa.com

272

(a) (b)

(c) (d)

Figure 11.3: Assembly decomposition: (a) is the assembly; (b) is the prece­
dence graph for insertion of parts from below; (c) is the precedence graph after
collapsing strongly connected components; (d) is the subassembly tree showing
the resulting decomposition of the assembly.

on each trajectory. Given this information, it is possible to find a monotone
solution, if one exists, quite quickly. The algorithm can be described quite
easily, since it is based on well-known graph algorithms. For simplicity, we
will assume that the same set of trajectories is proposed for every part. Then
we can draw a different precedence graph for each proposed trajectory. The
graph for the trajectory () would have one node for each part, and would have
an edge directed from part p's node to part q's node if there is a constraint
that says that part p must be inserted before q when trajectory () is used. For
example, the precedence graph for insertion from below in the assembly shown
in figure 11.3a is shown in figure 11.3b. If part C were inserted from below,
it would collide with parts B, F and G, so there are arrows pointing to those
parts from part C. Clearly these precedence graphs can be constructed for a
set of n parts, with t trajectories and c constraints in O(nt + c) time.

The algorithm will construct a subassembly tree from the root downward, by di-

www.manaraa.com

273

vi ding each subassembly into an ordered sequence of parts and subassemblies.
To test if a trajectory can be used to decompose an assembly, we first find
the strongly connected components of its precedence graph in O(n + c) time
using Tarjan's algorithm[18]. These components are the sets of parts which
form cycles and thus cannot be separated from each other with the trajectory
(). Thus, the strongly connected components of the graph in figure 11.3b are
{A,B,C},{D} , {E},{F,G}. If the entire graph forms a single strongly con­
nected component, then the trajectory () cannot be used, and we try the next
trajectory. Otherwise, we collapse each strongly connected component into a
single node labeled by the set of parts in the subassembly it represents . This re­
sults in an acyclic graph like the one in figure 11.3c. This graph is topologically
sorted in O(n + c) time[17] to give an ordered list of parts and subassemblies
which can be combined to build the assembly, all using trajectory (). This
leads to a decomposition of the assembly such as the one described by the
subassembly tree in figure 1l.3d. Thus we can decompose any internal node in
the subassembly tree in O(tn + c) time. Since the subassembly tree can have
at most n - 1 internal nodes, the total time to build a tree will be bounded by
O(n2t + nc). This algorithm will always find a plan if one exists.

Thus, a polynomial algorithm exists to find monotone plans for the problems
solved by XAP /1. However, the goal in XAP /1 is to find an optimal plan, and
this is a much harder problem. We will see in section 11.3.3 that optimizing the
directionality criterion alone is an NP-hard problem. It is thus to be expected
that any system to solve such problems will require exponential time.

11.3 The XAP /1 Planner

This section will begin by briefly describing the method used by the XAP /1
planner to generate plans, and will then describe the operation of each of
XAP /1 's major modules.

XAP /1 represents plans by collections of assertions and constraints. Two types
of assertions are supported. A sequencing assertion, written P -< Q, indicates
that part P must be inserted before part Q. A trajectory assertion, written
P: e, indicates that part P must be inserted using some trajectory in the set
e. Both kinds of assertions have the property that they are easily negatable.
The negation of P -< Q is Q -< P, and the negation of P: e is P : e p - e where
e p is the set of trajectories originally proposed for part P.

XAP /1 uses assertion sets to represent sets of plans. Specifically, an assertion
set is used to represent the set of all plans which satisfy all the assertions in
the set. Initially the set of possible plans would be represented by the set of
assertions {(P: ep) I PEP}, where P is the set of all parts and ep is the
set of trajectories initially proposed for part P. Such an initial assertion set is
shown as the root of the tree in figure 11.4c. Every plan that can possibly be

www.manaraa.com

274

generated using the proposed trajectories satisfies this assertion set .

Constraints are relations among assertions that must be obeyed by all legal
assertion sets. Two kinds of constraints are used in XAP /1. First, assertion
sets must obey certain logical constraints. If an assertion set contains assertion
a, then it may not contain the negation of a, and at least one trajectory must
be allowed for each part. The sequencing assertions in the set must form a
transitive relation. That is , they must obey the rule

\lP, Q, REP (P-<Q 1\ Q-<R :::} P-<R).

The assertions in the set must also obey the geometrical constraints generated
during the constraint generation stage of the preprocessing stage. All of these
geometrical constraints take the same form. If moving part P along each tra­
jectory in the set e causes it to collide with part Q, then we have the following
constraint:

p:e :::} P-<Q.

Thus, for the assembly in figure l1.4a, there would be two geometrical con­
straints: if part A is inserted from below, it will hit B ; and if part B is inserted
from above, it will hit A. These two constraints are shown in figure 11.4b.

XAP /1 generates plans by starting with the initial assertion set, which rep­
resents all possible plans, and iteratively subdividing it into subsets until an
assertion set that describes just one plan is found. The subdivision is done by
selecting any assertion a which has not already been determined to be either
true or false and adding a to one child of the set and -'a to the other. When
an assertion is added to a set , any other assertions which are implied by the
constraints are also added.

For example, in figure 11.4c, we started by refining the initial assertion set with
the assertion A: {j}. Note that the assertion A : {n may be applied because
it is not known to be either true or false. It is known that part A uses either
trajectory i or L but which has not been determined. This implies by the
first constraint that A-<B must be true for all plans in this set. This, in turn,
implies by the second constraint that B:! must be false for all plans in this
set . The other child of the initial assertion set is produced by applying the
negation of the assertion in the same manner. As shown, this procedure could
be repeated until all assertion sets are complete, that is , they propose only
one trajectory per part, and they totally order the insertion sequence. This
will give a complete enumeration of all plans. Note that different trees can
be generated by applying the assertions in different orders, for example as in
figure l1.4d, but the same set of plans would always be produced in the leaves.

In normal operation, however, the XAP /1 planner would not expand out the
entire tree. Our objective is not to enumerate every possible plan, but to

www.manaraa.com

A

B

(a)

A:U}

Trajectory Proposals:
Part A: 1 (from above) or i (from below).
Part B: 1 (from above) or i (from below).

Geometric Constraints:
A :{i} => A-<B
B:{l} => B-<A

A:{T, n, B :{T , t}

(b)

A :{ r} A:{l}

A{r} , B{r},
A~B

A:{!}, B{T,l}

AU}, B:{T, n, A:U}, B :{j} ,

B:{!}

A{l}, B:U},
B~A

(c)

B:{T}

A:U}, B:{T},
B~A

A:{T,1}, B{T, l}

A:{!}, B{T, l},

A~B

AU,l}, B:{l},
A~B

B{t}

A :{!}, BU},
B~A

B:{l}
A:U}, B:{l},

A~B

AU}' B:{T},
B-<A

(d)

A{f}, B:{f} ,
A-<B

275

Figure 11.4: The two part assembly (a) might be described by the trajectory
proposals and constraints shown in (b). Two possible search trees producing
all plans for this assembly are shown in (c) and (d).

www.manaraa.com

276

identify an optimal plan. XAP /1 uses search heuristics to guide its refinement
of sets of plans in two ways: to select which incomplete plan-set to refine next,
and to select which assertion to use to refine it. If these decisions are made
well, it should be necessary to construct only a small section of the tree.

Note that no possible plan is ever eliminated during the search process. Every
plan that was described by the assertion set of a parent node, is described
by one of its two children. Because of this, we can guarantee that if there is
any possible linear, monotone plan to build the assembly using the proposed
trajectories, then XAP /1 will be able to find it.

The XAP /1 system is actually implemented as a collection of distinct mod­
ules. The search executive drives the search for an optimal plan by using a
heuristic search approach. It is supported by the consequence generator, which
applies assertions to assertion sets and finds which other assertions arise as

consequences, and the criteria arbitrator, which collects advice from lower­
level criterion modules to guide the search. Each criterion is also implemented
as a separate module. We will describe the operation of each of these modules
in turn.

11.3.1 Search Methodology

The goal of the XAP /1 system is not to enumerate all possible plans, as was
done in figure 11.4, but to generate one optimal plan. To do this, we must first
have a definition of optimality. The system assumes the existence of a rating
fUllction f(P) which returns a numeric rating for a plan P. Normally this will
be a weighted combination of a number of different heuristic evaluation func­
tions such as the directionality, fixture complexity and manipulability criteria
functions. All those possible plans for which f(P) takes a minimal value a.rp.
optimal plans. It is one of these that the system is designed to find.

The function f(P) can be computed only for complete plans. To be able
search effectively, we must be able to estimate ratings for plan-sets that ha·
not been completely refined . This will allow us to decide if they are worthy
further refinement. For this purpose we use a heuristic function h(S) that giv
an estimate of the rating of the best plan in the set S . We will normally requi
that this function be strictly optimistic-that is , for all complete plans P in
the plan-set S, we must have f(P) 2: h(S). This is similar to the admissibility
criterion for heuristic functions in the A * search.

The XAP /1 planner selects nodes for refinement in a best-first manner based
on the nodes' h(S) values. That is, it maintains a list of all leaves of the current
search tree on an open list, and in each iteration selects the one with the best
rating for further refinement. If there is more than one equally good choice,
it prefers assertion sets which are more nearly complete. If the h function is
strictly optimistic, this procedure will guarantee that the first complete plan P

www.manaraa.com

277

selected will be an optimal plan. This is because at that time no other leaf of
the search tree may have better h value than P (otherwise it would have been
selected instead of P) so no descendent of another leaf could be better than P,
since none of them can have ratings better than their ancestors already in the
tree.

After an assertion set is selected for refinement the system must choose an
assertion to use to split it. This can be any assertion such that neither it nor
its negation is already known to be true. The choice of an assertion is a simple
type of meta-planning decision- that is , a decision about which decision should
be made next. The strategy used by XAP /1 to select assertions is to choose ones
that appear likely to lead to two children with very different ratings. If this is
done then the child with the worse rating may very well never need to be refined.
This should lead to a narrowly directed search which goes quickly to a solution
without refining too many alternatives. By doing this the planner is effectively
making "obvious" decisions first, an opportunistic strategy commonly used by
human planners. Note that XAP /1 would be able to find an optimal plan if
one exists even if these decisions were selected at random. However , if they are
made well, the time required to find that plan will be greatly reduced.

More details on how assertions are selected are given in the sections on the cri­
terion modules, and some evidence on the effectiveness of this search technique
is given in section 11.4.

11.3.2 Consequence Generation

Consider the two assertion sets {A -< B , B -< C} and {A -< B, B -< C , A -< C}.
These are equivalent because the third assertion in the second set is implied
by the other two, so any plan for which the first set is true must also satisfy
the second set. Clearly there are two different strategies that might be used in
representing assertion sets. Either we could maintain a minimal set of assertions
that describes the desired set of plans, or we could maintain a complete list of
all assertions which are true for the plans in the set.

XAP /1 uses the second approach, because it is easier to find new assertions to
apply to fully-specified assertion sets, and because it is easier to detect when
such a set is complete. In order to maintain this representation, it must be
able to find all new assertions which arise as consequences when an assertion
is added to an assertion set .

We define a part P to be unconstrained relative to a set of parts S if it has
a proposed trajectory (J allowed by the assertion set that would let it be re­
moved from S without violating any sequencing assertion in the assertion set,
or any geometric constraint on (J. Using this definition, the following two rules
determine if an assertion is a consequence of a set of assertions S:

The sequencing assertion Q -< P is a consequence of S if and only

www.manaraa.com

278

if there is a set of parts S containing both P and Q such that Q is
the only part in S that is unconstrained relative to S.

The trajectory assertion P: 0 is a consequence of S if and only if
there is a set of parts S containing P such that P is the only part
in S that is unconstrained relative to Sand P is constrained to
precede some part in S for every allowed trajectory not in 0.

Proofs of these theorems are given in [21].

Unfortunately, these tests are computationally expensive to perform. In prac­
tice most (but not all) consequences can be found by simple applications of
the transitive property and the geometric constraint rules. If a sequencing as­
sertion P -< Q is applied, we look for assertions of the form R -< P or Q -< R
and apply the transitive property if any are found. If we have a constraint
p:e :::} P-<Q then P-<Q is a consequence of any assertion P:cf> where cf> ~ 0
and P: (e p - e) is a consequence of any assertion Q -< P.

This method of consequence generation is relatively efficient, but it does not
guarantee that all consequences will be found. If some consequence is over­
looked, then it is possible that the negation of that assertion will be applied
to the plan later. This will result eventually in the generation of consequences
whose negations are already in the assertion set . If this kind of contradiction
occurs, the assertion set represents an empty set of plans, so it is simply dis­
carded from the search tree. Fortunately, this happens only occasionally, so
the time lost is less than what would be spent in generating all consequences
directly.

11.3.3 Criterion Modules

The criterion modules provide two services to the XAP /1 planner. First, they
provide ratings of plan-sets, which are used by the search executive to select one
to refine. Second, they select the assertions to apply to those plan-sets in order
to refine them. Each of the modules is a specialist in a different criterion. In the
current implementation, one module is designed to minimize fixture complexity,
another minimizes the number of different insertion directions used, and a third
avoids performing difficult operations with parts that are hard to manipulate.
A single arbitration module combines the ratings generated by these criterion
modules and selects among the assertions they propose.

The criterion modules have only limited information about the rest of the sys­
tem. Though they function much like the knowledge sources in a blackboard
system, there is no shared, global blackboard in XAP /1. Instead, each crite­
rion module maintains its own representations of all the plan-sets on the tree .
Whenever an assertion is applied to a plan-set, each criterion module is in­
formed of the fact, and updates its own data structures appropriately. This

www.manaraa.com

279

leads to some redundancy in information storage, but allows each module to
arrange its data structures optimally for its own purposes.

It should be noted that only the arbitration module knows what constraint
modules are installed. The individual criterion modules do not intercommuni­
cate directly. Similarly, only the consequence generator has any understanding
of geometric and logical constraints. When the criterion modules propose as­
sertions, they consider only the assertion itself, not any assertions which might
arise as consequences. The exploration of the actual consequences of decisions
is the job of the system as a whole.

The following sections will describe each of the modules. First the arbitration
module will be briefly described. For the three criterion modules, we will
begin by defining the evaluation function f(P) that the criterion attempts to
minimize. Then the algorithms used to generate h(S), the optimistic estimate
ofthe rating ofthe best plan in S, and to propose assertions will be summarized.
More detailed descriptions of these criterion modules are given in [21].

Arbitration Module

The arbitration module is initialized with the list of criterion modules to be
used, and a weight for each. Whenever an assertion set has been updated
through the consequence generator, the arbitration module is called to compute
a new rating for it. It does this by asking each installed criterion module to
rate it , and computing the weighted sum of their ratings.

The arbitration module is also called when an assertion needs to be selected to
refine an assertion set. To do this, it calls each installed criterion module and
asks it to propose an assertion and give a rating for that assertion. The rating
of the assertion estimates the difference in the ratings of the two plans that
would be produced by applying the assertion and its negation. The arbitration
module multiplies the ratings by the weights of the different criterion modules,
and uses a simple voting technique to choose the one which seems likely to
make the biggest difference.

Note that as the plans near completion, some or all of the criterion modules
may make no proposals. This occurs when all the possible plans that satisfy the
assertion set appear to be equally good. If no other criterion has any proposal
to make, the arbitrator calls a default criterion, which selects assertions that
seem likely to have many consequences, and thus will lead rapidly to a complete
plan.

Fixture Complexity Criterion

Fixture complexity measures the number of things which must be held in
place during the execution of the assembly plan. Generally insertion opera-

www.manaraa.com

280

tions should be sequenced so that the assembly holds itself together as well as
possible during all stages of the assembly process. This is, of course, not the
only criterion that effects the cost of fixtures . Directionality, for example, is
relevant too.

Different types of fixtures would require different definitions of fixture complex­
ity. For example, fixtures that can dynamically reconfigure themselves during
the assembly process have different requirements than stat.ic fixtures which
cannot. We will consider rigid, static fixtures , which must be able to fully re­
strain each part. at the instant when it is least restrained by other parts of the
assembly. For monotone plans, this will always be the moment immediately
after insertion . Thus we will define the static fixture complexity of a plan as
the sums of the degrees of freedom of the parts immediately after insertion.

To compute st.atic fixture complexity, each part is first classified according
to how well it is held in place immediately after insertion. It may be either
"attached" such as a nut that has just been placed on a bolt; "lift-only" such
as a square peg inserted into a square hole; or "lift-rotate" such as a washer
just placed on a cylindrical peg. All other parts are considered to be "free."
Parts are classified by using a set of rules which describe for each part what
combinations of previously placed parts would put it in each group. These
rules would have to be extracted from the CAD model in much the same way
that the geometric constraints are. The f(P) function is, thus, computed by
classifying each part, counting the remaining degrees of freedom (0, 1, 2, or 6
for attached, lift-only, lift-rotate, and free parts respectively), and adding them
up.

Optimistic estimates of the static fixture complexity rating of plan sets are
produced by assuming that every part which could have been inserted before a
part, is inserted before that part. Thus, in the initial plan, where no sequencing
assertions have been made , it assumes that every part is inserted before every
other part. Various techniques can be used to tighten up this estimate. For
example, every plan must have a first part, which must be free, so XAP /1
always places at least one part into the free class.

To propose assertions with which to refine a plan, we look for an assertion that
will harm the estimated rating. In particular, we look for a part P that would
be moved to a lower attachment class than we had optimistically placed it in,
if we assert that some part Q does not precede it. Then the assertion P -< Q
would be proposed, because it hurts the plan's rating though its negation does
not. The change in the part's rating which would be caused is returned as the
rating of the proposed assertion.

Directionality Criterion

The directionality criterion measures the number of different directions from
which operations are performed. Generally, plans that work from a single

www.manaraa.com

281

direction are better than plans that require operations to be performed from
all sides. They require a less dexterous robot, a simpler fixture, and fewer
reorientations of the workpiece.

The directionality criterion counts how many different insertion directions are
used in the plan. Sometimes different trajectories may be performed from the
same direction. For example, spiraling a screw in from above and inserted
a peg straight from above are different trajectories performed from the same
direction. The directionality criterion is given a classification of trajectories into
directions. The f(P) function it computes is simply the number of directions
that are used by at least one part in the plan P.

A good optimistic estimate of f(P) could be produced by finding the smallest
set of directions such that every part has at least one proposed trajectory using
that direction. However this is the NP-complete HITTING SET problem[6],
and solving it for every node in the tree is impractical. Instead, XAP /1 finds
all parts with only one direction proposed, and defines U as the set of directions
used by those. If every other part has a proposed direction in that set, then the
plan-set's rating is lUI. Otherwise, if the intersection of the direction sets of the
parts with no directions in U is non-empty, the rating is IU 1+ 1. Otherwise, the
rating is I U 1+ 2 is used. This gives a rating that is sometimes overly optimistic,
but is still a good guide, especially later in the planning process.

To generate an assertion, the directionality criterion looks for a trajectory pro­
posal which would move us from the lUI case to the lUI + 1 case, or from the
lUI + 1 case to the lUI + 2 case. For example, in the first case, we propose that
a part that has some trajectories with directions in U and some with direc­
tions not in U use one of the latter trajectories. The rating of the trajectory
proposed will always be 1, since that is the largest difference a single proposal
can make in the plan-sets estimated rating.

Manipulability Criterion

The manipulability criterion favors doing difficult operations with parts that are
easy to handle. For example, when attaching a spark plug to an automobile, it
is the spark plug, and not the automobile, that should be rotated. To generate
a manipulability rating for a plan, each part is given a manipulability rating,
and each trajectory is given a difficulty rating. The product of these gives the
rating for an operation. The manipulability of a plan is the sum of the ratings
for all the operations.

The manipulability rating of a part tells how hard the part is to handle with
a robot relative to how hard it is to hold with a fixture. The mass of a part
is a reasonable estimate of this , since heavy parts are much harder to handle
than to fixture. Very small parts are hard to handle, but they are also hard
to fixture. The difficulty of a trajectory depends on the complexity of the
motions and the amount of fine motion control involved. This would be based

www.manaraa.com

282

Figure 11.5: Example assembly consisting of 3 bolts holding together 2 plates.

on a classification of trajectories into types. For example, screwing trajectories,
and trajectories to insert snap-together parts would be types of trajectories that
are more difficult than simple insertions.

XAP /1 estimates manipulability ratings in a manner similar to that used with
the static fixture complexity criterion. Each part is evaluated separately, as­
suming that it uses the simplest trajectory proposed for it. To propose asser­
tions, it looks for a part with trajectories with different difficulties proposed for
it. It then proposes the deletion of all but the most difficult trajectories, rating
that proposal with the difference in the difficulties times the manipulability.

11.4 Performance

The performance of the XAP /1 system varies widely according to the relative
weights of the criteria, and the particular characteristics of the plan. Pre­
dictably, it works best when one criterion dominates the others, or when the
proposed trajectories have a large number of constraints.

As an example, we will consider a class of assemblies similar to the one shown
in figure 11.5. These contain two plates which are held together by a set
of b nut/bolt pairs. This is a fairly unconstrained assembly, so that, even
without subassemblies, there are 4b+1 possible plans to build an assembly with
b bolts. We will use all three criteria, choosing weights that leave them fairly
evenly balanced, with a slight edge being given to the static fixture complexity
criterion.

Figure 11.7 shows the search tree generated by XAP /1 in the course of finding a
plan for an assembly with three bolts. This tree clearly shows how the XAP /1
system makes obvious decisions first. Note that the upper portion of the tree

www.manaraa.com

283

number nodes CPU tree
of bolts expanded time memory

1 4 0.3 sec 8K
2 9 0.4 sec 17K
3 31 0.7 sec 64K
4 65 1.3 sec 159K
5 122 2.4 sec 336K
6 206 4.6 sec 492K
7 329 8.0 sec 493K
8 496 13.6 sec 494K
9 730 22.0 sec 495K

10 1046 36.0 sec 502K
11 1462 57.3 sec 504K
12 2298 125.9 sec 506K

Figure 11.6: Performance of XAP /1 with a 488K soft memory limit on assem­
blies consisting of b bolts holding together 2 plates.

is very narrow, with very little expansion of side branches, while near the end
it bells out into a nearly exhaustive search. In the upper part of the tree,
one alternative is usually far superior to the other , so only that one need be
explored much further. In the lower part of the search, the system is primarily
attempting to decide in which order the bolts and the plates are to be inserted.
Since this actually makes little difference to the quality of the plan, the system
must inspect many nearly equal alternatives. The search tree would have been
much larger if these comparatively trivial decisions had not been deferred to
the end . If we had started with one of these decisions, the size of the tree would
likely have been nearly doubled, since both subtrees would require almost as
much exploration as the entire tree in this example. This demonstrates the
importance of being able to make decisions in an opportunistic fashion.

Running XAP /1 on a number of such assemblies with varying numbers of
bolts gives rise to the table in figure 11.6. The CPU times here are based on an
implementation in C on a Sun 3/50 workstation. As expected, the time grows
exponentially with the size of the assembly, approximately doubling with each
additional bolt. This kind of behavior is not really satisfactory. Generating
a plan for four bolts shouldn't be much harder than generating one for three
bolts. This arises largely because the planner currently must consider every
possible sequence in which the screws can be inserted separately. Given any
valid plan for this assembly, we can generate n! other valid plans by rearranging
the labels of the n nut/bolt pairs. All these plans are equivalent as far as the
three installed criteria are concerned. Yet the planner must partially generate
many of these n! plans to make sure none is better than the other.

www.manaraa.com

284

Types of Proposals

o SFC (Plates & Bolts)

o SFC (Nuts & Bolts)

\l Directionality

<> Manipulability

D Default

Figure 11.7: Search tree generated in solving the problem in figure 11.5 showing
internal nodes numbered in the order in which they were refined and identifying
the criterion module that proposed the assertion used in its refinement.

This kind of situation, where there are several similar structures in an assembly,
arises very commonly in actual assembly problems. It is clear that future
assembly planners should be able to deal more effectively with such cases.
A form of internal learning could be used to recognize when an incomplete
assertion set is similar to one previously generated . However detecting similar
sets can be computationally quite expensive. An alternative approach would
be to use unquantified part variables to make plans of the form "insert one
screw from above and two from below" .

The memory usage in the table includes only the data structures, not the
program text. Note that the memory usage grows exponentially until it passes a

www.manaraa.com

285

user-defined limit of 488K. At that point, the XAP /1 system begins discarding
the data structures describing poorly rated plan-sets to recover the memory
devoted to them. Only the set of assertions that was used to generate the plan­
set is kept, so that the other data structures can be rebuilt if necessary. This
strategy proves very effective- it is possible to collapse a very large fraction
of the nodes without needing to rebuild any- so that even for fairly large
problems the increase in memory usage is slight. This is possible because
only half of all leaves produced will ever be expanded, and the opportunistic
planning methodology ensures that many of those produced will be very poorly
rated. Of course, even using this trick, the growth in memory will continue to
be exponential, but the constant is small enough to allow large problems to be
solved.

The values given in the table in figure 1l.6 cannot be taken as typical. The
assemblies used are unusually unconstrained and the criteria are more evenly
weighted than they would be in realistic applications. Figure 11.8 shows a more
realistic assembly which contains 34 parts and for which 26 trajectories were
proposed. The 26 trajectories include 6 straight-line insertion trajectories (from
above , below, left , right, front and back), 16 spiralling insertion trajectories
(two for each screw attachment: one for the male part, one for the female),
and a rivet insertion trajectory. Generating the plan shown required about
5.6 seconds of CPU time and 563K of memory (for both program and data
structures) on the Sun 3/50. Depending on the weights chosen, the CPU usage
may rise to nearly 15 seconds.

Since the set of criteria used is quite small, the plan suffers from a few defects.
The insertion of the tray being done in the midst of the foot insertions might
require an extra tool change, for example. However , no tool change criterion
was installed and it is a good plan under the criteria used. For example, the
directionality criterion causes it to avoid doing any operations from below and
the manipulability criterion causes it to avoid turning the base onto any of the
screws.

It should also be noted that the CPU times reported here do not include the
time to generate trajectory proposals, geometric constraints, and similar infor­
mation from a CAD model. This information is currently generated manually,
but work is also in progress on the development of an interface to a geometric
modeling system for the XAP /1 system.

The XAP /1 planner, thus, is able to generate reasonable plans for realistic as­
semblies very quickly. Its major failing is that it cannot produce plans which
use subassemblies. The speed with which XAP /1 generates linear plans, how­
ever, makes it a promising base for a system to solve more general assembly
planning problems. Some initial work has been done in describing an expanded
set of three types of assertions that would support the opportunistic genera­
tion of plans with subassemblies[23,22]. With these assertions the system can
intermix decisions about the sequencing, trajectory assignment, and subassem-

www.manaraa.com

286

(1) insert FOOT _B from above (18) insert PLATE from above
(2) insert FOOT _D from above (19) rivet in RIVET_D
(3) insert TRAY from above (20) rivet in RIVET_F
(4) insert FOOT _A from above (21) rivet in RIVET_B
(5) insert FOOT _C from above (22) rivet in RIVET_C
(6) snap in BASE from above (23) rivet in RIVET_E
(7) insert STOP _A from above (24) rivet in RIVET_A
(8) insert STOP _B from above (25) insert PAPER_GUIDE from left
(9) insert SOCKET _C from above (26) insert GUIDE_SCREW from above

(10) insert PLUNGER_C from above (27) insert BAR from right
(11) insert SOCKET _A from above (28) screw STOP _SCREW _B from above
(12) insert PLUNGER-A from above (29) screw SET_SCREW_C from behind
(13) insert SOCKET _B from above (30) screw SET _SCREW_E from behind
(14) insert PLUNGER_B from above (31) screw SET _SCREW _A from behind
(15) insert HANDLE from right (32) screw STOP _SCREW _A from above
(16) insert HOOK from left (33) screw SET _SCREW _B from behind
(17) screw HOOK_SCREW from left (34) screw SET _SCREW _D from behind

Figure 11.8: Plan produced by XAP /1 for a 34-part hole punch assembly.

www.manaraa.com

287

bly structure of the plan arbitrarily, leaving it free to make the most obvious
decisions first throughout the planning process.

Acknowledgements
The author would like to thank Dr. Richard Volz and Dr. Tony Woo for their
invaluable support and guidance in the work described here . This research was
supported by the Air Force Office of Scientific Research under contract number
F33615-85-C-5105. The author was funded in part by an IBM Graduate Pre­
Doctoral Research Fellowship in Manufacturing Research.

References

[1] A. BourjauIt. Contribution a une approche methodologique de ['assem­
blage automatise: Elaboration automatique des sequences operatiores.
PhD thesis, L'Universite de Franche-Comte , November 1984.

[2] B. K. Choi, M. M. Barash, and D. C. Anderson. Automatic recognition
of machined surfaces from a 3D solid model. Computer-Aided Design,
16(2):81- 86, March 1984.

[3] R. Dawson. On removing a ball without disturbing the others. Mathe­
matics Magazine. 57(1):27- 30, January 1984.

[4] T. L. De Fazio and D. E. Whitney. Simplified Generation of All Mechani­
cal Assembly Sequences. IEEE J. of Robotics and Automation. 3(6):640-
658, December 1987.

[5] T. L. De Fazio and D. E. Whitney. Correction to "Simplified Genera­
tion of All Mechanical Assembly Sequences." IEEE J. of Robotics and
Automation. 4(6):705- 708, December 1988.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freemand and Co., New York,
1979.

[7] L. Guibas and F. Yao. On translating a set of rectangles. In 12th Annual
ACM Symposium on Theory of Computing, pages 154- 160, April 1980.

[8] M. R. Henderson and D. C. Anderson. Computer Recognition and Ex­
traction of Form Features: A CAD/CAM Link. Computers in Industry.
5(4):329- 339, December 1984.

[9] R. L. Hoffman. Assembly planning for CSG objects. Technical Report
8916, Automation Sciences Lab, Northrop Research and Technology Cen­
ter, May 1989.

[10) R. L. Hoffman. Automated assembly in a CSG domain. In IEEE IntI.
Conf. on Robotics and Automation, pages 210- 215, May 1989.

www.manaraa.com

288

[11] L. S. Homem de Mello and A. C. Sanderson. A correct and complete
algorithm for the generation of mechanical assembly sequences. In IEEE
IntI. Conf. on Robotics and Automation, pages 56- 61, May 1989.

[12] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the Complexity of
Motion Planning for Multiple Independent Objects: PSPACE-hardness
of the 'Warehouseman's Problem' Robotics Research. 3(4):76- 88, May
1988.

[13] W. Jentsch and F. Kaden. Automatic generation of assembly sequence.
In I. Plander, editor, In Artificial InteUigence and Information-Control
Systems of Robots, pages 197-200. Elsevier Science Publishers, North­
Holland, 1984.

[14] S. Joshi and T. C. Chang. Graph-based heuristics for recognition of ma­
chined features from a 3D solid model. Computer-Aided Design, 20(2):58-
66, March 1988.

[15] H. B. Olsen. A flexible robotic workcell for the assembly of airframe
components. In IEEE Inti. Conf. on Robotics and Automation, pages
1278-1283, May 1990.

[16] J.-R. Sack and G. T. Toussaint. Separability of pairs of polygons through
simple translations. Robotica, 5(1):55-63, January- March 1987.

[17] R. Sedgewick. Algorithms. Addisson-Wesley, Reading, Massachusetts,
second edition, 1988.

[18] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM
Journal of Computing. 1(2):146- 160,1972.

[19] J .-M. Valade. Geometric reasoning and automatic synthesis of assembly
trajectory. In Proceedings of Int 'I Joint Conf on Advanced Robotics, pages
43- 50, 1985.

[20] J. Wolter and P. Chandrasekaran. Knowledge representation for design of
mechanical assemblies. Technical Report 90-026, Texas A&M University,
Computer Science Dept., October 1990.

[21] J. Wolter. On the Automatic Generation of Plans for Mechanical Assem­
bly. PhD thesis, University of Michigan, Dept. of Computer, Information
and Control Engineering, September 1988.

[22] J. Wolter. A constraint-based approach to planning with subassemblies.
In IEEE Inti. Conf. on Systems Engineering, pages 412- 415 , August
1990.

[23] J. Wolter. Representing subassembly trees by deepest common ancestor
relations. Technical Report 90-009, Texas A&M University, Computer
Science Dept., May 1990.

www.manaraa.com

Chapter 12

A common sense approach
to assembly sequence
planning

Richard Hoffman

Humans are adept at solving assembly and disassembly problems due to the
versatility of the hands, sophisticated sensing feedback, and common sense
reasoning. Common sense reasoning is most important since it allows educated
guesses to be made about reasonable operations to make, and visualization of
operations and their consequences. In this chapter, an operation is a translation
or rotation of a component or multicomponent subassembly. Educated guesses
are a result of taking advantage of previous experience.

Despite this, manual generation of detailed assembly plans can be tedious and
time consuming, particularly in environments prone to frequent design changes.
Small batch environments typically produce only units or tens of a given prod­
uct so that the manual assembly plan generation is a substantial portion of the
total product cost. Therefore, with a vision of delegating the assembly plan
generation to computers, automated assembly planning has become an area of
intense research.

In implementing an assembly planner, one could begin with individual compo-

www.manaraa.com

290

nents of the assembly and search for a sequence of operations that puts them
together. Nevertheless, the correct order in which individual pieces must be
merged into the intermediate assembly is not easy to deduce a priori, result­
ing in a large amount of false starts and, hence, backtracking. On the other
hand, the number of movable subassemblies is more tractable if one begins with
the assembled product and searches for a sequence of reversible operations that
will disassemble the product. Hence the assembly planning problem is normally
solved as a disassembly problem.

Automated assembly sequence planners can predict movability of subassem­
blies in two ways. The first assumes that enough high-level information is
included in the problem statement to provide an insertion direction. For ex­
ample, component liaisons [11 represent contacts and types of contact between
components. Systematically breaking these liaisons corresponds to disassembly
of the product. Some systems require human interaction to verify directions of
insertion [2]. Such approaches only deal with assemblies involving single move
insertions of components and subassemblies, because multiple move insertions
would require supplying liaison information for intermediate stages of assembly.

The second way to predict subassembly movability is to use geometric data
supplied by CAD models of objects. The complexity of this task depends on
the complexity of the models and their representations. The simplest case is
with polyhedral objects [3,8]. A more complex class of models involves objects
produced by combining "nameable" surfaces such as planes and cylindrical sur­
faces, and solid shape primitives such as boxes, cylinders, and spheres [4,5,101.
The most complex case addressed to date involves objects with parameterized
sudace patches expressed as bicubic equations [6]. Such models are called
boundary representation (B-rep) models.

Bicubic surfaces are common in industrial applications where objects need to
have specific aerodynamic properties or for aesthetic reasons. Such sudaces
are useful for the design of components that must satify design criteria such as
stiffness, mass, strength, moments of inertia, and tools and materials that are
available to manufacture components. Therefore it is important that assembly
planners be capable of dealing with products with sophisticated representations
in order to be useful to industry.

Unfortunately, the computational costs associated with deriving freedom of
motion increases with increased model complexity. This cost makes finding
shortcuts to freedom determination derivation very attractive. Fortunately, a
few simple common sense rules provide substantial computational savings.

This chapter presents the B-rep Assembly Engine (BRAEN), a system that
generates disassembly sequences of products whose components are represented
as B-rep objects with bicubic surfaces. Static workcell objects such as tabletop
and walls are also included in the solution process as environment components.
Both translational and rotational operations may be involved in the assembly
sequence. Also, subassemblies do not need to be removed in a single operation.

www.manaraa.com

291

We demonstrate how a few common sense rules can be used to reduce the cost
of automated assembly sequence planning. For example, rules are presented
that allow previous calculations of freedom of motion to be reused for other
spatial configurations of components. Also, we demonstrate heuristics to gen­
erate promising operations when no moves that break an assembly into two
subassemblies are available, and reason about the effect of gravity and stability
on assembly to help ensure that disassembly operations are reversible. These
results extend previous work reported in [6] and [7].

Section 12.1 presents the overall procedure of BRAEN, Section 12.2 discusses
specific applications of common sense knowledge in BRAEN, with experimental
results presented in Section 12.3. Section 12.4 discusses the performance and
future extensions of the system.

12.1 Approach

BRAEN derives an assembly sequence for a product sitting on the flat work
area of a workcell such as a tabletop. When an assembly is broken into two
subassemblies (namely, the parts that are moved and the parts that do not move
during the operation), the system places single components resulting from this
operation by the edge of the work area. Multicomponent subassemblies are
kept in the central work area.

The system assumes a single robot. Therefore, if an operation results in a
subassembly that is suspended in midair - held by the robot - then that
subassembly must continue to be moved until it is set down. Only then can an
operation can be performed on other components.

The system distinguishes between two classes of components: environment and
product. Product components are part of the product to be disassembled,
whereas environment components are fixed (immovable) elements of the work­
cell environment, such as tabletop or wall. The role of environment components
is to act as a support for the assembly (in the presence of gravity) and to define
the boundaries of the workcell.

BRAEN assumes that components are rigid. For example, this means that
there are no elastic or plastic interactions involved in assembly that could
create irreversible operations.

The overall procedure of BRAEN is illustrated in Figure 12.1. An assembly is
selected from the center area of the table. If there is more than one assembly
to pick from, the selection method is important because it is best to find out as
early as possible if a product cannot be disassembled. Therefore, the selected
assembly should be more complex than other assemblies. BRAEN uses the
number of components in an assembly as a heuristic measure for complexity.

The Disassembly Module generates a sequence of operations that break the

www.manaraa.com

292

Are there assemblies in
center area of table?

Yes

Choose assembly A, and
use the Disassembly Module

to break A into subassemblies

Place single components at
edge of table

No
DISASSEMBLY

COMPLETE

Figure 12.1: Operation of BRAEN

selected assembly into two subassemblies. Each operation is a translation or
rotation of a component or multicomponent subassembly. The final operation
of the sequence must be a move that physically separates the assembly into
two disjoint pieces, called a separating motle.

The operation of the Disassembly Module is shown in Figure 12.2. There are
two fundamental processes in this module, freedom determination and search
strategy. Information obtained from these two processes is used to construct a
search graph, whose nodes correspond to potential operations on subassemblies.

The function of each process is summarized as follows:

Freedom determination. Given a spatial configuration (set of positions) of
the components in an assembly, the freedom determination routine pro­
vides information about which subassemblies can move, directions they
can move, and how far they can move before colliding with other compo­
nents.

Search strategy. Given the information provided by freedom determination,
it is necessary to generate sequences of subassembly motions that will

www.manaraa.com

293

FREEDOM DETERMINATION II'-__ N_e_w_c_o_n_fi,.=:g_ur_a_tio_n_s_--,
For each configuration:

Identify movable subassemblies

Identify the "most promising"
disassembly operation of

some movable subassembly S

Test for separating move

Satisfied

SEARCH STRATEGY
Generate feasible operations

on S via heuristics

Figure 12.2: BRAEN Disassembly Module

provide disassembly. Since a disassembly sequence will not, in general,
consist only of moves that result in collision, it is necessary to determine:

o Which of a number of feasible subassembly moves seems to be the
most promising;

o At which of the uncountably many positions along one movement
trajectory the motion should be stopped to allow moving a different
subassembly or changing the trajectory of movement.

12.1.1 Component Representation

All components are represented in BRAEN as sets of oriented bicubic surface
patches. The orientation of a patch indicates that side of the patch facing
outward from the interior of the component.

In addition, mass, center of mass, and sets of component features are supplied
for each component. Component features may be derived by feature extraction
routines or supplied explicitly by a feature-based modeler. For each component,

www.manaraa.com

294

there are three types of features:

Direction features indicate major axes of the component. For example, "box"
structures on a component supply six directions (e.g., ±x, ±y, ±z direc­
tions), and "cylindrical" or "conical" structures supply two directions,
along the axis of symmetry. Direction features are unit vectors with tails
at the origin.

Center features indicate centers of "protrusions" or "holes" of the component.
These are useful for postulating moves that line up features of different
components. Center features are 3D points.

Axis features indicate rotational axes of a component. For example, "cylindri­
cal" or "conical" structures each provide one axis feature. If a component
displays rotational symmetry about an axis, then that axis is not an axis
feature. Axis features are unit vectors.

Figure 12.3 shows the representation for the key object shown in Figure 12.4.
This object belongs to the capsule assembly shown in Figure 12.5, along with
a roof component which has tabs that slide in tracks in the base component.
The first part of the representation gives 40 bicubic surface patches; the second
part supplies the component features, mass, and center of mass (COM).

12.1.2 Freedom of Motion Determination

We call the set of positions of all components the spatial configuration, denoted
by II. The position of each component is given by a 4 X 4 transformation matrix
and reports the results of any translational and rotational operations performed
on the component. The freedom of motion of a subassembly depends on the
relative positions of other components, that is, on II.

Two types of freedom of motion are obtained, translational and rotational.
Given an assembly A (in configuration II) to be decomposed by the Disassem­
bly Module into two subassemblies, the possible directions of translation are
supplied by the direction features of components in A, and the possible axes
of rotation are supplied by the axis features of components in A. These direc­
tion and axis features are, of course, modified to reflect the current position of
A.

To determine the translational freedom of a subassembly S in a direction d,
all patches of components of S are translated in direction d until they collide
with patches not in S. The smallest motion of any patch in S indicates the
maximal collision-free translation of subassembly S in direction d, denoted as
~d(II, S). To illustrate, Figure 12.6 shows a 2D example of this process. Here,
"patches" are 2D curves. The freedom of translation of subassembly S is being
evaluated for the direction d (translation to the right in the figure). There

www.manaraa.com

(

;;; Bezier patch definitions
; ; ; X, Y, and Z matrices of control points

«(0.6000000 0.6000000 0 . 6000000 0 .6000000)

(0.6000000 0.6000000 0.6000000 0 .6000000)

(0.6000000 0.6000000 0.6000000 0.6000000)

(0.6000000 0.6000000 0.5000000 0.6000000 »
« -0.2000000 -0.0666667 0.0666667 0.2000000)

(-0.2000000 - 0.0666667 0 .0666667 0 .2000000)
(-0.2000000 -0.0666667 0.0666667 0 .2000000)

(-0.2000000 -0.0666667 0.0666667 0 .2000000 »
« 0.0000000 0 .0000000 0.0000000 0.0000000)

(0.7600000 0.7500000 0.7600000 0.7500000)

(1.6000000 1.6000000 1.6000000 1.6000000)

(2.2600000 2.2600000 2.2600000 2.2600000 »)

plus 39 other patches not shown

) ;;; end of patch definitions

;;; component features
(:DIRECTION (0 .0 0.0 1 .0) (0 .0 0.0 - 1.0»
(:CENTER (PROTRUSION (0.00.0 1.126»)
(:AXIS «0.0 0.0 0.0) (0.0 0.0 1.0»)

; axis from cylindrical bottom of key
;rotational axis passes through (0,0,0)
;in z (0,0,1) direction.

(:MASS 1.3062)
(:COM (0 .01376 6.8e-4 0.3309»
) ;;; end of component features

Figure 12.3: Key object representation

295

www.manaraa.com

296

Figure 12.4: Key object

Figure 12.5: Capsule assembly

www.manaraa.com

297

d
13-----IEl 2D patch

Interpatch distance

Figure 12.6: Derivation of ~d(II, S)

are three interpatch distances involved in this evaluation; the linear patches of
S are either parallel to d or face away from the direction d and thus do not
contribute to the result. The shortest interpatch distance shown indicates the
value ~d(II, S).

The distance that a patch P1 may translate in direction d before colliding
with a patch P2 , denoted by t5d (pl, P2), is computed recursively. Patches P1

and P2 are each subdivided into subpatches, and an approximate distance
of translatability in direction d is derived of every subpatch of P1 to every
subpatch of P2 • A polyhedral approximation of each subpatch reduces these
calculations to distances between triangular facets. The distance is evaluated
for those pairs of subpatches with smaller distances, until the desired level of
accuracy is attained.

To determine the rotational freedom of a subassembly S about an axis a, all
patches of components of S are rotated about axis a until they collide with
patches not in S. As with translation, the smallest motion of any patch in S
indicates the maximal collision-free rotation of S about axis a. This is denoted

www.manaraa.com

298

as ea(II, S), and reports the angle of rotation available in both clockwise and
counterclockwise directions about axis a. The angle through which patch PI
may rotate about axis a before colliding with patch P2 , denoted by ea(P1 , P2),

is computed analogously to ad.
From a given spatial configuration II and assembly A, the freedom determina­
tion module determines a set of potential operation triples M(II, A),

where

Si specifies the subassembly to be moved in the ith potential operation;

ti indicates the trajectory of the ith potential operation, either a direction
of translation or an axis of rotation of Si;

Ii is the freedom of motion of Si for trajectory ti: if ti is a translational
direction d, then h = b.d(II, Si), and if ti is a rotational axis a, then
h = ea(II, Silo

Generation of M (II, A) is accomplished as follows:

Identify translatable components

For each component C in A, evaluate the freedom of translational motion of
C along directions indicated by the direction features of components in A.
A potential operation triple (C, d, f) is supplied when a component C can
translate a non-zero distance f in a direction d.

Identify movable subassemblies

For each component C and direction d (from the set of directions indicated
by the direction features of components in A) for which b.d(II, C) = 0, de­
termine the subassembly S containing C which must move when C moves an
incremental distance in direction d. A potential operation triple

(S, d, b. d(II, S))

is supplied if S is a proper subset of A. This disallows operations that move
all of A or move any environment components.

Identify rotatable components

For each component C in A, evaluate the freedom of rotational motion of C
about those axes indicated by the axis features of C. A potential operation

www.manaraa.com

299

triple is supplied when a component can rotate through a clockwise or coun­
terclockwise non-zero angle about an axis.

The current implementation only considers rotations of single components, pri­
marily because applying a torque to one component C of a subassembly does
not necessarily lead to rotation about the same axis of other components that
are pushed by C as a result of the rotation. If C sufficiently constrains the
freedom of the other components then they will rotate as a unit; we need
to determine these conditions of sufficient constraint before allowing rotating
subassemblies.

As an example, let A be the capsule assembly, with its initial configuration
IIo as shown in Figure 12.5, then M{IIo, A) contains two potential operation
triples:

o 81 = key, t1 = translation +z direction, and It = 0.832 units.

o 82 = base fJ roof, t2 = translation +z direction, and h = 0.1 units.

12.1.3 Search Strategy

The function of the Disassembly Module is to search for a sequence of operations
that will break an assembly A into two subassemblies. The A* algorithm sans
heuristic estimator [11] is used for a best-first search over a graph whose nodes
correspond to feasible operations on specific configurations.

Given a potential operation triple (8, t, f), the operation (8, t, f*) is an (8, t, f)­
feasible operation if f* does not exceed the freedom of motion indicated by f.
For example, if a subassembly 8 can translate at most 2 units in the t direction,
then translations of 8 from 0 to 2 units in the t direction are (8, t, 2)-feasible.
The techniques used to identify a finite number of (8, t, I)-feasible operations
from a potential operation (8, t, f) are discussed in Section 12.2.2.

When the Disassembly Module begins, the freedom of motion of an assembly
A within an initial configuration IIo is evaluated to obtain the set of potential
operations M(IIo, A). For each potential operation triple (8, t, f) in M(IIo, A),
a number of (8, t, f)-feasible operations (8, t, f*) are identified, each of which
is paired with the configuration IIo to form a node (ITo, (8, t, f*»).

A node is a goal node if its operation is a separating move. At any stage of
search in which no goal node is found, it is necessary to expand the node having
maximal merit. A node (II, (8, t, f)) is expanded as follows:

o Apply the operation (8, t, I) to configuration II, obtaining a new con­
figuration II'. If there already exists nodes with configuration II', then
the new configuration has already been encountered, so no new nodes are
generated.

www.manaraa.com

300

o Otherwise, derive the set of potential operation triples M (II' , A).

o For each potential operation (8',t' , !') in M(II', A), identify (8',t',!')­
feasible operations; for each feasible operation (8' , t', f*) create a new
node (II', (8', t', f*}).

The merit of a node (IT, (8, t, f}) is based on favoring the following node char­
acteristics:

o Large magnitude of motion.

o Large 181; that is, a large number of parts.

o Trajectories that involve robot approach from above the assembly, and
therefore provide easier (uncluttered) access to the assembly. This is
indicated by a large z-component to the trajectory.

o Small total path length to get to configuration IT from the initial config­
uration IIo.

In particular, the associated merit value is infinite if and only if the potential
operation provides a separating move, guaranteeing that if a separating move
is available the search will terminate.

To illustrate, Figure 12.7 shows the search graph generated by the Disassem­
bly Module to break the capsule assembly in its initial configuration into two
subassemblies. All operations are translations for this example, therefore each
node specifies a configuration, subassembly, translation trajectory, and trans­
lation magnitude. Configuration ITo is the initial configuration (Figure 12.5),
and in general the configuration of a node corresponds to application of the
operations specified by the node's ancestors. The shaded node indicates the
separating move for the assembly.

12.2 Common Sense

Brute force manipulation of geometric data can require prodigious amounts of
computation. Computation of freedom of translational and rotational motion
is expensive because the number of evaluations of 6 and () is on the order of
the square of the number of patches in all components. The search strategy
is problematic because, given a potential operation of magnitude m along a
trajectory t, it is impossible to examine all feasible operations along the trajec­
tory. This section examines the intuitively simple techniques used by BRAEN
for freedom of motion determination and search strategy.

In addition, some operations that are geometrically feasible cannot be per­
formed with physical objects. For example, if one subassembly is sitting on

www.manaraa.com

-z direction
0.832 units

110
Key

+z direction

+ x direction
0.2 units

Key
-z direction
0.732 units

+x direction
0.2 units

110
BaselRoof

1\

301

BaselRoof

+x direction

-z direction
0.1 units

Figure 12.7: Search graph for capsule breakup

top of another subassembly, then moving the bottom subassembly will cause
the top subassembly to move as well. We show how simple physics is used to
model gravity and stability issues in planning the assembly sequence.

12.2.1 Freedom of Motion

There are situations in which the freedom of S in configuration TI can be used to
obtain the freedom of a subassembly S' in a configuration TI'. These situations
- essentially indicated by common sense rules on how S' may differ from Sand
how TI' may differ from TI and still allow the same freedom result (or a slight
variant) to hold - allow significant reductions in the number of evaluations of
I1 and e.
The rules for translational freedom are best visualized by considering a train
on an infinitely long straight rail. Without loss of generality, assume the track
runs east-west. The train on the track may be impeded to the east by an east
barricade and to the west by a west barricade. The track accessible to the
train is the swept area of the train as it passes from its west-most position to
its east-most position.

Three observations may be made:

www.manaraa.com

302

1. Objects that do not intersect the accessible track may be moved anywhere
except on the accessible track and still not modify the freedom of the
train.

2. If there is an east barricade, then at the train's extreme east-most po­
sition some components of the train will collide with components of the
barricade. As long as at least one pair of colliding components remains,
other components of the train and east barricade can be moved off the
track without modifying the train's eastward freedom. The same argu­
ment holds for other freedoms.

3. Moving the train (legitimately) r units to the east reduces its eastward
freedom by r and increases its westward freedom by r. Moving the east
barricade due west by r units decreases the train's eastward freedom by
r but leaves its westward freedom unchanged.

To map back to the disassembly problem, let the train be a subassembly 8.
The accessible track corresponds to the volume swept out by 8 as it passes be­
tween the extreme points of its motion along a translational trajectory. Then
the observations above indicate how to recognize new situations with the sub­
assembly 8 in altered configurations for which the freedom of motion is easily
deduced.

12.2.2 Search Strategy

Given a potential operation (8, t, I), heuristics are needed to identify a finite
number of (8, t, f}-feasible operations that are likely to be useful for discovering
a successful disassembly sequence. We use two heuristics, a collision heuristic
and a line-up heuristic.

For the collision heuristic, the largest possible motion is made, subject to the
freedom. Mattikalli and Khosla [9] only use this heuristic in their search strat­
egy for disassembly. When finding a disassembly sequence using this heuristic
alone, a sequence of operations is obtained for disassembling a product that
can be guided by force sensing conditions. That is, a trajectory, once initiated,
is maintained until a collision occurs as flagged by a sensed force condition.
Nevertheless, the reverse of the disassembly sequence will not necessarily have
the same property.

The line-up heuristic uses the idea that moving a subassembly 8 until a com­
ponent feature of 8 lines up with a component feature of A - 8 can provide
a useful alignment of components. For example, lining up a tab on 8 with a
slot on A - 8 may allow the tab to pass through the slot in a future operation.
Center and direction features are useful to this heuristic. This is a powerful
heuristic that is not used in any other known assembly sequence planners.

www.manaraa.com

303

Figure 12.8: Translational Line-Up

An example of lining up center features is shown in Figure 12.8. The "L"­
shaped component labeled Ell has been found to be able to translate in the
slot of the component labeled Base, in direction indicated by line 1. Translating
center feature p of Ell to point q lines up Ell with the notch feature in the
Base having center feature p', allowing vertical translation of Ell in the next
move.

Figure 12.9 illustrates how direction features may be useful for alignment.
Vectors tlO and til correspond to direction features of the components labeled
Ell and Base, respectively. The angle f3 between tlO and v1 is the angle of
rotation of Ell about axis a that will line up the lower arm of Ell with the slot
in Base, allowing vertical translation of Ell in the next move.

12.2.3 Simple Physics

Given a potential operation triple (8, t, f), gravity and stability effects are
used to either modify the operation or reject it. Gravity effects may cause
some components in A - S to move when S moves. Stability effects may cause
subassemblies S or A - 8 to topple over if S is removed from A. By detecting
and accounting for the side effects of moving a subassembly S, irreversible
disassembly operations are avoided.

Detecting gravitational effects involves determining if any components in A - S
are sitting on top of subassembly S. Components sitting on S should move

www.manaraa.com

304

7.
I~- \ ..
I • •
I ", " : , ... -..... ~
I I I

I" .t Ell. : 0<

•••• (3
...•..... ,

vO

Figure 12.9: Rotational Line-Up

when S is moved. The union of S and components sitting on S form an
augmented subassembly sg. Components sitting on S are identified by (hy­
pothetically) removing S from A and observing whether any subassembly of
A - S can then translate in the - z direction. H sg is equal to A, then an oper­
ation on sg is meaningless and the potential operation is rejected. Otherwise,
the augmented subassembly sg may have a different freedom of motion along
trajectory t, say f g. H f g is non-zero, then (sg, t, f g) replaces (S, t, f).

Instability of a subassembly S is determined as follows. First, the footprint
is derived for S when it is set down on the tabletop. H the projection of the
center of mass of S in the -z direction onto the tabletop falls outside of the
footprint, then S is deemed unstable.

Evaluation of stability occurs if a potential operation (S, t, f) is a separating
move. The gravitational stability of the resulting subassemblies having more
than one component is evaluated, and (S, t, f) is rejected if instability results.

BRAEN currently does not try to find a reorientation strategy that will remove
an instability condition. For example, if only S is unstable, then after S is
separated from A it could be rotated sufficiently so that it is stable when set
down on the tabletop. H A - S is unstable, then an appropriate reorientation

www.manaraa.com

305

Table 12.1: Characteristics of disassembly examples

Statistic pipe latch capsule safe record industrial puzzle

Product components 2 2 3 4 4 10 12
Bezier patches 90 44 162 104 79 376 230
Nodes generated 16 7 14 17 58 32 52
Calls to freedom 6 3 6 7 6 9 18
Calls to search 5 2 5 3 1 0 8
Moves in disassembly 4 3 5 6 4 9 14
t:.. d calls w / 0 reuse 162 124 260 684 1350 1540 6882
t:.. d calls w / reuse 66 58 102 158 234 182 652
Time W /0 reuse (min) 18 26 81 54 163 1033 500
Time w/reuse (min) 9 14 32 28 78 60 74

of A would be needed before removing S.

12.3 Experimental Results

BRAEN is implemented on a Symbolics 3640, with computation of b.. d and
sa delegated to an HP 9000 Model 835. Component models were generated
with the PATRAN® solid modeler package. Table 12.1 reports various charac­
teristics for a number of disassembly runs. Each example included a tabletop
environment component. For each example the elapsed time and number of
evaluations of b..d are reported when the reuse rules are not used (w/o reuse)
and when they are used (w/reuse). Note that the improvement in performance
provided by the reuse rules becomes more dramatic as the number of compo­
nents increases. Figure 12.10 shows each product in its initial configuration,
except the industrial example for which a cross section is supplied.

In the pipe example, the pipe component was suspended in midair in most
configurations during the disassembly process, preventing the base component
in the assembly from slipping around underneath the pipe (since that would
require two robots to implement). The complete sequence of operations gen­
erated for capsule disassembly is given in Figure 12.11. Each step indicates
the subassembly to be moved and the operation to be pedormed: the type
of motion (translation or rotation), the direction (or axis) of motion, and the
magnitude of motion. This sequence is illustrated in Figures 12.12 and 12.13;
for brevity, those operations that transport components to the edge of the
tabletop have not been shown. Figure 12.12 shows the sequence of operations
that break up the initial assembly. This sequence corresponds to the search
graph shown in Figure 12.7. Figure 12.13 shows how the subassembly key &
roof is broken up. Initially, the key component is being held up and must be

@PDA Engineering, Costa Mesa, CA.

www.manaraa.com

306

Figure 12.10: Example assemblies

www.manaraa.com

Moving Components: (key)
Operation: (TRANSLATION (0 .0 0 .0 1 .0) 0 .832)

Moving Components: (root key)
Operation : (TRANSLATION (-1.00.00.0) 0.7)

Moving Components: (root key)
Operation: (TRANSLATION (0.0 0.0 1.0) 3 .2)

Moving Components : (root key)
Operation·: (TRANSLATION (1.0 0.0 0.0) 10.7)

Moving Components : (root key)
Operation: (TRANSLATION (0 .0 0.0 -1.0) 3 .3)

Moving Components: (key)
Operation: (TRANSLATION (0.0 0 .0 -1.0) 0.732)

Moving Components : (base)
Operation: (TRANSLATION (0.0 0 .0 1.0) 3 .3)

Moving Components : (base)
Operation: (TRANSLATION (-0.393176 -0.919463 0.0) 10.8769)

Moving Components: (base)
Operation : (TRANSLATION (0 .0 0 .0 -1 .0) 3.3)

Moving Components: (root)
Operation : (TRANSLATION (0 .00 .0 1 .0) 3 .3)

Moving Components : (root)
Operation : (TRANSLATION (-0.680074 -0 .733143 0.0) 13.639896)

Moving Components: (root)
Operation: (TRANSLATION (0.0 0.0 -1 .0) 3.3)

Moving Components : (key)
Operation: (TRANSLATION (0.0 0 .0 1.0) 3 .3)

Moving Components : (key)
Operation: (TRANSLATION (-0.481919 -0.876216 0.0) 11.412712)

Moving Components : (key)
Operation : (TRANSLATION (0 .0 0.0 -1 .0) 3 .3)

Figure 12.11: Capsule disassembly sequence

307

www.manaraa.com

308

Figure 12.12: Part 1 of capsule disassembly

www.manaraa.com

I
!

t

!

Figure 12.13: Part 2 of capsule disassembly

309

www.manaraa.com

310

set down. Then, the roof component may be lifted from the subassembly.

The record player disassembly in Figure 12.14 demonstrates the operation of
the stability maintenance mechanism. There are four components; a disk that
has a weight affixed to one side, a peg that holds the disk down, a foot that
props the whole assembly up on one end (especially when the disk is rotated
so the weight is on the same side as the foot) and also fastens the peg, and
the base. The freedom determination module initially finds that the foot can
be removed from the assembly, but rejects that move when it discovers the
remaining three components are unstable. Nevertheless, the disk can rotate
freely, and it is found that rotating the disk by 1800 shifts the center of mass
of the disk-peg-base subassembly enough so that the foot may be removed.
Disassembly of the disk-peg-base subassembly then follows.

The industrial example was adapted from [21. For this example, the derived
disassembly sequence was to remove components in the order {la, 9, 8, 7,
1, 2, 4, 3, 5, 6}. Note that after components {10, 9, 8, 7} were removed,
component 6 was able to be separated from the remaining components. The
stability test discarded this potential move, however, and the safer operation
of removing component 1 was used instead. After components {10, 9, 8, 7, I}
were removed, although component 6 could still be removed on initial analysis,
gravity would cause all other remaining components to move along with it, and
thus component 6 could not be profitably moved until it was the sole remaining
component. Note that the number of calls to search strategy is 0; this is because
freedom determination always succeeded in discovering a separating motie.

12.4 Discussion

We have demonstrated an approach for generating an assembly sequence of a
product expressed in B-rep format with bicubic surfaces. This treats compo­
nents as part of a real workcell environment by allocating sections of the table
to subassemblies and disassembled parts. We have demonstrated a number of
common sense techniques for enhancing the system performance.

We are currently developing the capability for BRAEN to focus on specific
disassembly goals rather than disassembling until all components are separated.
For example, this capability is useful when:

o Several components are linked together to form an articulated object and
cannot be taken apart.

o A maintenance sequence for a particular component is desired. Move­
ments of other components should be minimized.

One modification made to BRAEN involves choosing the assembly A in the
work area based on the specified goal rather than on number of components in

www.manaraa.com

311

Figure 12.14: Record player disassembly sequence

www.manaraa.com

312

A. Other issues for successful focused disassembly, such as predicting the utility
of a given operation toward a given goal configuration, are being addressed.

Other directions for future work are:

o Implement reuse rules for rotational motions; this should be fairly similar
in flavor to the translational reuse rules, except that swept volumes will
be cylindrical.

o Improve capabilities for detecting instability. In particular, some consid­
eration of friction is needed.

o Introduce a tool component class, which can be used to determine acces­
sibility of a component to be moved as well as determine grasp points.

o Use fixtures as environment components.

o Relax assumptions about operations for assembly, such as allowing simul­
taneous translation and rotation operations. For example, it is possible
for one component to rotate as another component translates, as with a
doorknob and door latch.

A number of further issues must be addressed before these results can be put
to practical use. For example, the operations supplied are relatively high level,
and must be converted to robot-specific command sequences. In addition, robot
path planning is required to provide a collision-free path for the robot arm and
tool during operation setup and execution. If an operation involves a location
that cannot be reached by the robot or a singularity point, then it may be
necessary to modify the assembly sequence. Therefore, a practical system will
either perform robot simulation concurrently with assembly sequence planning,
or do it after assembly sequence planning and provide a feedback mechanism
for replanning when needed.

We have shown how a few simple ideas for reusing freedom of motion results
has provided substantial reduction of cost of automated assembly sequence
planning. This bodes well for the development of more sophisticated rules to
provide further savings.

Acknowledgement
Many thanks to Jeff Barnett and Dan Geiger for valuable suggestions.

www.manaraa.com

313

References

[I] A. Bourjault, Contribution a une Approche Methodologique de L'Assem­
blage Automatise: Elaboration Automatique des Sequences Operatoires,
These d'etat, Universite de Franche-Comte, Besan~on, France, November
1984.

[2] T.L. De Fazio and D.E. Whitney, "Simplified generation of all mechanical
assembly systems", IEEE Journal of Robotics and Automation, Vol. RA-3,
Number 6, pp. 640-658, December 1987.

[3] B.R. Donald, "A search algorithm for motion planning with six degrees of
freedom", Artificial Intelligence, Vol. 31, pp.295-353, 1987.

[41 B. Faverjon, "Object level programming of industrial robots", Proc. IEEE
International Conference on Robotics and Automation, San Francisco,
pp.1406-1412, 1986.

[51 R.L. Hoffman, "Disassembly in a CSG domain", 1989 IEEE International
Conference on Robotics and Automation, Scottsdale Arizona, pp.210-215,
May 1989.

[6] R.L. Hoffman, "Assembly planning for B-rep objects", 2nd International
Conference on Computer Integrated Manufacturing, pp. 314-321, Troy,
New York, May 1990.

[7] R.L. Hoffman, "Automated assembly planning for B-rep products", IEEE
International Conference on Systems Engineering, pp. 391-394, Pitts­
burgh, August 1990.

[8J C. Laugier and P. Theveneau, "Planning sensor-based motions for part­
mating using geometric reasoning techniques" , Proc. 7th European Confer­
ence on Artificial Intelligence, pp. 494-506, Brighton England, July 1986.

[9] R.S. Mattikalli, P.K. Khosla, Y. Xu, "Subassembly identification and mo­
tion generation for assembly: a geometric approach", IEEE International
Conference on Systems Engineering, pp. 399-403, Pittsburgh, August
1990.

[10] J.M. Miller and R.L. Hoffman, "Automatic assembly planning with fasten­
ers", 1989 IEEE International Conference on Robotics and Automation,
Scottsdale Arizona, pp.69-74, May 1989.

[11] E. Rich, "Artificial Intelligence", McGraw-Hill series in artificial intelli­
gence, McGraw-Hill, New York, 1983.

www.manaraa.com

Chapter 13

Assembly Coplanner :
Cooperative Assembly
Planner based on
Subassembly Extraction

Sukhan Lee and Yeong Gil Shin

The use of multiple assembly workstations enables assembly operations to be
done in parallel. The routing of parts and the capabilities of robotic systems
provide flexibility in assembly. To maximize performance of a system of mul­
tiple robotic workstations, an assembly plan that provides proper parallelism
and flexibility is required. The problem of assembly planning can be stated
formally as follows:

Given the description of parts, P = {PI, Pz, ... ,Pn}, and the geo­
metric and topological relations on P, n = {TI, TZ, •.. , T m}, how
does one determine sequences of assembly operations that satisfy
n subject to (1) minimizing cost, (2) maximizing parallelism, and
(3) satisfying feasibility conditions.

www.manaraa.com

316

o "~B~+-E ---+~ 00 MODE

An Assembly

Assembly Plan """"""'" Control Flow
--+ Data Flow

Figure 13.1: The Block Diagram of COPLANNER

It is assumed here that: 1) an assembly operation joins two parts or subassem­
blies, 2) the order of assembly is the reverse of the order of disassembly, and
3) the geometric relationship between individual parts remains fixed after they
are assembled; we deal with nonlinear, nonsequential but monotonic assembly
plans[14]. It is also assumed that assembly planning is supported by a proper
path planning algorithm[2] to detect geometric interference in part assembly.

13.1 COPLANNER: A Cooperative
Assembly Planning System

As an assembly planning module of the flexible assembly system, we developed
CO PLANNER. COPLANNER has been implemented in Common Lisp and C
on a Sun260 workstation. Lisp functions are used for the implementation of
reasoning processes and C codes are incorporated for the mathematical com­
putation and the communication protocols. COPLANNER is organized under
the "Cooperative Problem Solving(CPS)" paradigm. The cooperative problem
solving system which is shown in figure13.1 consists of the following models:

www.manaraa.com

317

• The plan coordinator: The plan coordinator coordinates the cooper­
ation of the knowledge sources by controlling their access to a common
message buffer, the blackboard.

• The heuristic advisor : The heuristic advisor extracts subassemblies
based on the embedded heuristics. It evaluates the difficulty and cost of
each assembly operation required for each primary liaison and assigns the
weight to each edge of the liaison graph.

• The geometric reasoner : The geometric reasoner checks the feasi­
bility of an assembly operation by calculating the directional freedom of
motion, the manipulability, interference with the neighboring parts, and
accessibility of a part.

• The physical reasoner: The physical reasoner reasons about stability
of a part, the weight of a subassembly, and the connection type of each
liaison.

• The resource manager : The resource manager keeps the information
of currently available resources and decides the feasibility of an assembly.

• The blackboard: This is a common working memory and communica­
tion protocol among advisors. The blackboard contains all the relevant
information for planning, such as part descriptions, liaisons, and any data
structure constructed during planning. The access to the blackboard can
be controlled by the slot ACCESSIBLE of the blackboard schema. Ad­
visors who can access the content of the blackboard are specified in the
slot ACCESSIBLE.

In the traditional blackboard systems[5, 6, 10], only one agent can read or write
on the blackboard at any given time. Under this single access mode, the most
important problem is how to schedule access to the blackboard since perfor­
mance of the system is affected by the available knowledge in the blackboard.
Most blackboard systems have a scheduler which controls the access to the
blackboard by evaluating the degree of contributions of each knowledge source.
In COPLANNER, several advisors are allowed to read the blackboard but only
one advisor can modify it at any given time, with the higher priority given to
the advisors who intend to write.

13.2 Attributed Liaison Graph

In this chapter, an assembly is represented by an attributed liaison graph. An
attributed liaison graph is a connected graph, G = (N, E), with N representing
a set of nodes, and E representing a set of edges. A node n, n EN, is assigned
to each part of the assembly, and an edge e, e E E, is assigned to each liaison .

www.manaraa.com

318

Table 13.1: The Relative Stability of an Edge as a Function of Interconnection
Type

Mating Type
Interconnection Type Insert Semi-Insert Place-On

Attach 0.3 0.2 0.1
Sticky 0.4 0.3 0.2

Force-Fit 0.5 0.4 0.3
Push & Twist 0.7 0.6 -

Screw 0.8 0.7 -
Connectors 0.9 0.8 0.7

Weld 1.0 1.0 0.9

A liaison is said to exist between a pair of parts if one part constrains the
freedom of motion of the other either by a direct contact or by a near contact. 1

A part frame is attached to each node to describe attributes associated with
a part. The attributes of a part frame contains 1) the part geometry which
specifies its shape and volume, 2) the mating volumes and the contact subfaces
as part features, and 3) the physical properties of the part such as weight.

A liaison frame is attached to each liaison to describe attributes associated with
the liaison. The attributes of a liaison consist of 1) the mating features , 2) the
mating type such as insertion, semi-insertion, and place-on, 3) the intercon­
nection mechanism, 4) the relative stability of a liaison after the corresponding
interconnection is completed (refer to Table13.1), and 5) the functional and
physical dependency among liaisons. The functional support of a liaison is a
list of the liaisons which functionally assist the achievement of the given liaison.
The stability support of a liaison is a list of the liaisons required for the stabi­
lization of the given liaison which is otherwise unstable after the interconnection
is done. Figure 13.3 illustrates the attributed liaison graph representation of
the flashlight shown in figure 13.2.

13.3 Geometric Reasoning

Geometric reasoning is needed to decide the feasibility of an assembly operation.
To be a feasible assembly operation, it is necessary that there is no interference
in part motion. The local constraints in part motion can be deduced based on
the geometry of each part and constraints embedded in the associated liaisons.

1 A near contact is defined between two contact surfaces having distance smaller than the
prespecified threshold.

www.manaraa.com

319

(~y [ORA

Figure 13.2: The Flashlight Assembly

Definition 13.3.1 (Freedom of Separation (FS» Let us denot e the free­
dom of separation of a part or a cluster of parts, Pi, against another part or
another cluster of parts, P2, by FS(PI/ P2) or simply by FS(Pi) if P2 is clear
from the context. FS(Pi / P2) is represented by a tuple composed of the prin­
cipal axes of motion in which Pi can be separated from P2 and the directional
tolerances along the principal axes of motion. Formally, F S(PI/ P2) = {(d+x ,
d_ x , d+y , d_ y, d+z , d- z), (a+x , a_x, a+y, a_ y, a+z , a_ z)}, where da = 1,
if F S(Pl/ P2) has the freedom of separation in the direction of a, otherwise
da = 0,. ab is the directional tolerance along the b directional freedom of sep­
aration, such that ab = (th e maximum angle of directional errors that the b
direction of separation can tolerate}/90.

For instance, in figurel3.4, FS(B/A U B) = {(I 0 1 100),(15/900000 On
indicating that B has the freedom of separation in the direction of (+x , +y,
-y) and the tolerance of 15/90 along +x.

Definition 13.3.2 (Degrees of Freedom of Separation (DFS» The de­
grees of freedom of separation of Pi with respect to P2, DFS(PdP2), is obtained
from FS(PI/P2), FS(Pl/P2) = {(d+x , d_ x , d+y, d_ y, d+z , d- z), (a+ x , a_x,
a+y, a_ y, a+z , a_ z)}, by

DFS(PdP2) g L:(da + (l:a), a E {+x, -x, +y, ~y, +z, , -z}
a

Table 13.2 illustrates the FSs and the DFSs calculated for all the part clusters
of the subassembly {A, B, C} in Fig.13.4:

www.manaraa.com

320

/"(o;;~HEMA L2
f «INSTANCE P-LWSON)

.~-~\

1 (MATING-PARTS P2 P3)
: (MA TING-TYPE PLACE-ON)
~ (FEATURES (F1.P2 Fl.P3 (+Z -Z»)

1 i (INTERCONNECTION-TYPE ATTACH)

I (RELATIVE-STABILITY 0.1) I
(FUNCTIONAL-SUPPORT-OF)

\ (STABILITY-SUPPORTED-BY Ll») J
~- _/ ------............................ -----~

i (DEFSCHEMA P3
i «(INSTANCE PART)
1 (CLASS GENERAL)
i (FEATURE-LIST Fl.P14 F2.PI4)
1 (COORD (7 010 0 90 0»
i (VOLUME «CYLINDER 141)
1 ooooo~»
1 (WEIGHT 10»)

(DEFSCHEMA F2.PI4
«INSTANCE PEA TURE)
(FEATURE-OF P3)
(TYPE CONNECTION)
(SHAPE (CYLINDER 6 1.8»
(LOCATION (0 0 0 0 0 0»»

.... n u

Figure 13.3: The Attributed Liaison Graph for the Flashlight Assembly

www.manaraa.com

(a) S = A U B UC

321

(b) The numbers indicate the relative
stability of interconnection for
individual edges

Figure 13.4: An Example to illustrate the Degree of Freedom of Separa­
tion(DFS)

Table 13.2: FSs and DFSs for the subassembly S shown in Fig.3

Parts and Principal Direction Tolerance DFS
Clusters of separation

{A} (0 0 1 1 0 0) (0 0 0 0 0 0) 2
{B} (1 0 1 1 0 0) (15/900 0 0 0 0) 31

6
{C} (0 1 1 1 0 0) (0 0 0 0 0 0) 3

{A B} (1 0 1 1 0 0) (0 0 0 0 0 0) 3
{A C} (0 1 1 1 0 0) (0 0 0 0 0 0) 3
{B C} (0 0 1 1 0 0) (0 0 0 0 0 0) 2

www.manaraa.com

322

Note that FS{A,B} and FS{C} are equivalent. So are FS{A,C} and FS{B},
and FS{B,C} and FS{A}. This is because the +x directional freedom of sepa­
ration of {A,B} represents the -x directional freedom of separation of the rest
of the cluster (C), and vice versa. Therefore, FS{A} == FS{A}, where Au A
represents the whole subassembly.

13.4 Construction of an Abstract Liaison
Graph

The construction of an Abstract Liaison Graph(ALG) is based on merging a
set of mutually inseparable nodes(as defined later in this section), into a single
node called a supernode. Let us first introduce the following definitions:

Definition 13.4.1 (Manipulable Node(M-node)) A part is said to be ma­
nipulable if it is accessible and manipulable by a tool for disassembly. A node
is accessible and manipulable if any of the parts forming the node is accessible
and manipulable. Shaded nodes in Fig.13.5{b) show manipulable nodes.

Definition 13.4.2 (Accessible Path(A-path)) An accessible path to a node
n is a simple path starting from an M-node and ending with the node n without
having any other M-node on the path. A set of A-paths to the node n is called
independent if they share no common node except the node n.

Definition 13.4.3 (Satellite Node) A node nl, which is not an M-node, is
said to be a satellite of a master node nz, if all the A-paths to the node nl pass
through the node nz. In Fig.13.5, Part E is a satellite of part D. A satellite
node of the node n is not independently separable from the master node n, since
it is not possible to deliver the force required for breaking the liaison between
the satellite and the master nodes.

Definition 13.4.4 (Floating Liaison) A liaison between two nodes is said to
be floating if each node has its own independent A-paths and the force required
for breaking the liaison is not deliverable to that liaison.

Let us define Dp(h; ni)ni2) as a set of principal directions of the motion and
force involved in the separation of the liaison Ii between nil and ni 2 under the
condition that ni2 is fixed. The direction of separation of a liaison Ii is assumed
arbitrary, which may not be coincident with a principal axis of an assembly, but
may have components on a set of principal axes.

Since there exist different ways of separating nil from ni 2 , a liaison Ii may have
a collection of such Dp(li; ni)ni2), represented by D(li; niJniJ, D(li; niJni,)

~ {Dp(li; niJni2),p E P, P =an index set}.

www.manaraa.com

323

(a) An Example of an Assembly

M-node _

A-Path of part E

(b) An Example of a Satellite Node

j!
. ' (G 'r Jr!

. j D(A1 .13 ;B,v)

(I) ~~ fE\ ~· ·: :.e \!V \2V ...
D(14;GfY) and . F

D(l4;F/G) . ." . ' .. ::I.z' D(A F I 1. A/F)
....... 1 ' 5'

A-Path of part G

A-Path of part F

Floating Liaison

(c) The Existence of a Floating Liaison

Figure 13.5: Examples of Mutually Inseparable Nodes

www.manaraa.com

324

0.2532

0.4335

Figure 13.6: The Weighted Abstract Liaison Graph for the Flashlight Assembly.
The nodes marked with S represent supernodes.

M1: The node n1 is a satellite of the node n2 , or vice versa.
M2: The liaison between the two nodes n1 and n2 is floating.
M3: The liaison between the two nodes n1 and n2 includes

at least one unremovable connector/retainer. (A connec­
tor/retainer which is neither accessible nor manipulable is
considered unremovable.)

M4: The liaison between the two nodes n1 and n2 is the pre­
condition for another liaison, due to its role as a functional
support or a stability support.

M5: The node n1 is immobilized by a supernode n2, or vice
versa.

An ALG is constructed by merging those nodes which are mutually insepa­
rable until all the nodes of the ALG are free from any of the above merging
conditions. From the liaison graph of the flashlight(see Figs 13.2 and 13.3) two
supernodes are generated: 51 by merging P6 , P7 , and Pg which are connected
by floating liaisons 15 , 16 , and 17; and 52 results from merging P2 and P3 which
are connected by a floating liaison 12 .

13.5 Construction of a Weighted ALG

A weighted ALG (WALG) is an ALG with a weight assigned to each of its
edges. The weight of an edge is determined by the total strength of the edge
in terms of physical stability and structural connectivity, and the cost involved
in disconnecting or connecting the edge.

www.manaraa.com

325

The Total Strength of an Edge

Definition 13.5.1 (The Net Strength of an Edge) The net strength of an
edge ei, SN(ei), is defined by the relative stability of ei, X 8 (ei), and the direc­
tional constraints of a motion during part separation, Xd(e;) , as follows:

where a is the weighting coefficient, 0 ::; a ::; 1.

X$(e;), 0 < X$(e;) ::; 1, is specified in the liaison frame based on the inter­
connection type of the edge. Xd(ei), 0 < Xd(ei) ::; 1, represents how the
motion of the node nil is restricted by the node ni2 during the separation of
ei, or vise versa. Xd(ei) is obtained by Xd(ei) = 1- DFS(njt!ni2)/6, where
DF S(nil/ni2) represents the degree of freedom of separation between the two
nodes, nil and ni2, connected by ei. Refer to the Section 3 for the details of
how to compute DFS(nil/ni2).

Definition 13.5.2 (The Total Strength of an Edge) The total strength of
an edge ei, ST(ej), is determined by reinforcing SN(ej) with the structural con­
nectivity and the structural preference of the edge ej. The structural connectivity
and the structural preference evaluate the strength of an edge in the context of
its surrounding structure. ST(ei) can be computed by the following two steps:

Step 1. The Reinforcement by Structural Connectivity

The structural connectivity between two nodes, nil and nj2, of the
edge ej is due to the indirect as well as the direct paths between nil
and nj2. A direct path between nil and ni2 represents a path of a
single edge(ej), whereas an indirect path between nil and ni2 repre­
sents a path of multiple edges. An indirect path gives an additional
strength to SN(ei), e.g., the net strength of an edge between P3

and PH in Fig.13.6 is reinforced by an indirect path through nodes
P3 ,P12 , and Pll . The modification of SN(e;) between nil and ni2

by the structural connectivity is accomplished by the following al­
gorithm:

(a) Find all the indirect paths between nil and ni2 of ej, {Pjlj =
1, ... , n}, sharing no common edges. Assume that pj consists
of a set of edges {ej dl = 1, ... , mj} for j = 1, ... , n.

(b) Define the net strength of a path Pj, S N (Pj), by

where II is the multiplication operator.

www.manaraa.com

326

(c) Reinforce SN(ei) by adding c. E7=1 S~(Pj) to SN(ei), where
c., 0 < c. < 1, is a weighting constant. Note that the re­
inforcement SN(Pj) attenuates geometrically according to its
magnitude.

(d) Normalize the result of (c) by a sigmoid function to obtain the
total strength of an edge ei, S!r (ei) reinforced by the structural
connectivity:

SHei) = 1/[1 + exp{ -(S' - O)/T}]

where S' = SN(ei) + c. E7=1 S~(Pj), and 0 and T are the
parameters (the threshold and the temperature, respectively)
of the sigmoid function.

Step 2. The Reinforcement by Structural Preference

The structural preference of an edge ei is measured by the attrac­
tiveness between the associated nodes nil and ni2. The attractive­
ness between the two nodes, Attr(nil, ni2), is defined by Attr(ni1,
ni2) = ID(nil) - D(ni2)1 , where D(n) represents the degree of n,
the number of edges incident on n. A higher attractiveness implies
a stronger tendency of associated parts to be merged into a sup ern­
ode. Thus, in Fig. 3, PI is more likely to be merged with P7 as
opposed to SI inasmuch as the attractiveness between P7 and PI is
higher than that between PI and S1 .

The total strength of an edge, ST(ei), is now obtained by modify­
ing SHe.) with the reinforcement from the structural preference.
This can be done by shifting S!r (ei) to the left proportional to the
attractiveness:

ST(ei) = 1/[1 + exp{ -(S' - 0 + .60)/T}]

where .60 = caAttr(nil,ni2), and Ca is the weighting constant .

The Assembly Cost of an Edge

The cost of assembly of an edge depends on such factors as the difficulty of
aligning and positioning parts, the resistance during insertion, the difficulty
of part handling, the need to hold down a part after assembly, etc.[I] To be
more specific, we consider that the cost of assembly of an edge is a function
of the interconnection type of the edge, the relative stability of the edge after
the interconnection is completed, the degrees of freedom of separation(DFS) of
the two parts associated with the edge, the mating tolerance, the number of
mating volumes involved in an edge, the number of connectors/retainers, and
the weight of the mating part.

www.manaraa.com

327

Table 13.3: The Relative Cost of an Edge as a Function of Interconnection
Type

Type Attach- Stick- Force- Push
ment ing Fit &

Twist
Relative 0.1 0.3 0.4 0.5
Cost

The relative cost of assembly of an edge ei, Cr(ei),

0< Cr(ei) ~ 1, is then determined by:

where

5

Cr(ej) = L (};jX •
• =1

Screw Conne- Weld-
ctors ing

0.6 0.7 1.0

Xl = the relative cost as a function of interconnection type (see
Table 13.3),
X 2 = 1 - the relative stability associated with an interconnection
type,
X3 = 1 - DFS(e.)/6,
X4 = l/[l+exp{ -(the number of mating volumes-1)/normalization
factor}],
X5 = min(1,0.2x (the number of connectors -1»,

and (};., 0 ::; ();. ::; 1, i = 1, ... ,5, are asembly coefficients, and L:: ();. ::; 1. The
values of ();. 's and normalization factor are dependent upon the actual assembly
environment and also on whether it is manual assembly, robot assembly, or
hard automation assembly. The value of normalization factor is set to 1 based
on the cost analysis of robot assembly by Boothroyd and Dewhurt[l]. The
normalization factor 1 gives 1.5 times of the cost of single insertion to the
cost of a multiple insertion since multiple insertion increases the difficulty of
alignment.

Weight Assignment

The weight of an edge e" W (ei), is determined by the linear combination of the
total strength of the edge, ST(e.), and the assembly cost of the edge, Cr(e;),
as follows:

www.manaraa.com

328

where f3 represents the weighting coefficient.

It is noted that the assignment of weights relies upon various heuristic functions
having a number of parameters associated with them. The heuristic functions,
though not from analytic results, can be tuned to particular assembly opera­
tions by optimizing their parameter values based on experimentation. Fig.13.E
illustrates a WALG for the assembly of the flashlight using the following values
of assembly coefficients: (Y = 0 .5, j3 = 0 .5, c. = 0.5, Ca = 0.5, and (Yi = 0 .1,
(i=1,oo. , 5).

13.6 Decomposition of a Weighted ALG

A set of tentative subassemblies is generated by successive merging of nodes
in the WALG: 1) The nodes connected by edges having weights greater than
or equal to a threshold are merged into supernodes. 2) The disassemblability~
of each supernode is checked. 3) The disassemblable supernodes become ten­
tative subassemblies. 4) By adjusting the threshold, different sets of tentativ€
subassemblies can be obtained.

Fig.13.7 illustrates the tentative subassemblies generated by applying the de­
composition process to the flashlight assembly. At first, among the individual
nodes and supernodes of the WALG , P1 and P4 are found disassemblable. Since
the disassembly of P1 makes P2 and P3 (embedded in S2) unstable and the dis­
assembly of P4 makes P5 unstable, both subassemblies become cut-supernodes.
The subsequent reduction of threshold up to 0.4968 and the test of disassembla­
bility results in three tentative subassemblies [S2, P1], [P4 , P5], and [Sl, P4 , P5].

There can be at most 2n-l tentative subassemblies for a WALG with n nodes.
This is because the upper bound of the number of generated supernodes occurs
when the merging process successively combines a pair of nodes, resulting in a
binary tree: The total number of nodes in a binary tree with n terminal nodes
is 2n - 1. Table 13.4 shows a set of tentative subassemblies generated for the
flashlight with several different threshold settings.

2 A nod e(part) is said to be disassemblable from the rest of an assembly if there is a path
along which the part can be taken out by a single motion without colliding with the rest of
the assembly. A node is said to be separable from the other node if the edge between the
two is breakable, and a node is said to be decomposable if it is separable from the rest of
the graph. A decomposable node is not necessarily disassemblable, whereas a disassemblable
node must be decomposable

www.manaraa.com

329

Table 13.4: A set of Tentative Subassemblies Generated for Flashlight Assembly

I threshold I tentative subassemblies I
0.4994 lP4) Ps]
0.4968 [S2) P1]

0.4859 [Sl) P4) Ps)

0.2532

0.4335

Figure 13.7: The Tentative Subassemblies Generated from the Decomposition
of the ALG of the Flashlight

www.manaraa.com

330

13.7 Selection of Preferred Subassemblies

The preferred subassemblies can be selected by evaluating tentative subassem­
blies based on subassembly selection indices(SSls). The SSls evaluate a cluster
of parts as a subassembly based on the following criteria: 1) the stability of a
cluster of parts during assembly, 2) the difficulty of disconnecting a cluster of
parts from the rest of an assembly, and 3) the structural preference of a cluster
of parts as a subassembly. Note that these criteria are closely related to the
cost of assembly since they determine the required assembly set-ups, such as
fixtures, jigs, special tools, robots, etc.

SSls are composed of the stability index, SI, and the structural preference
index, SPI, which are measured by the intra- and inter-cluster mobilities and
the intra- and inter-cluster structural complexities, respectively.

13.7.1 Stability Index

Definition 13.7.1 (Intra-cluster mobility) The intra-cluster mobility,
M¢(S), of a subassembly S represents how easily the subassembly can be bro­
ken into two or more pieces. M¢(S) is determined by the freedom of separation
and the relative stability of individual cutsets of the subassembly S. Suppose
that CI, C2, . .. , Cn are valid cutsets3 of S, and the maximum relative stability
of Ci is r(ci), where the maximum relative stability of Ci, r(ci), is the highest
value among the relative stabilities of the liaisons involved in Ci . assembly. The
intra-cluster mobility of S is calculated by

M¢(S) ~ L max {DFSd• (Ci) x (1- r(ci))lci is a cutset in S, i = 1, ... , n}
d.

where da = X, y, and z-axis, and D F Sd. (Ci) is calculated by the free refer­
ence axes and the tolerance of Ci along the direction of the free reference axes:
DFSd.(cd = (the number of free reference axes in the axis of ±da) + (the
tolerance of the free reference axes).

Fig.13.8 illustrates the intra-cluster mobility of various subassemblies. In the
flashlight assembly, the M¢(S) of [S2 , PI] is relatively lower than other sub­
assemblies since liaisons in the subassembly are not rigid.

Definition 13.7.2 (Inter-cluster mobility) The inter-cluster mobility,
M,,(S), of a subassembly S represents how easily the subassembly S can be
connected to or separated from the rest of the assembly.

3For the generation of separable cutsets from a subassembly, the rigid liaisons are consid­
ered to be non-separable edges. Therefore, a s et of cutsets is extracted from a liaison graph
in which nodes that are connected by rigid liaisons are merged.

www.manaraa.com

0.3
D

Separable Cuts: (A) (C) (A B) (B C)

Mq,= 2x(1-0.1) + max{2x(1-Q.l),lx(1-Q.3)}

+ max{lx(1-Q.3),lx(l-Q.l)}
= 5x(1-0.l)

Mq,= max{2x(1-Q.3),2x(1-Q.3)}

331

0.3

+ max { (1+2u)x(1-Q.3),lx(1-Q.3),lx(1-Q.3)}
= (3+2u)xO.7

Mq,= max{lx(1-Q.3),lx(1-Q.3)} = 0.7

Figure 13.8: Intra-cluster Mobility of Various Subassemblies. The number in
each subassembly represents the relative stability of a liaison.

M,..(S) ~ DFS(Si/Si) x (1- the maximum relative stability of
the interconnections between Sand S)

where SuS represents the original assembly.

For instance, in Fig.13.8, M,..(BUC) = DFS(BUC) x (1-0.1) = 5 x 0.9 = 4.5,
and M,,(C) = DFS(C) x (1- 0.3) == 3 x 0.7 = 2.1.

Definition 13.7.3 (Stability Index) The stability index, SIrS), of a sub­
assembly S is measured by the intra-cluster and inter-cluster mobility of the
subassembly S: a high stability index is assigned to a subassembly with a lower
intra-cluster mobility and a higher inter-cluster mobility.

SICS) = exp{ -[WdMq,(S) + ws (6 - M,..(S»)]}

where Mq,(S) and M,..(S) represent the intra-cluster mobility, and the inter­
cluster mobility of the subassembly S; and Wd and Ws , 0 :::; Wd,W s :::; 1, are
assembly coefficients.

www.manaraa.com

332

13.7.2 Structural Preference Index

Definition 13.7.4 (Intra-cluster structural complexity) The intra-clus­
ter structural complexity, C,p(8) , of a subassembly 8 is represented by a tu­
ple (dw, TJw) . dw is the average of the weighted degrees of individual nodes
in the subassembly 8 . TJw is the weighted connectivity of the subassembly 8:
dw = L:7=1 dw(ni)/n , where dw(ni), the weighted degree of a node ni, is the
sum of the weights of the edges incident upon nj in the weighted ALG of the
subassembly 8; and n is the total number of nodes in the weighted ALG of S.
TJw = the sum of the weights of the edges which belong to the minimal cut-set
of the weighted ALG of the subassembly 8 .

Definition 13.7.5 (Inter-cluster structural complexity) The inter-clus­
ter structural complexity, C".(8), of a subassembly 8 represents the complexity
of connection between the subassembly 8 and the rest of the assembly. C".(8)
is the sum of the weights of the edges connecting the subassembly with the rest
of the assembly.

Definition 13.7.6 (Structural Preference Index) The structural prefer­
ence index, SP1(S), of a subassembly 8 is measured by the intra-cluster and
inter-cluster structural complexities: a higher structural preference index is as­
signed to a subassembly with a higher intra-cluster structural complexity and a
lower inter-cluster structural complexity. 8P 1(8) is computed by:

8P /(8) = exp{ -[(1- TJw(S)jn) + 'y!(1 - dw(8)jn) + 72C".(8)/n]}

where

n :

TJw(S), dw(S) :
C".(8) :
71,72 :

the number of nodes in the weighted ALG representing a
cluster of paris,
the intra-cluster structural complexity of a subassembly 8 ,
the inter-cluster structural complexity of a subassembly 8,
the assembly coefficients.

Note that ~ and ~ are less than 1 since TJw and dw are bounded by n - 1.4

Table 13.5 shows SIs and SPIs of the tentative subassemblies of the flashlight .
We assume that Wd = 0.2 , w. = 0.2, 71 = 0.5 , and 72 = 0.5. The SI of [82, P1]

is relatively low since the liaisons between parts in [82 , P1] are free.

4The edge connectivity of a graph with n nodes and e edges is bounded by l2e/n J, where
l J indicates the maximum integer value not exceeding 2eln. The maximum number of edges
in a graph with n nodes is n(n - 1)/2.

www.manaraa.com

333

Table 13.5: Stability Indices(Sls) and Structural Preference Indices(SPls) cal­
culated for the Tentative Subassemblies

I subassembly I SI SPI

[P4 , Ps] 0.2466 0.2285
[S2, PI] 0.2369 0.2728

[Sl, P4 , Ps] 0.2466 0.3236

13.7.3 Selection Process

The selection of subassemblies is based on the stability and structural pref­
erence of each tentative subassembly as measured by the SI and SP!. The
system calculates the subassembly selection index, SSI(S), for each tentative
subassembly S by the linear combination of SI(S) and SPI(S). The weights
can be determined based upon the relative significance of SI(S) and SPI(S)
on the overall assembly cost, if such a measure is available, or can be subject
to designer's preference. In the flashlight example, considering SSI with the
assignment of equal weights to SI and SPI, [Sl, P4 , Ps] is selected as the best
subassembly(see Fig.13.7 and Table 13.5).

Some additional considerations are given in the following: (1) Through SI and
SPI, the system prefers to select a stable and cost-effective subassembly which
can be easily connected to the rest of assembly; (2) there is a possibility that
the extraction of a subassembly may cause the rest of assembly to be unstable.
However, such a possibility is obviated in this system by the use of the stability
support in the construction of an ALG; (3) Additional constraints due to the
limitations of assembly environment, such as the maximum allowable weight
or volume of a subassembly, can be incorporated in the selection process. For
instance, if we limit the maximum size of a subassembly by at most three parts,
[Sl, P4 , Ps] cannot be selected even though it shows the best SS!.

13.7.4 Assembly Instruction

The selected subassemblies define the cut sets along which an assembly is de­
composed. Each cut set is to be assembled after the associated subassemblies
are assembled. An assembly instruction is generated for each cut set to guide
the assembly of two subassemblies decomposed by the cut set. An assembly
instruction script contains the following attributes:

• PRINCIPAL-PART - the part or subassembly which is moving. A sub­
assembly which has a higher SI becomes the principle part since a moving
subassembly is more likely to be unstable.

www.manaraa.com

334

• SECONDARY-PART - the part or subassembly which is fixed during
assembly operation.

• PRINCIPAL-DIRECTION - the suggested direction of motion of the
principle part in assembly. The direction with more tolerance is selected
from the free axes.

• ALTERNATIVE-DIRECTION - the alternative direction of motion of
the principle part in assembly.

• INTERCONNECTION-TYPE - the type of the interconnection which
requires the highest cost.

• WEIGHT - the weight of the subassembly.

• TOOLS - tools required for assembly.

• PART-TO-FIX - parts which require fixtures.

• STABLE-ORIENTATION - the orientation of the parts in assembly to
secure all the parts not to be separated. A stable orientation of an assem­
bly is represented by tuples: (Ox, Oy, Oz), in which each tuple represents
the counterclockwise rotation along the x-, y-, and z-axis of the reference
coordinate.

An assembly instruction in Fig.13.9 shows an example of a script for mating
subassemblies 84 and 86. The script implies that 84 is assembled with 86 by a
screw type connection, and 84 is moved into 86 in the direction of -X-axis of
the reference coordinate.

13.8 Generation of a Assembly Plan

13.8.1 Hierarchical Partial-Order Graph

The recursive application of decomposition process results in a disassembly
plan in which temporal and spatial parallelism is embedded. For example, the
selection of [31 , P4 , P5] as a subassembly decomposes the original assembly into
two: [31 , P4 , P5] and [32 , PI], which defines a temporal relationship between the
liaisons connecting the two subassemblies and the liaisons of individual sub­
assemblies: {14,lu,112} -< {11,12,13,15,16,17,ls,lg,llo}. The disassembly plan
also presents spatial parallelism among assembly operations, since individual
subassemblies, such as [PI, P2, P3] and [P4 , P5, P6, P7, Ps], can be assembled in
different workstations. The temporal and spatial relationships among liaison
resulting from the recursive application of decomposition process can be orga
nized into a hierarchical partial order graph(HPOG) as shown in Fig.13.9 fa
the assembly plan of the flashlight shown in figure 13.2.

www.manaraa.com

335

~-............................... -.-~,.
(«INSTANCE INSTRUCTION) "\
! (INSTRUCTION-OF Isuper-node-21)

I (PRINCIPLE-PARTS (P6 P8 P7 P5 P4» t
(SECONDARY-PARTS (P2 P3 Pl) "

i (P-DIR (-X»
i (A-DIR NIL)
, (C-TYPE SCREW) .:i'\ (PARTS-TO-FIX (N\IL NIL» ,

/-- \j(ORIENT (0 0 0» I
-'-/ (WEIGHT 70) J

(TOOLS NIL» /
--.-. . _-","'';

P

Figure 13.9: A Hierarchical Partial Order Graph generated by the Assembly
Planning System for the Assembly of the Flashlight

www.manaraa.com

336

A HPOG is an acyclic digraph, G = (V, E), which consists of a finite nonempty
set of vertices V and a set of edges E connecting vertices. The set of vertices V
is composed of two subsets V = (N, S) with N representing a set of nodes and
S representing a set of supernodes. A vertex of a node is represented by a circle
vertex, and a vertex of a supernode is represented by an oval vertex. A node n,
n E N, represents either a part or a subassembly. A node which corresponds
to a completely assembled product is called a rootnode . For each node n of
a subassembly, there is a corresponding supernode s which describes how the
node n is assembled. S consists of such supernode, and all the supernodes
are reachable5 from the rootnode. A supernode s of a node n contains a set
of liaisons of which connections result in n and the pointer to an assembly
instruction that contains the detailed information for the assembly of n. An
edge e, e E E, is a relation on the set of vertices. A set of edges which is
identified with an ordered pair (s; ,Sj), (i.e. there is a path from Sj to Sj in a
HPOG), defines temporal relationship in assembly of Sj and Sj, such that the
completion of the assembly of Sj is required for starting the assembly of Sj. For
example, in Fig.l3.9, the assembly of {/4, 111, h2} must be started after {/2, 13}
and {/s,/g} are completely assembled. Note that each edge in a HPOG is a
directed edge which connects a node with a node in lower level.

A HPOG shows temporal and spatial parallelism in assembly by explicitly rep­
resenting subassemblies. A set of supernodes which is reachable from a node
n shows all the liaisons in the subassembly n. In other words, all the nodes
reachable from n correspond to subassemblies which are extracted from n . A
pair of subassemblies which are not reachable each other have no temporal rela­
tionship, thus both subassemblies can be done in arbitrary order. For example,
in Fig.l3.9, S4 and S6 show such a loosely parallel operation mode in which a
set of subassemblies can be done in different workstations or in an arbitrary
order. On the other hand, a set of liaisons in a supernode, such as 14 , 111, and
112 in Fig.l3.9, shows a tightly parallel mode in which assembly operations are
required to be done at the same workstation simultaneously.

13.8.2 Procedure of Generating HPOG

A HPOG is generated by recursively decomposing a liaison graph into a set of
subgraphs. The following algorithm gives the details of generating a HPOG.

Step1: Select a w-node fOT the decomposition. A leaf node which is newly
generated by the previous decomposition is selected. If there is no such
a node then the decomposition process stops.

Step2: Decide the type of the node. Check the disassemblability and manip­
ulability of each part in the w-node to decide whether liaisons in the

SIn a digraph a node n is said to be reachable from node m if there is a directed path
from m to n .

www.manaraa.com

337

w-node have any temporal and spatial relationship.

Step3: Decompose the node. The w-node of which parts have any temporal and
spatial relationships each other is decomposed into a set of subassemblies.

Step4: Modify HPOG. The w-node is modified based upon the result of Step3.
The extracted subassemblies become new nodes and liaisons between the
new nodes locate at the supernode of the w-node.

StepS: Generate an assembly instruction. For the supernode of the w-node,
an assembly instruction is generated.

Fig.13.9 shows a HPOG for the assembly of the flash light shown in figure
13.2. To generate a HPOG for the flashlight assembly, the following values of
assembly coefficients are used in the construction of a weighted ALG: (¥ = 0.5,
f3 = 0.5, Cs = 0.5, Ca = 0.5, and (¥i = 0.1 (i = 1, ... , 6). However, the
adjustment of various parameters involved in the WALG and SSIs and the use
of different criteria for selecting preferred subassemblies result in a different set
of subassemblies which leads to a different assembly partial order. There may
exist a correlation between the optimal values of these adjustable parameters
and the particular assembly tasks.

13.9 Conclusion

This chapter presents a method for the automatic determination of assembly
partial orders from a liaison graph representation of an assembly through the
extraction of preferred subassemblies. The resulting assembly partial order
is inherently cost-effective in the sense that effects of all extraneous factors
such as instability, difficulty in handling and manipulation of subassemblies,
extra fixturing requirements, as well as the concepts of temporal and spatial
parallelism which have a direct consequence on the implementation cost of an
assembly plan have been carefully incorporated in the method suggested here.
The procedure is performed in three stages: 1) Selecting a set of tentative
subassemblies by decomposing a liaison graph into a set of subgraphs based
on feasibility and difficulty of disassembly, 2) evaluating each of the tentative
subassemblies based on the subassembly selection indices, and 3) constructing a
Hierarchical Partial Order Graph by the recursive extraction of subassemblies.
For each selected decomposition, the assembly instruction is generated for the
lower level plan refinement. A HPOG is a unified representation scheme for
temporal and spatial relationship among assembly operations.

www.manaraa.com

338

Acknow ledgements
This research was supported in part by the National Science Foundation under
grants CDR-87-17322, and in part by the industrial members of the Institute
for Manufacturing and Automation Research (IMAR).

References

[1] G. Boothroyd and P. Dewhurt, "Design for Assembly," Penton/IPC, Inc,
1984.

[2] John W. Boyes, "Interference Detection Among Solids and Surfaces,"
Comm. of the ACM, Vol. 22, No.1 , pp 3 - 9,1979.

[3] L. DeFloriani and G. Nagy "A Graph Model for Face-to-Face Assembly,"
Proceedings of IEEE Conference on Robotics and Automation, pages 75-
79,1989.

[4] T.L. De Fazio and D.E. Whitney, "Simplified Generation of All Mechanical
Assembly Sequences," IEEE Tr. on Robotics and Automation,RA-3{6},
pages 640-658, Dec, 1987.

[5] L.D., Erman, F. Hayes-Roth, V.R. Lesser, and R.D. Reddy, ''The Hearsay­
II Speech-Understanding System: Interacting Knowledge to Resolve Un­
certainty," ACM Computing Survey, 12(2), June 1980.

[6] B. Hayes-Roth, "A Blackboard Architecture for Control," Artificial Intel­
ligence, 26:251-332, 1985.

[7] Andrew Kusiak, "Modelling and Design of Flexible Manufacturing Sys­
tems," Elsevier Pub., 1986.

[8] L.S. Homem de Mello and A.C. Sanderson, "Automatic Generation of Me­
chanical Assembly Sequences," The Robotics Institute, Carnegie-Mellon
Univ., Technical Report 1988.

[9] M.E. Mortenson, "Geometric Modelling," John Wiley fj Sons., 1985.

[10] H. Penny Nii, "Blackboard Systems: The Blackboard Model of Problem
Solving and the Evolution of Blackboard Architectures," The AI Maga­
zine, pages 38-53, Summer 1986.

[11] A.A.G. Requicha, "Representations for Rigid Solids: Theory, Methods,
and Systems," Computing Surveys, 12(4), pages 437-464, Dec. 1980.

www.manaraa.com

339

[12] A.C. Sanderson and L.S. Homem de Mello, ''Task Planning and Control
Synthesis for Flexible Assembly Systems," NATO ASI series, Vol, F33,
Machine Intelligence and Knowledge Engineering for Robotic Applications,
edited by A.K.C. Wong and A. Pugh, 1987.

[13] H.B. Voelcker and A.A.G. Requicha "Geometric Modelling of Mechanical
Parts and Processes," IEEE Computer, Vol.10, pages 48-57, Dec. 1977.

[14] J.D. Wolter, "On the Automatic Planning with Fasterners," Proceedings
of IEEE Conference on Robotics and Automation, pages 62-68, 1989.

www.manaraa.com

Chapter 14

Backward Assembly
Planning with DFA
Analysis

Sukhan Lee

Most of the automatic assembly planners developed up to date are concerned
mainly about generating assembly sequences or assembly partial orders based
on reasoning of geometric interference among parts and subassemblies during
assembly. Although geometric reasoning should be a fundamental mechanism
for automatic assembly planning, and a considerable advancement has been
made in this regard[1l ,12,13,14]' there still remains a number of important
problems to be resolved, in order to bring automatic assembly planning closer
to reality.

First, the assembly of a product often requires special processes such as test­
ing, cleaning, painting, labeling, etc, to be intermixed with assembly (mating)
operations. Since special processes not only require particular sets of parts to
be processed, but also have precedence relationships, special processes playa
role as additional constraints on the feasible assembly sequences and should be
incorporated into assembly planning.

www.manaraa.com

342

Second, due to a large number of feasible assembly sequences or partial orders,
it is desirable to select a few best sequences or partial orders which incur
minimum assembly cost . However, this has been hampered by the difficulty
of selecting proper performance criteria[7,8,9,1O] and relating them directly
to assembly cost. In addition, it requires to deal with the combinatorially
explosive search space[2,3,4,5], should a globally optimal plan be searched for .

Third, one of the roles of automatic assembly planning in computer integrated
manufacturing automation is to analyze a product in terms of the assembla­
bility and assembly cost that Can be fed back to the designer for design im­
provement. An automatic assembly planner with the capability of "design for
assembly (DFA 1)" analysis will be an extremely valuable tool .for automat­
ing design evaluation and modification cycles based on concurrent engineering.
This problem has yet to receive proper attention.

This chapter presents an algorithm for backward assembly planning which takes
the above three issues into consideration. Backward assembly planning recur­
sively identifies decomposable subassemblies and Can handle the case where an
assembly sequence is not necessarily the reverse of a disassembly sequence .

First, the special processes involved in a product are represented by a "special
process forest", and are incorporated into the backward assembly planning
based on the "grouping principle" . The grouping principle identifies, based on
the given special process forest, those parts that should be grouped together
in a subassembly at the current stage of backward assembly planning, in order
for the special processes to be carried out properly. The grouping principle
together with the merging principle (which merges those parts that are not
decomposable at the current stage of backward assembly planning due to the
infeasibility of interconnection) helps reduce the complexity of search space.

Second, as a criteria for selecting best subassemblies in backward assembly
planning, stability, directionality, assembly pose, manipulability, process plan­
ning and parallelism are introduced and quantified. Most significantly, the
above criteria are evaluated with a direct connection to assembly cost based
on 1) the identification of the number of holding devices to stabilize assembly
operations, 2) the derivation of the number of reorientations required during
mating operations, 3) the determination of the best assembly poses for indi­
vidual subassemblies generated during planning, and 4) the estimation of the
effect of part/subassembly manipulability on mating cost .

Third, the search for a globally optimal plan is performed based on the AO*
algorithm[15] with a cost function and a heuristic function defined in terms of
the above criteria. In the process of searching for an optimal assembly plan ,
DFA analysis is performed for each assembly operation based on the detailed
evaluation of the above criteria. The result is summarized into a DFA analysis
table.

IDFA is a term representing design guidelines for easy assembly[1,6].

www.manaraa.com

343

14.1 Representation of an Assembly

This section provides a definition of an assembly and presents a method of
representing an assembly based on an attributed liaison graph, a special process
forest, and an assembly constraint forest.

14.1.1 Definition of an Assembly

Definition: An Assembly, A

An assembly A is a cluster of parts assembled together by a certain assem­
bly sequence, which maintains a particular geometric relationship among
parts. More specifically, a necessary and sufficient condition that a cluster
of parts, P, becomes an assembly is as follows:

1) Every part in P has at least one geometric constraint imposed on
itself in relation with other parts in P .

2) There exists an assembly sequence which brings all the parts in P
together to satisfy the geometric constraints imposed on themselves.

3) P is stable in a sense that it can maintain its geometric constraints
either by itself or through the aid of holding devices.

A single part is an assembly by definition. An assembly is said to be connected,
ifthere exists a path (through part connections) between every pair of parts in
the assembly. An assembly is said to be self-stable, if it can maintain stability
by itself without assistance of external devices.

The definition of an assembly presented above is quite general, since it includes
two or more connected assemblies assembled with certain geometric constraints
but without any physical contact. A product is defined as a connected and self­
stable assembly. However, a disconnected and non-self-stable assembly may be
generated during the assembly of a product.

14.1.2 Representation of an Assembly

Formally, an assembly A is represented by 4-tuples: A = {peA), G£(A), Gp(A) ,
I1(A)}, where peA) represents the set of parts constituting A, GL(A) the at­
tributed liaison graph representation of A, Gp(A) the special process and con­
straint forest associated with A, and I1{A) the set of all the feasible assembly
sequences for A .

Attributed Liaison Graph

Definition: A Liaison

www.manaraa.com

344

A liaison is said to exist between a pair of parts if one part constrains the
freedom of motion of the other by a direct contact.

Definition: A Liaison Graph

A liaison graph is a graph, G, G = (N, E), with N representing a set of
nodes, and E representing a set of edges. A node n, n E N, is assigned
to each part of an assembly, and an edge e, e E E, is assigned to a liaison
between a pair of parts.

Definition: An Attributed Liaison Graph, GL(A)

An attributed liaison graph is a liaison graph with frames attached to
individual nodes and edges of the liaison graph to describe the attribute
associated with a node or an edge. A part frame attached to each node
describes the attributes associated with a part, including 1) the part
geometry, 2) the mating volumes and the contact surfaces as part features,
and 3) the physical properties of a part such as weight. An edge frame
attached to each liaison describes attributes associated with the liaison.
The attributes of a liaison consist of 1) the mating parts, 2) the mating
features, and 3) the interconnection type such as Attachment, Force-fit,
Connectors/Retainers, Push-and-Twist, Screw, Glue, or Welding. Thus,
GL(A) contains information on the topology of part configurations, the
geometry and relative pose of parts in A, the interconnection mechanisms
of part connections, and the local freedom of motion in part mating.

Special Process and Constraint Forest

The assembly of a product involves not only the interconnection of parts to form
required liaisons but also the execution of special processes such as testing,
adjusting, surface treatment, painting and packaging during assembly, while
observing certain assembly constraints. This implies that assembly planning
should consider generating feasible assembly sequences not only by reasoning
about geometric and physical interference in part matings, but also by reasoning
about the accomplishment of special processes and the satisfaction of assembly
constraints.

Special processes may be subject to a certain precedence relationship in case
1) several processes share a common part, or 2) there is a need to prevent
electrostatic, electromagnetic, and thermal interference, as well as mechanical
vibrations and chemical pollutions during processing. The latter may also incur
constraints on assembly sequences, and impose precedence relationships among
some assembly operations.

Special processes and assembly constraints associated with A are represented
by a special process forest, Gs(A), and an assembly constraint forest, Gc(A).
The collection of Gs(A) and Gc(A) is referred to here as a special process and
constraint forest, Gp(A).

www.manaraa.com

345

Definition: Special Process Forest, Gs(A)

G 8 (A) consists of a set of trees having the following properties:

1) A node n[of Gs(A) represents a special process, Si. ni is associated
with a tuple (P/, E:), ni '" (P/, ED, where P/ represents a set
of parts involved in Si, and E: represents the union of the parts
involved in Si and the special processes corresponding to all the
offsprings of n[: E: = P/ U{Uj Ej}, 'v'nj : nj '" (PJ, Ej) and nj
is a child of n! .

2) A branch bi connecting nt and nj represents the precedence rela­
tionship between Si and Sj: Sj < Si if nj is a child of nt. Special
processes corresponding to the sibling nodes of a tree or to the nodes
of different trees have no precedence relationship.

Definition: Assembly Constraint Forest, Gc(A)

G c (A) consists of a set of trees having the following properties:

1) A node nf of Gc(A) represents a liaison Ii of GL(A) . ni is associated
with a tuple (Pt, L), ni '" (1=tc , E~), where P{ represents a pair
of parts involved in Ii, E~ represents the union of P{ and the parts
involved in all the offsprings of nf: E~ = ~c U{Ui L:j}, 'v'nj, nj ,....
(PI, Ej) and nj is a child of nf.

2) A branch bf connecting nf and nj represents a precedence relationship
between Ii and Ij: Ii < Ii if nf is a child of ni. Liaisons corresponding
to the sibling nodes of a tree or to the nodes of different trees have
no precedence relationship.

The existing assembly planners to date focus on generating feasible assembly
sequences based mainly on geometric reasoning on path interference. Since
special processes as well as assembly constraints impose constraints on assembly
order, the generation of an assembly sequence should consider effective and
efficient accomplishment of special processes under the satisfaction of assembly
constraints.

14.1.3 Example: Raster Output Scanner (ROS)
Optical Assembly

The raster output scanner (ROS) optical assembly (a component of a Xerox
printer), as shown in Figure 14.1, is used for the illustration of the concepts
and algorithms developed throughout the chapter~

The ROS optical assembly consists of a base (B), lenses (Ll,L2), mirrors (Ml,
M2 assembly), an I/O test unit (IOU), a motor assembly, and the PWB guard
assembly. The M2 assembly is composed of a mirror (M2) and a mirror bracket

www.manaraa.com

346

MB : MIrror a...ut

M: Motor -)5
MB

MC : Motor Cover
MP : MOWlIiDg Plate
PM : PoinOD Mimlr
LBW : Lead BaWtee Weilbt Ml MIRROR ASSEMBLY

MOTOR ~LY

aos OP11CAL ASSEMaU'

8:Bue

M :Motor "-emb!y

M1 : Ml MIrror

Ml : Ml MIrror "-embly

U:U

1.2:1.2

Be : Bue Cover

BO : Board

Figure 14.1: An Exploded View of the Raster Output Scanner (ROS) Optical
Assembly (courtesy of Xerox, EI Segundo)

www.manaraa.com

(DEFSCHEMA L14
((INSTANCE P-UAISON)
(MATING-PARTS PlO P12)
(FEAnJRFS (F1.P10 F1.P12 (+Z -Z))
(CONNECTION-TYPE FORCE-FIT))

(DEFSCHEMA PlO
((INSTANCE P AR1)
(CLASS GENERAL)
(FEATURE-UST F1.P12 F2P13)
(COORD (10 6 0000»
(VOWME ((CYIlNDER 3 2)

000000»)

(DEFSCHEMA F1.P12
((INSTANCE FEATURE)

(FEATURE-OF P10)
(fYPE CONNECTION)
(SHAPE (CYUNDERO.5 2)
(LOCATION (0 000 0 0»»

347

Figure 14.2: The Attributed Liaison Graph Representation of ROS Optical
Assembly

(MB). A motor assembly consists of a motor (M), a motor cover (MC), a poly­
gon mirror (PM), a mounting plate (MP), and a lead balance weight (LBW),
while PWB guard assembly consists of a board (B), and a base cover (BC).
A motor guard (MG) which protects a motor assembly under the base is not
shown in Figure 14.1.

Figure 14.2 shows the attributed liaison graph of the ROS optical assembly,
where a typical form of a node frame and an edge frame are shown in the
boxes.

Figure 14.3 illustrates the special process forest associated with the ROS optical
assembly. It shows that the balancing and labeling process of a motor assembly,
the adjusting process of a base and M2 assembly(M2, MB), and the cleaning
process for a lens, L1, should be done prior to the testing process.

www.manaraa.com

348

testing [P(A), peA)]

[{M} ~"~ [{ B,.", MB} C """'"V
{ M, PM, MP, LBW, MC} I { B, M2, MB } I

[{M, PM,MP,LBW,MC} Geaninv [{ M2} {M2} I [{U} {U}]
{ M, PM, MP, LBW, Me}]

[{LBW} {PM,LBW}]

[{ PM, LBW } { PM, LBW}]

Figure 14.3: Special Process Forest for ROS Optical Assembly

14.2 Backward Assembly Planning

14.2.1 Definition of Backward Assembly Planning

Definition: A Subassembly of an Assembly A, Si IA
A subassembly of an assembly A, Si lA, is an assembly. Si IA represents
a nonempty, proper subset of A, i.e., Si IA =f=. 0, Si IA C A, which can be
generated in one of the feasible assembly sequences for A .

Definition: A Direct Subassembly of an Assembly A, SflA

A direct subassembly of an assembly A, SfIA, is a subassembly of A,
which can be directly assembled with A-Sid IA at the last step of assembly
in one of feasible assembly sequences for A.

Definition: Assembly Planning of an Assembly A, AP(A)

The assembly planning, AP(A), of an assembly A, A = {P(A), GL(A),
Gp(A), TI(A)}, is the process of generating a set of assembly sequences
TIa(A) ~ TI(A) based on the given P(A), GL(A) and Gp(A), and the
criteria for selecting desirable assembly sequences.

Definition: Backward Assembly Planning of an Assembly A, BAP(A)

BAP(A) is a particular method for achieving AP(A), based on the recur­
sive identification and selection of desirable direct subassemblies. BAP(A)
first identifies and selects a direct subassembly of A, SflA(or a set of di­
rect subassemblies of A , {StIA, i = 1,···, m}) and decompose A into
SflA and A - SflA (or {SfIA and A - sflA,i = 1,·· ·,m}). Then, it
recursively applies the process of decomposition to the subassemblies gen­
erated by the previous decomposition until no further decomposition can
be applied (i.e., all the generated subassemblies consist of a single part).

www.manaraa.com

Algorithm: BAP(A)

Step 1: If A = a single part, then return.

Step 2: Select stlA and (A - stIA).

349

Step 3: Generate GL(StIA), Gp(stIA), GdA - SfIA), and Gp(A -
stIA).

Step 4: Call BAP(stIA) and BAP(A - SfIA).

14.2.2 Backward Assembly Planning vs.
Disassembly planning

BAP(A) differs from disassembly planning in that BAP(A) can handle the
case where an assembly sequence can not be obtained from the reverse of a
disassembly sequence. For instance, a sequence of operations to disconnect a
liaison of force-fit interconnection type is often quite different from the reverse
of a sequence of operations to interconnect the liaison. As shown in Figure 14.4
(a), the snaps of A should be widened in order to disassemble part B from part
A, which may require a new tool. In Figure 14.4 (b), we can have the following
disassembly sequence: C-A-D-B, since Screw C can be disassembled before
Cover A is removed. However, the reverse of the above disassembly sequence,
B-D-A-C, can not be an assembly sequence, since the inability of holding part
D during assembly of part C prohibits such an assembly sequence. BAP(A)
identifies this problem and generates a feasible assembly sequence, B-D-C-A.

14.2.3 Identification of SllA

The necessary and sufficient condition that a cluster of parts PIA, PIA C A,
can be a direct subassembly of A is as follows:

1) Accessibility Condition: PIA is accessible.

2) Stability Condition: PIA and A - PIA are stable.

3) Local Mating Motion Condition: All liaisons between PIA and A - PIA
have at least one common axis of separation.

4) Path Existence Condition: PIA can be brought to A-PIA from the free
space for mating.

5) Interconnection Feasibility Condition : PIA can be interconnected to
A - PIA by applying the interconnection operations defined for the liaisons
between PIA and A - PIA.

6) Process Constraint Condition: PIA meets the constraints defined by the
special process and constraint forest of A, Gp(A).

www.manaraa.com

350

A

r\ /
4

B

-
A

(a) (b)

Figure 14.4: Two Typical Assemblies which illustrate the Situation where an
Assembly Sequence is different from the Reverse of a Disassembly Sequence.

14.3 Abstract Liaison Graph by
Part Clustering

The identification of Sf IA can be accomplished by checking the above condi­
tions for individual PIA's obtained from all the cut-sets of GL(A) . Since the
number of cut-sets of GL(A) is often large and grows exponentially with respect
to the number of nodes in GL(A), and the cost of testing the path existence
condition for a cut-set is very high, the consideration of all the cut-sets of
GdA) results in inefficiency in assembly planning. This problem hampers the
applicability of assembly planning to a product with a large number of parts.

The number of the cut-sets subject to the test of path existence condition may
be reduced considerably if we first select those cut-sets that pass the intercon­
nection feasibility condition, the process constraint condition, and the stability
condition, prior to the test of the path existence condition. This is well justi­
fied by the fact that the cost of testing the interconnection feasibility condition
and the process constraint condition is minimal due to the locality involved in
the test of these conditions. The process of selecting those cut-sets that pass
the test of the interconnection feasibility condition and the process constraint
condition is equivalent to finding cut-sets in a simpler form of liaison graph
called an abstract liaison graph, GdA). GL(A) is obtained by transforming
GL(A) based on:

www.manaraa.com

351

1) Merging those parts of A that cannot be interconnected to form A, al­
though it is assumed that those parts are already brought into their mat­
ing position. This process identifies the liaisons of GL(A) that violate the
interconnection feasibility condition for StIA, based on reasoning whether
the preconditions for a particular interconnection mechanism associated
with a liaison can be satisfied.

2) Grouping those parts that should belong to the same subassembly to
meet the requirement of special processes.

The parts merged together become a super node, whereas the parts grouped
together become a group node in GdA). A super node and a group node
are considered as a single node in finding cut-sets, resulting in a considerable
reduction of the number of cut-sets in search space.

Finally, the accessibility and stability conditions for StlA will be tested for
each cluster of parts defined by the cut-sets of GL(A) before the decision on
valid cut-sets is made.

14.3.1 Interconnection Feasibility and Part Merging

A liaison Ii between PIA and A - PIA cannot be completed, in spite ofthe fact
that PIA can be brought into its mating position without path interference, if
the following conditions are not satisfied:

Condition 1: The feasibility of applying tools and connectors required for the
interconnection of Ii .

Condition 2: The feasibility of applying a force, while maintaining stability,
required for the interconnection of I •.

This implies that a liaison of GL(A) that violates one of the above conditions
cannot be included in a cut-set (or PIA) to be tested for StIA. Pruning out
those cut-sets of GdA) that include the liaisons violating the above conditions
is equivalent to defining cut-sets in a simplified GL(A) obtained by merging
those nodes associated with the liaison.

The test of Condition 1 requires the verification of accessibility of the part
(associated with a liaison Ii) by the tools and connectors required for the inter­
connection of Ii. This can be done by checking the existence of an open channel
to the designated part locations, through which tools and connectors can be
operated without geometric interference[ll] . The test of Condition 2 requires
reasoning on the force delivery to a liaison h through intermediate liaisons.

To be more specific regarding the testing of interconnection feasibility, let us
first categorize a liaison into one of the following three classes:

www.manaraa.com

352

Definition: A floating liaison

A liaison is said to be floating if there exists no physical force holding the
parts (associated with the liaison) together. For instance, a liaison with
the interconnection type of "attachment" is a floating liaison. A floating
liaison mayor may not be stable, depending on the geometric constraints
imposed on the parts associated with the liaison.

Definition: A rigid liaison

A liaison is said to be rigid, if there exists physical force holding the
associated parts together, by which the liaison becomes self-stable even
under the presence of external force. For instance, a liaison with the
interconnection type of ''force-fit'', "welding", or "connectors" may -be
classified as a rigid liaison.

Definition: A firm liaison

A liaison is said to be firm if there exists a physical force holding the asso­
ciated parts together, by which the liaison becomes self-stable, although
it may exhibit a deformation or a freedom of motion under the presence
of external force. For instance, a liaison with the interconnection type of
"glue", ''push & twist" , or "screw" may be classified as a firm liaison.

A liaison is associated with its local freedom of motion:

Definition: The Local Freedom of Motion of a Liaison Ii, LFM(li)

The local freedom of motion of a liaison Ii connecting the two parts,
PI and P2, Ii ~ (PI, P2), is represented by the freedom of motion of
PI against P2, LFM(/i ;PIIP2) or the freedom of motion of P2 against
PI, LFM(/i ;P2IPI), where LFM(/i ;PI IP2) or LFM(li;P2 IPI) is rep­
resented in terms of the coordinates of the assembly to which PI and
P2 belong, {±x,±y,±z,±"p,±B,±¢}. Note that LFM(l;;PIIP2) and
LF M(li; P2IPI) are symmetric about individual coordinates, e.g., if LF M
(li; PIIP2) = {+x, -z, +¢}, then LFM(li; P2 IPI) = {-x, +z, -¢}.

A local freedom of motion of a liaison may be changed after the interconnection
is completed: A floating liaison does not change its local freedom of motion
after the interconnection is done. A rigid liaison of the interconnection type ,
"welding", "force-fit", or "connector", however, completely loses its local free­
dom of motion after the interconnection is completed. On the other hand, a
firm liaison of interconnection type, "screw" or ''push & twist" may show a
local freedom of motion, when a certain amount of force is applied to the liai­
son . To distinguish the local freedom of motion of Ii after the interconnection
from that before the interconnection, LF M+(li) is used to represent LF M(li)
after the interconnection. Note that, due to the orthogonality between motion

www.manaraa.com

353

space and force space, a liaison cannot deliver force to the direction where a
local freedom of motion exists.

Definition: An Accessible Node, A-node

A part is accessible by a tool if it is reachable and graspable by a tool for
an assembly operation. A node are accessible if any of the parts forming
the node is accessible.

Definition: An Access Path to a node n, A-path

An access path to a node n, A-path, is a path starting from an A-node
and ending with the node n without having any other A-node in the
middle of the path. By definition, an A-node has an A-path to itself.
An access path is represented by an ordered set of liaisons or parts on
the path. A-node may have one or more A-paths. A pair of A-paths,
A-path(nt) and A-path(n2), nl =/:. n2, are said to be independent each
other, if they share no common part.

Definition: The Internal Motion Space, M[A-path(n)], and the Static Force
Space, F[A-path(n)], associated with A-path(n)

The internal motion space, M[A-path(n)], of A-path(n) is defined by
the union of the local freedom of motion of individual liaisons in A­
path(n), and represents the flexibility that the configuration of parts
along A-path(n) can be deformed by an external force, with the first part
(corresponding to A-node) and the last part (corresponding to the node
n) fixed in space. Note that M[A-path(n)] is a function of the external
force applied to A-path(n) when A-path(n) includes firm liaisons, since
the external force determines which firm liaisons can be broken. As will
be explained shortly, the external force to be applied to A-path(n) is
given as the force required for the interconnection of the liaison which n
is associated with, and is subject to the evaluation of force-deliverability.

Assume that A-path(n) is represented by an ordered set ofliaisons, {II, 12 ,

... ,Ir }, with Ii formed by a pair of nodes, (n;ll ni 2), and that (nill ni 2) is
ordered along A-path(n) in the direction toward n. Then, M[A-path(n)]
=U;=l LF M(li ; ni , ln i 2)·

The static force space, F[A-path(n)], of A-path(n) defines the static force
that can be delivered to the node n through A-path(n). F[A-path(n)] is
represented by the orthogonal complement of M[A-path(n)], i.e., F[A­
path(n)] ={±x, ±y, ±z, ±?/>, ±O, ±~} - U~=l LF M(li; ni,lni2).

Definition: A Force-Deliverable A-path

A-path(niJ is said to be force-deliverable to ni, for the liaison Ii, Ii '"
(nill n i 2), if F[A-path(ni,)] includes the force required for the intercon­
nection of ni, to n i 2'

www.manaraa.com

354

The test of Condition 2 for a liaison, Ii '" (nil' ni2), is now transformed to the
verification of the existence of an independent force-deliverable A-path for nil
and ni2.

The force-deliver ability of an A-path to n;l or n;2 depends on the force required
for the interconnection of Ii. That is, M[A-path(nil)] or M[A-path(ni2)] is
determined by the freedom of motion of individual liaisons along the A-path
under the presence of an external force equivalent to the force required for the
interconnection of Ii. For instance, in case Ii is floating, the amount of force
required by Ii is negligible, and the decision of the internal motion space of the
A-path is based solely on the floating liaisons along the path . Note that , in
this case, the force-deliver ability of Ii becomes equivalent to the feasibility of
maintaining stability during interconnection. As a summary, we present the
following merging principle:

Merging Principle :

A liaison Ii, Ii'" (nil> ni 2), can not be listed as a cut-set, and consequently
nil and ni2 should be merged together, if one of the following conditions
is true:

1) It is not feasible for the tools and connectors (required for the inter­
connection of Ii) to access the designated locations.

2) Either nil or ni 2 has no independent force-deliverable A-path, in­
cluding the case where either nil or ni 2 has no A-path at all.

By applying the merging principle described above to an assembly A, we can
transform GL(A) into GL(A) in which those parts of a liaison that can not be
separable for Sf IA are clustered together, as described by the following merging
process:

Step 1: Put all the liaisons of GdA) in Open set. Identify A-nodes of GdA).

Step 2: If Open set is empty, then stop.

Step 3: Select liaison, Ii '" (nil> ni 2), from Open set in an increasing order
from an A-node, and remove Ii from Open set.

Step 4: Check whether h requires tools or connectors to complete the inter­
connection. If not, go to Step 6.

Step 5: Check the accessibility of tools or connectors to the designated loca­
tions. If not, merge nil and ni2 and go to Step 2.

Step 6: Check whether nil and ni2 have independent, force-deliverable A­
paths. If not, merge nil and ni2 and go to Step 2.

www.manaraa.com

355

Example : Part Merging of the ROS Optical Assembly

A-nodes of the ROS optical assembly are identified as B, BC, and MG.
First, it is identified that it, 12 , 13 , 14, 15 , 114 , it5, it6, 117, and its can be
merged, since each of them does not have an independent force-deliverable
A-path for one of the associated parts. The analysis of part merging for
some other liaisons is given in the following:

1) A liaison 16,/6'" (B,IOU)

A-paths of B : {B}
A-paths ofIOU : {B,IOU}, {BC,BO,IOU}, and {MG,M,BO,
IOU}.
16 does not require a tool or a connector to complete the in­
terconnection. A part, IOU, has independent force-deliverable
paths which can deliver a force needed to interconnect the float­
ing liaison, 16. (It is unnecessary to check whether the part, B,
has a force-deliverable A-path because B is an A-node.) There­
fore, 16 is not merged.

2) A liaison Ig , Ig '" (BC, BO)

A-paths of BC : {BC}
A-paths of BO : {BC,BO}, {B,IOU,BO}, and {MG,M,BO}.
Ig does not require a tool or a connector to complete the inter­
connection. The part, BO, has no independent force-deliverable
paths which can deliver a force needed to interconnect Ig • There­
fore, Ig is merged.

The result of applying the merging process to the ROS optical assembly is
shown in Figure 14.5.

14.3.2 Special Process Constraints and Part Grouqin!b

A cluster of parts required for a special process should be grouped together and
included in a subassembly for processing. A subassembly may be associated
with one or more special processes that operate on the parts included in the
subassembly.

The recursive determination of Sf IA in backward assembly planning should
support the execution of special processes in an order specified by Gs(A) and
satisfy the assembly constraints specified by Gc(A).

This requires 1) the determination of those parts of A that should be grouped
together and should not be separated into StlA and A - StIA, based on the
special process forest Gs(A) and the assembly constraint forest Gc(A), and 2)
the generation of a special process forest and an assembly constraints forest for
sflA and A-stIA, i.e., Gs(StIA), Gc(StIA), Gs(A-stIA), and Gc(A-stIA).

www.manaraa.com

356

• :A-node

......... : floating liaison
-- : firm 1iaison
_ : rigid liaison

E]) : Merging
• :Gtouping

Figure 14.5: The Clustering Process for ROS Optical Assembly

The determination of parts for grouping can be done by the following process:

1) Given Gs(A), we first determine which special processes should be accom­
plished with A, by selecting one or more special processes from Gs(A)
in a top-down order from the root nodes of Ga(A) . We then remove out
those nodes corresponding to the selected special processes from Gs(A)
and transform Gs(A) into Gs(A). Since the special processes remaining
in Gs(A) need to be accomplished in the later stage of backward assembly
planning, we should group those parts in the accumulated part list of a
root node of Gs(A), i.e., we group those parts in :L~;, no; ""' (POi' :L~)
with n~; a root node of Gs(A).

2) In order to preserve the precedence relationship defined by Gc(A), we should
group those parts in the accumulated part list of a child of a root node
of Gc(A), i.e., we group those parts in :L~;, ni; ""' (Pt,:LU with ni;
a child of a root node of Gc(A). A liaison represented by a root node
of Gc(A) is eligible for decomposition at the current stage of backward
assembly planning, and is exempt from grouping.

In summary, we present the following grouping principle:

Grouping Principle :

For a given A, GL(A) and Gp(A) where Gp(A) = Gs(A)UGc(A), we
group those nodes of GL(A) that belong to either of the following lists:

www.manaraa.com

[{M}
{ M, PM, MP, LBW, Me }]

[{ M, PM, MP, LBW, Me}
{ M, PM, MP, LBW, Me}]

[{ LBW} {PM, LBW}]

[{ PM,LBW} {PM, LBW}]

<§U~ti~ [{ B, M2, MB}
{B,M2,MB}]

~ani~ [{M2}{M2}]

C§:eani~ [{U} {Ll}]

357

Figure 14.6: Special Process Forest, G.(A), after removing the Root Node from
Gs(A), where the Process associated with the Root Node of Gs(A) is assigned
to A

1) L:~i associated with a root node, ng., of a Gs(A), where Gs(A) is
obtained by removing out from Gs(A) those nodes that are to be
processed with A.

2) L:~i associated with a child, nt, of a root node of Gc(A).

The application of grouping principle to the ROS optical assembly is shown in
the following example:

Example: Part Grouping of the ROS Optical Assembly

First, Gs(A) is obtained in Figure 14.6 by removing the root node of
Gs(A) shown in Figure 14.3, since the testing of the whole assembly
should be done with A.

Then, the grouping ofthe nodes in GL(A) is performed with the accumu­
lated part lists of individual root nodes of Cs(A): {M,PM,MP,LBW,MC}
becomes a group and {B,M2,MB} becomes another group, as shown in
Figure 14.5.

14.3.3 Abstract Liaison Graph

Merging and grouping operations transform the original liaison graph, GL(A),
into the simplified liaison graph, called the abstract liaison graph, GdA), as
shown in Figure 14.7. GL(A) is composed of super nodes and group nodes ob­
tained from part merging and part grouping, as well as simple nodes remaining
from GL(A).

www.manaraa.com

358

ez B IOU

/.
.///

A-node

o Supemode

Figure 14.7: The Abstract Liaison Graph of the ROS Optical Assembly

14.4 Identification of Direct Subassemblies

The problem of finding direct subassemblies is now transformed into the prob­
lem of finding valid cut-sets ofthe abstract liaison graph, 8L (A). A cut-set'fi,
decomposes 8dA) into disjoint subgraphs, 8fl(A'fd and 8f2(A'fi), where
8fl(A, fi) or 8f2(A, fi) may not be a connected graph , but may be a collection

~s ~Sl'
of multiple connected subgraphs, G/(A'fd = {GL J (A'fi), j = 1,2", ',/d

~s ~S2
or GL2(A"i)={GL i(A'fi), j = 1,2", ',l2}' A cut-set, fi, is valid if:

~~. ~~.

1) Each connected subgraph,GL J (A, Ii), j = 1,2"", It, GL J (A, fd,
j = 1,2· . ,,/2 , generated by the cut-set'f; includes at least one
A-node.

2) There exists a collision free path between the cluster of parts,
PIA, corresponding to 8fl(A"i) and A-PIA, corresponding
to 8f2 (A, fi) for their mating.

The first condition ensures that PIA and A - PIA, can be handled by a tool
for assembly whereas the second condition ensures that StlA can be placed
in its mating position. For the test of the second condition, we first test the
feasibility of the local mating motion between PIA and A - PIA, so that the
computational complexity involved in the path verification can be reduced. To

www.manaraa.com

359

be more specific on this point, let us define the following;

Definition: Local Mating Motion, LM

The predicate LM(PIA, A - PIA) is true if all the liaisons between PIA
and A - PIA has at least one common axis of separation.

Definition: Path Existence, P E

The predicate P E(PIA, A-PIA) is true if there exists a path along which
the cluster of parts PIA can be brought to its mating position without
colliding with the rest of the assembly.
Since the premise that LM(PIA,A - PIA) is not true is a sufficient con­
dition that P E(PIA, A - PIA) is not true , the test of LM(PIA, A - PIA)
preceding the test of PE(PIA,A - PIA) can provide a considerable re­
duction in the number ofthe costly PE(PIA,A - PIA) test.

Algorithm: Identification of Direct Subassemblies

Input: GL(A) , A-Node Set = {all the A-nodes of GL(A)}, Tested Cut-set
List={0}, Valid Cut-set List={0}.

Output: A list of direct subassemblies specified in Valid Cut-set List.

Method:

Step 1. If A-node Set is empty, stop .

Step 2. Select an A-node from A-node Set, and remove it from A-node
Set.

Step 3. If there exists a cut-set Ii, Ii f/. Tested Cut-set List, such that
Gfl(A'/d includes the A-node selected in Step 2 and Gf2(A'Ii)
includes at least one A-node of GL(A), then continue. Otherwise,
go to Step 1.

Step 4. Put Ii into Tested Cut-set List .

Step 5. Test Ii for LM. If it is false, go to Step 3.

Step 6. Test Ii for P E. If it is true, put Ii in Valid Cut-set List. Oth­
erwise, go to Step 3.

The above algorithm results in the list of all valid direct subassemblies of A con­
tained in Valid Cut-set List. Table 14.1 illustrates the directed subassemblies
generated for the ROS optical assembly.

www.manaraa.com

360

Table 14.1: Valid Cut-Sets or Direct Subassemblies generated from OdA) for
the ROS Optical Assembly

II Cut-set II PIA A - PIA I Result II
{ed MG 51-52-IOU Valid

51-52-IOU MG Valid
{e2,e3} MG-51 52-IOU Valid

S2-IOU MG-51 Valid
{e3, e4} 82 MG-81-IOU Valid

MG-51-IOU 52 Valid
{el,e2,e3} SI MG,S2-IOU Failed in the LM test
{el, e3, e4} SI-IOU MG,S2 Failed in the LM test
{e2,e4} MG-SI-52 IOU Failed in the A-node test
{el, e2, e4} SI-S2 MG,IOU Failed in the A-node test

14.5 Subassembly Evaluation Criteria

The direct subassemblies identified from OL(A) are subject to further evalua­
tion for the selection of a few best direct subassemblies. This serves to main­
tain a manageable number of assembly sequences, out of a potentially explosive
number of possible assembly sequences in assembly planning.

The evaluation of a subassembly is based on the following criteria: 1) Stability,
2) Directionality, 3) Manipulability, 4) Process Planning(Processing Cost), and
5) Parallelism. Stability, directionality, and manipulability provide an indirect
measure of the assembly cost involved in local assembly operations that can
be directly used for the analysis of Design for Assembly (DFA). Processing
planning and parallelism are concerned about the optimality associated with
the order of special processes and the adaptability to flexible assembly envi­
ronments. Note that the optimal selection of a direct assembly at each stage
of backward assembly planning based on local criteria may not yield a globally
optimal plan. As will be shown later, this problem is handled by the AO·
algorithm with its cost and heuristic functions defined in terms of the above
criteria.

14.5.1 Stability

To analyze the stability of a subassembly, let us first define the following:

Definition: A floating cluster of parts of Sf IA
A cluster of parts of StIA, .J\1(SfIA), is said to be floating if it is con­
nected to the rest of Sf IA only by floating liaisons. Pk I(SfIA) corresponds

www.manaraa.com

361

to a subgraph of GL(stIA) that can be separated from GL(stIA) by a
cut-set consisting only of floating liaisons, called a floating cut-set.

Definition: A disconnected cluster of parts of sf IA

A cluster of parts of sflA, AI(SfIA), is said to be disconnected if it
has no liaison connected to the rest of sflA. AI(SfIA) corresponds to a
separate subgraph of GL(SfIA).

The stability of a subassembly, sflA , can be defined based on a set of float­
ing clusters of parts, 1\1(stIA), and a set of disconnected clusters of parts,
AI(SfIA), included in SfIA.

A floating cut-set, Tk, of G L (Sf IA) decomposes sf IA into 1\ I (Sf IA) and sf IA-
1\1(SfIA). The local freedom of motion of rk, LF M(Tk), can be defined as the
local freedom of motion of 1\1(SfIA) against sflA -l\I(SidIA):

for alllj, lj E Tk .

Note that j\I(SfIA) is chosen under the constraint that sflA - 1\I(SflA.)
includes one of the A-nodes of the assembly A that will be used for holding
SflA during the mating of SflA with A - SfIA.

Definition: Internal Freedom of Motion of sflA, IFM(SfIA)

The internal freedom of motion of SfIA, IF M(SfIA), is defined as a
collection of assembly directions to which sf IA can be broken apart.
IF M(SfIA) can be calculated by the following rules:

1) ~ AI(SfIA) and 1\1(SfIA) => IFM(SfIA) = 0;
2) ~AI(SfIA) but 31\I(SfIA) => IF M(SfIA) = U LF M(Tk), TlTk;

3) 3Pkl(SfIA) => IF M(SfIA) = {± x, ± y, ± z, ± '!fI, ± 8, ± .p}.

As an example, let us consider a simple 2-D assembly shown in Figure 14.8.
Since h, 12 and Ig are floating liaisons, we have that

Assuming that sf IA is oriented with reference to the assembly pose of A as
shown in Figure 14.8, and that PI, an A-node of A, is selected for grasping of
SfIA, we have

LFM(Tl)
LFM(r2)
LFM(Tg)

= LFM(P2 UPg,Pt) = {+x,+z},
= LFM(P2 , PI UPg) = {+z},

LFM(Pg,PI UP2) = {+x,+z}.

www.manaraa.com

362

+z. S/(A)

P2 P3

PI

..
-x "+x

_zllr

Figure 14.8: An Example to show the Calculation of Internal Freedom of Mo­
tion of sflA, IFM(SfIA)

Therefore,

IFM(sfIA) = {+x,+z}.

Based on the definition of IF M(stIA), we can establish the stability conditi4
for StIA, as follows:

1) SflA is said to be self-stable or stable without the assistance of holdi
devices, if IFM(SfIA) is null (i.e. StlA contains neither AI(stIA) n
l\l(stIA) of non-null LFM); or IFM(SfIA) has at most a single trar
lational freedom of motion, possibly with a rotational freedom of moti
about the axis of translation (i.e. StlA contains a single peg-and-h<

- d d type of Pkl(Si IA), e.g., IFM(Si IA) = {+z,±</>}).

2) StlA is said to be stable with the assistance of holding devices, if each
AI(SfIA) or l\I(SfIA) with more than a single translational freedom
of motion contains an A-node of the assembly A. This implies that the
mating operation of StlA can be stabilized and completed with the assis­
tance of external devices holding AI(SfIA) and i\1(SfIA) of more than
a peg-and-hole type of motion freedom.

3) Otherwise, sflA is said to be unstable.

A stable StIA, whether it requires a holding device or not, has one or more
stable assembly poses, where an assembly pose is represented by assembly coor­
dinate aligned with the direction of part stacking against gravity. For instance,
Sf IA with null IF Mh (denoting IF M after the incorporation of necessary

www.manaraa.com

363

holding devices) can have assembly pose of ±x, ±y and ±z. sflA with IF Mh
of { +x, ±1jJ} can have an assembly pose of +x, requiring a reorientation of sf IA
to align +x with the stacking direction (against gravity) .

Let us now consider the stability associated with an assembly operation:

Definition: Stable Assembly Operation

The assembly operation between sflA and A - SflA is said to be stable,
having a stable assembly direction, if sflA and A - sflA have at least
one common stable assembly pose.

The evaluation of sf IA in terms of stability is based on the stability of sf IA
and A - sflA and the stability of the assembly operation between SflA and
A - sf lA, as follows:

1) If either Sf IA is unstable or A -sf IA is unstable, sf IA can not be selected
for a direct subassembly of A.

2) When sflA and A -Sf IA have no common stable assembly pose, sflA can
not be selected for a direct subassembly of A .

3) Otherwise we evaluate the assembly cost incurred by the need to stabilize
sflA and A - SflA as well as the assembly operation between sflA and
A -sfIA.

The assembly cost is directly related to the number of holding devices required
for stabilizing sflA and A - SfIA, and the necessity of reorienting sflA and
A - SflA for a stable assembly operation . The latter will be analyzed in more
detail in the next section in relation to the directionality in assembly and the
determination of best assembly poses. Table 14.2 summarizes how to evaluate
the relative assembly cost of sflA due to stability.

14.5.2 Directionality and Assembly Pose

The directionality in assembly is another important factor affecting assembly
cost. Locally, a stacking operation is considered more cost-effective than a
non-stacking operation . Globally, a single direction of assembly is preferred to
multiple directions of assembly. Therefore, the evaluation of directionality in
assembly should be based on both the local assembly direction between Sf IA
and A - SfIA, and the uniformity of assembly directions embedded in SflA
andA-SfIA.
It should be noted that whether or not the local assembly direction between
sflA and A-sfiA can be a stacking direction depends on the choice ofthe mat­
ing pose (as one of the stabl~ assembly poses common to SflA and A - SfIA).
However, the selection of a mating pose between Sf IA and A - Sf IA based

www.manaraa.com

364

Table 14.2: The Relative Assembly Cost due to Stability associated with sflA
and A -StIA.

Evaluation Relative Weight
l. Unstable Sf IA or A - Sf IA 00 (Design fault)

2. No common stable assembly pose 00 (Design fault)
between sf IA and A - sf IA

3. The number of holding devices re- 15 / device
quired for stabilizing AI(SfIA)
and AI(A-SfIA), as represented
by the number of AI(SfIA) and
AI(A-SfIA)

4. The number of holding devices to 15 / device
stabilize .Pkl(SfIA) and .Pkl(A -
sf IA) with more than a single
translational freedom of motion .
This number of holding devices
can be computed by counting the
A-nodes ofthe assembly A, which
are included in those .J\1(stIA)
and AI(A - StIA) that require
stabilization

5. The reorientation of StlA and 10 / reorientation
A-S~IA

Note: the above relative assembly costs are made compatible with the
relative weights used in [6] .

www.manaraa.com

365

solely on implementing a stacking operation may incur the need to reorient the
assembly of SflA and A - sflA, so that the assembly of SjdlA and A - StlA
can be brought into the, previously selected, best assembly pose for A. Fur­
thermore, the assembly pose of sflA or A - sflA should be chosen from the
set of stable assembly poses of StlA or A - sf lA, which may differ from the
selected mating pose between SflA and A - sflA. This also incurs the need
to reorient SflA or A - SfIA, so that sflA or A - StlA is brought into its
pose. This implies that the determination of an assembly pose and an assemb1y
direction should consider the trade-off between maximizing the directionality
in assembly and minimizing the reorientation of assembly pose. In principle, it
is desirable to avoid a costly reorientation, unless the reorientation is required
to allow many local stacking operations in the subsequent backward assembly
planning, thus justifing the cost of reorientation.

Now, let us first introduce the following notational conventions to be used in
the algorithm for selecting the best assembly poses for StlA and A -StIA, and
for evaluating the relative assembly cost of StlA and A - StlA in terms of the
directionality in assembly:

1) tI, t2 ~ an assembly pose of StlA and A - StlA represented with reference
to the previously determined assembly pose of A, t*.

2) {tn, {tn ~ a set of stable assembly poses for SjdlA and A - StIA.

3) {tb} ~ a set of stable assembly poses common to StlA and A - StIA, i.e.,
{tb} = {tn n {tn.

Then, we can associate each pair (tt, ti), where tt E {tn and ti E {tn, with
the relative assembly cost, L, involved in a local mating operation.

The relative assembly cost involved in a local mating operation, L, can be
determined based on the need of reorientations and the directionality of mating
operations (whether it is a stacking operation or a non-stacking operation), as
well as the difficulty of handling the related subassemblies (which is analyzed
in detail in the next section in terms of manipulability).

The reorientation of the assembly poses of Sf IA and A -Sf IA during assembly
becomes necessary due to:

1) The need to transform tt and/or ti into a mating pose, th, tb E {tb}, in
the case where tl :f:. tb or ti :f:. tb·

2) The need to transform the selected mating pose, tb, into the assembly pose
of A, t*, in the case where th :f:. t*.

Table 14.3 shows the reorientations required for the mating between sflA and
(A - SfIA), under various conditions on tf and ti. The directionality of the

www.manaraa.com

366

Table 14.3: The Reorientations required for the Local Mating Operation be­
tween Sf IA and A - sf IA

Conditions The Required Reorientations
t* ¢ {th} tf = ti tf E {tb} l(th --+ t*)

tf ¢ {tb} 3(tf --+ tb ti --+ tb tb --+ t*)
t S =f:. t S 1 2 tf E {tb} or 2(tf --+ tb or ti --+ tb, tb --+ t*)

ti E {tb}
tf ¢ {tb} and 3(tf --+ tb ti --+ tb, tb --+ t*)

ti ¢ {tf2}
t* E {tb} tf = ti tf = t* 0

tf =F t*,tf E {tb} l(tb --+ t*)
tf =F t* , tf ¢ {tb} 2(t S --+ t* t S --+ t*) 1 , 2

t S =f:. t S 1 2 tf = t* or ti = t* l(t; --+ t* or tf --+ t*)
tf =F t* and ti =F t* 2W --+ t* t S --+ t*) 1 , 2

mating operation can be tested by transforming the mating directions (between
sf IA and A - sf IA) in terms of t* into the mating directions in terms of tb
where the mating directions in terms of t* are identified during the verification
of the path existence (P E) .

The relative assembly cost, L, involved in a local mating operation can now be
calculated for individual (tf, ti), by

where REO(tf), REO(ti), and REO(th) are binary functions of either 1 (when
the reorientation of the corresponding assembly pose is required) or 0; ao and
/30, represent respectively the normal relative assembly cost due to a reorienta-

tion (ao = 10) and a mating motion (/30 g /301 = 1 for a stacking operation and

/30 g /302 = 5 for a nonstacking operation); 11,12,13 and 14 represent the effect
of part manipulability on the relative assembly cost (refer to the manipulability
section for more detail).

The best assembly poses of sflA, t*(SfIA), and A - sflA, t*(A - SfIA) can
then determined based on achieving the minimum relative assembly cost, L,
due to the local mating operation.

Let us consider the relative assembly cost, R(SfIA), involved in the assembly
of Sf IA as the global estimation of the relative assembly cost associated with
SfIA. Since the exact evaluation of R(SfIA) can only be obtained after a
complete assembly plan is formulated, we indirectly estimate R(SfIA) based
on the following two major factors contributing to R(SfIA):

www.manaraa.com

367

1) The estimated relative assembly cost, Ro(SfIA), due to the number of re­
orientations involved in the assembly of sf IA.

2) The estimated relative assembly cost, R.(SfIA), due to the number of stack­
ing and non-stacking operations involved in the assembly of SfIA.

To obtain Ro(SfIA) and R8 (SfIA), let us define the following :

Definition: Directionality of sflA, DdSfIA)

sflA is said to have m degrees of directionality in ~ (~ = x, y, or z),
denoted as D~(SfIA) = m, in the case where the number of +~ or -~
included in the list of {LF M(ld, Vii, Ii E GL(SfIA)} is m.

Note that in defining the directionality of Sf lA, x, y, and z are referenced in
terms of the assembly pose of A, and LF M(ld, Ii '" (PI, P2), can be com­
puted either by LFM(/;iPI,P2) or LFM(liiP2,PI), since LFM(hiPI,P2) =
-LF M(lii P2, PI).

Definition: Directional Uniformity of sflA, u{(SfIA)

sf IA is said to have the directional uniformity of T in ~, denoted as
U~(SfIA) = T, in the case where D~(SfIA)/Card {Ii, Ii E GL(SfIA)} = T.

Sf IA has the maximum directional uniformity in ~, if Sf IA has the maximum
directionality in ~.

Definition: Directionality of a Base Node, nB, of sf lA, DnB(SfIA)

The directionality of a base node, nB, is defined by the independent
directions involovedin {LFM(l;i Pi, Base), Vh: Ii is associated with nB
representing Base}, where an nB is a node of GL(SfIA) which has the
degree far greater than the average degree of a node of G L (Sf IA), i.e., the
degree ofnB 2: k· Average Degree of GL(SfIA) with k cosntant, k» 1.

We can select U~(SfIA) from {UdSfIA), ~ = x, y, or z} in a decreasing order
until the accumulation of the selected U~ (Sf IA) 's becomes greater than or equal
to unity. Let us define {e*(StIA)} as a set containing e's which are associated
with the selected udstIA)'s.

Then, Ro(SfIA) can be estimated by the following equation:

Ro(sfIA) = ao[(E a{ . b{ - 1) + C~],
~=x ,y,z

www.manaraa.com

368

where

2, if±e E DnB(StIA), nB E {nB}:
A set of base nodes in GL(stIA)

1, otherwise
1, if e E {e*(StIA)}
0, otherwise
1, if the selected best pose of SflA ¢ {e*(SfIA)}
0, otherwise.

R,(stIA) can be estimated based on the following equation:

where N represents the number of parts included in StIA, and

Now, the relative assembly cost, Rs(stIA), representing a global estimation of
the relative assembly cost associated with sf IA becomes

Finally, the global estimation of the relative assembly cost, R, due to direc­
tionality, can simply be obtained by R = R(stIA) + R(A - StIA).

14.5.3 Manipulability

A subassembly subject to either a reorientation and/or a translation for mat­
ing should be easily manipulable by tools or hands. The term manipulability
of SflA is used to quantify the efficiency in orienting sflA and in handling
of StIA. The manipulability of sflA is closely linked to the size, shape and
weight of StIA. More specifically[6], the orientation efficiency can be measured
based on the symmetry and marked polarity in the geometry and weight of
StIA, whereas the handling efficiency can be measured based on the regularity
in the size, weight and shape of StIA, and the flexibility and fragility of StIA,
which determine the need for special tooling, as shown in Table 14.4.

The manipulabilities of sf IA and A - sf IA affect the relative assembly cost
of the local mating operation between SflA and A - stlA, since they directly
influence the relative assembly cost for the required reorientations as well as
the mating motion.

To take this into consideration, in the previous section, the relative assembly
cost for a reorientation, a, as well as the relative cost for a mating motion,

www.manaraa.com

369

Table 14.4: The Criteria for Measuring Manipulability of a Part or a Subassem­
bly[6]

Orientation Efficiency Relative Assembly Cost

Part tangles, nests or shingles 5
Asymmetric part without marked 5
polarities of weight or geometry
Asymmetric part with marked 3
polarities of weight or geometry
Symmetric part 1
Part delivered to the assembly station 1
with a known orientation

Handling Efficiency Relative Assembly Cost

Large off center weight potentially 5
causing loss of orientation
Very large parts 5
Very small parts 5
Fragile 3
Flexible 3
Irregular shaped part requiring 3
special tooling
Easily handled part with standard tooling 1
(tooling can handle more than 1 part)

www.manaraa.com

370

13 were determined by multiplying the manipulability coefficient, /, to their
nominal values, ao and 130.

The manipulability coefficient, /, can be determined for sflA as follows:

(S~ IA) = l: the scores of orientation and of handling efficiency for Sf IA
/, l: the nominal scores of orientation and of handling efficiency

14.5.4 Process Planning

The special process forest, Gs(A), represents the precedence relationship among
special processes associated with A, where a child process should precede its
parent process. The association of Gs(A) with A implies that the processes
included in Gs(A) should be accomplished during the assembly of A. The
backward assembly planning of A, which decomposes A into Sf IA and A - Sf lA,
also requires the decomposition ofthe processes included in Gs(A).

1) The processes that should be accomplished with A prior to the decomposi­
tion of A into SidlA and A - SfIA.

2) The processes that should be left for sflA.

3) The processes that should be left for A - SfIA.

Note that the processes to be accomplished with A should be selected in the
top-down order starting from the root nodes of Gs(A).

In general, the decomposition of special processes associated with A into the
above 3 categories is not unique. For instance, let us assume that A is associated
with Gs(A) consisting of 3 trees, {Tl,T2,T3 }, as shown in Figure 14.9 (a). By
selecting {PAl, {PAl = {pJ, ?fl, P6}, as a set of special processes to be
accomplished with A, the remaining forest representing the special processes
that should be accomplished with sflA and A - SflA consists of 5 trees, {TL
T2, T3, T4, Tn, as shown in Figure 14.9 (b) .

Now, the selection of StlA dictates a particular decomposition of {T{, T2, T3,
T.L Tn into two disjoint sets of trees to be associated with sflA and A-stIA.
For instance, sflA '" {Tf,T2} and (A - SfIA) '" {T3' T4, T~}, as shown in
Figure 14.9 (b).

It should be noted that the selection of the special processes, {PAl, from
Gs(A) for A, and the decomposition of Gs(A) - {PAl into the two disjoint
sets, Gs(StIA) and Gs(A - StIA), to be associated with StlA and A - StlA
impose additional precedence constraints among special processes. That is, a
different selection of special processes, {PAl, for A, and/or a different selec­
tion of StlA may result in a different partial order among special processes
due to the different Gs(SfIA) and Gs(A - StIA), resulting in a difference in

www.manaraa.com

(a)

p1 ~ Dol T; :: 7\2 T3
21 12 ::: 11

P' P' Ip, P'
22 23 ::: 21 22

)~~

(b)

A - s'fIA

p3
21

371

Figure 14.9: (a) The Special Process Forest, Gs(A), associated with an Assem­
bly Aj (b) The Special Process Forests that should be assembled with SllA
and with A - SfIA, in the case where a set of Special Processes, {PA}, {PAl
= {PrJ, Pl1 , pJ}, are selected for A.

www.manaraa.com

372

processing cost. This prompts the need to incorporate process planning, which
concerns the minimization of the cost involved in special processes, into the
selection of StIA. Planning of special processes requires the estimation of the
cost in accomplishing a special process at a different stage of assembly, as well
as the estimation of the overall cost of the special processes associated with
sflA and the overall cost of the special processes associated with A - SfIA.
The details of process planning including the estimation of processing costs are
highly domain dependent and will not be elaborated here.

14.5.5 Parallelism

The total parallelism in an assembly sequence differs depending on the selected
subassemblies. Parallelism can shorten the assembly time, although it is not
necessarily linear due to the increased material transfer time. Parallelism may
require additional resources such as workstations, fixtures, manpower, and ma­
terial transfer facilities for the implementation. Therefore, an assembly plan
with the maximum parallelism may not be always desirable. However, paral­
lelism can be a useful feature for flexible assembly systems.

Parallelism can be measured approximately by the depth of an assembly partial
order graph. However, the exact depth can be obtained only by generating the
whole assembly order. Therefore , we consider the estimation of a particular
decomposition (SfIA and A - SfIA) on the parallelism of assembly, based on
the number of parts in Sf IA and A - Sf lA, as follows:

where wp(SfIA) represents the effect of selecting SflA on the parallelism in
assembly, and Nl and N2 represent the number of parts in SflA and A - SfIA,
respectively.

14.6 Selection of Best Subassemblies
based on AO* Algorithm

As indicated in the beginning of this section, the selection of StlA based solely
on the relative assembly costs involved in the local mating operation between
Sf IA and A - Sf IA may not produce a globally optimal assembly plan . There­
fore, we adopt the AO* algorithm with a properly defined evaluation function
to search for a globally optimal or suboptimal plan.

The search space to which the AO* algorithm is applied can be represented
by an AND/OR tree. The decomposition of an assembly A in backward as­
sembly planning implies the expansion of an AND node (representing an as­
sembly A) into its OR children representing the alternative decompositions of

www.manaraa.com

373

root (product)

1

Figure 14.10: The AND/OR Tree representing the Search Space for AO* Algo­
rithm, where 2", A implies that 4 '" {SfIA,A - SfIA}, 5 '" {S~IA, A - S~IA},
8", sflA, 9", (A - SfIA), 10 '" S~IA, and 11 '" (A - S~IA).

A, {(Sf lA, A - SfIA),i = 1," ' ,/}, and its AND grandchildren {SfIA and
A - SfIA, for i = 1"", /} attached to indivisual OR children, as shown in
Figure 14.10. The AO* algorithm searches for an optimal solution tree by ex­
panding those AND nodes of the current potential solution tree that are open
to expansion, and by evaluating the next alternatives based on an evaluation
function.

A potential solution tree is an AND tree2 having the minimum value for the
evaluation function at the current stage of search, whereas a solution tree is an
AND tree with leaves consisting of only single parts.

To formulate the evaluation function, ej, for the AO* algorithm, let us intro­
duce the following definitions:

Definition: The Local Cost, cl(n?), associated with an OR node, n?

CI (n?), n? '" (Sf lA, A - Sf IA), represents the relative assembly cost in­
curred by the local mating operation between StlA and A - StIA. cz(np)
can be computed by the weighted sum of the following three components:

1) The relative assembly cost due to the stabilization of SflA and A -
Sf IA by using holding devices and/or reorientations, as described in

2 An AND tree is an AND JOR tree every AND node of which has no more than one OR
child.

www.manaraa.com

374

Table 14.3.

2) The relative assembly cost due to the reorientations and translations
required for mating between sflA and A - sflA, as described in
Table 14.4 and Table 14.5. Note that this cost is linked to the
directionalities and best assembly poses for Sf IA and A - Sf lA, as
well as the manipulabilities of SflA and A - StIA.

3) The relative cost of the special processes assigned to A, the parent
node of n?

Definition: The Accumulated Cost, ca(Tia), associated with an AND tree, Tia

Ca (Tia) represents the weighted sum of the following two components:

1) The sum of cI(np) for all np, np E Tia.

2) The depth of Tia defined by the maximum depth of np for all n?,
n? E Tia, where the depth of an OR node is measured in terms of
the depth among OR nodes without considering AND nodes.

Definition: The Local Heuristic Estimate, he(nP), associated with an OR
node, np

he (np), np '" (Sf lA, A - Sf IA), represents an estimate of the optimal
relative assembly cost to assemble Sf lA, and can be computed by the
weighted sum of the following components:

1) The relative assembly cost, R, associated with the directional unifor­
mity of sflA and A - sflA, as defined in the previous section.

2) The relative assembly cost, S, associated with the internal stability
of sflA and A - sflA :

S = 5[x(SfIA) + X(A - SfIA)]

where x(SfIA) and X(A - SfIA) represent the internal stability of
SflA and A - sflA, respectively, and are defined by

x(SfIA) =

X(A - SfIA)

the number of floating liaisons in G L (Sf IA)
the average degree of a node in GL(SfIA)

the number of floating liaisons in GL(A - SfIA)
the average degree of a node in GL(A - SfIA)

and 5 represents the relative assembly cost due to a holding device.

3) The effect of parallelism, wp(SfIA), as defined in the previous section.

Definition: The Accumulated Heuristic Estimate, ha(Tia), associated with an
AND tree, Tia

ha (Tia) represents the sum of he (np) for all n?, n? E Tia.

www.manaraa.com

375

Table 14.5: A DFA Analysis Table for an OR Node, n?, n? '" {SfIA,A-SidIA}

DFA Analysis Category

Stability Total relative
cost due to
the need to
stabilize sf IA
and/or A -
sflA

Manipulability Total relative
and Direc- cost involved
tionality in mating be-

Process

tween sflA
and A - sflA
due to manip­
ulability and
directionality

Total relative
cost
for the spe­
cial processes
assigned to A
Total cost at
n~

DFA Criteria Details

The number of hold­
ing devices required
for the stabilization
of sflA and/or A -
SflA

The number of re­
orientations required
for the stabilization
of sflA and/or A -
S~IA
The manipulability
factors
(Refer to Table 14.4
for more details L
The best assembly
poses for sf IA and/or
A-S~IA
The number of reori­
entations required for
mating between Sf IA
and/or A - sflA

The translatinal mo­
tion during mating
between SflA and/or
A-sfiA

The list of special
processes assigned to
A

The relative cost
due to the
required holding
devices

The relative cost
due to the
required reorien­
taion

r(stIA) and
rCA - sflA)

The ralative cost
due to the re­
quired reorienta­
tions

The ralative cost
due to the re­
quired translati­
nal motion for
mating
The relative cost
of individual spe­
cial processes

www.manaraa.com

376

Then, the evaluation function, eJ(T;a), associated with an AND tree T;a simply
becomes

14.7 Assembly Planning with DFA Analysis

As shown in the previous section, the evaluation of the local cost, c/(np), at an
OR node, np, is based on the detailed analysis of cr(np) in terms of the stability,
the directionality, the assembly pose and the manipulability associated with the
assembly of the children of np, as well as the cost of special processes assigned
to the parent of np.
The result of this analysis at each OR node of the search tree can directly be
used for the identification of the assemblability of a product and for the evalu­
ation of DFA criteria, which can be fed back to the designer for proper design
evaluation and modification. The assembly planner developed here has both
the capability of selecting an optimal assembly partial order as well as the ca­
pability of conducting DFA analysis, serving as a powerful tool for automating
the DFA evaluation and modification cycle in concurrent engineering.

DFA analysis performed during the process of computing the local cost, q(np),
associated with an OR node, np, np "" {StIA,A - StIA} , is summurized into
the DFA analysis table for np, as illustrated in Table 14.5.

Now, the analysis of DFA for a given product can be accomplished based on
the DFA tables associated with all of the OR nodes of the solution tree.

Example: The ROS Optical Assembly

The AO* algorithm with the cost and heuristic functions defined in the previous
section is applied to the ROS optical assembly for finding an optimal solution
tree and performing DFA analysis . Figure 14.11 illustrates first several nodes
ofthe AND/OR search tree formed by the AO* algorithm, where DFA analysis
tables are attached to individual OR nodes.

At Node 1, the system identifies two alternative direct subassemlies, MG and
S2, of the product through the generation of the abstract liason graph (refer to
Figure 14.7) and the identification of the valid cut-sets based on the generated
abstract liason graph. These two alternatives are represented as the OR nodes
2 and 3 in Figure 14.11, while the two OR nodes are expanded to their AND
children,(4,5) and (6,7), respectively.

The system then calculates the evaluation function at Node 2, eJ (Node 2),
and the evaluation function at Node 3, eJ (Node 3), based on the local costs,

www.manaraa.com

377

c/(Node 2) and c/(Node3), and the local heuristic estimates, he(Node 2) and
he(Node 3}, as follows:

At Node 2, the system identifies that

1) MG and Sl+S2+IOU are self-stable.

2) The best assembly pose of Sl+S2+IOU is determined to be the
same as the assembly pose of the product in order to avoid
a costly reorientation. The assembly pose of the product is
initially given in such a way that MG is located on top of the
product.

3) MG can be stacked onto Sl+S2+IOU.

4) MG is symmetric and easy to handle.

This implies that the decomposition represented by Node 2 requires one stack­
ing operation ((30 = 1) without the need of holding devices and reorientations,
and that the manipulability coefficient of MG is low(O.4), incurring low assem­
bly cost. As a result, we have that c/(Node 2) = 1 x 0.4 = 0.4. ca(Node 2) can
then be obtained directly from c/(Node 2) by adding the depth(l) of Node 2:
ca(Node 2) = 1.4. For the calculation of the local heuristic estimate at Node
2, the system identifies the following:

1) The estimates of the relative assembly cost due to the directional
uniformity, R, of MG and the internal stability, S, of MG are
zero, since MG is a single part.

2) Sl+S2+IOU consists of 15 parts with the maximum uniform
directionality of 1 in z. However, it has a base node which has
directionality of +z and -z. Therefore, Ro(Sl+S2+IOU) =
10 . 1 = 10, and Rs (Sl+S2+IOU) = 1 . 15 = 15, given the
selected best assembly pose of Sl+S2+IOU. As a result, the
estimate of the relative assembly cost due to the directional
uniformity, R, of Sl+S2+IOU is 25.

3) Sl+S2+IOU has 4 floating liaisons and has the average degree of
node of 33/14. Therefore, the estimate of the relative assembly
cost due to the internal stability, S, of Sl+S2+IOU is 25.5
(S = 15 x 4/(33/14) = 25.5), where 15 is used for the relative
assembly cost for a holding device.

4) The effect of Node 2 on assembly parallelism,wp , can be esti­
mated as 8.67 (wp = 10 x 13/15 = 8.67 with 10 assigned as a
weight).

As a result, we have that he(Node 2) = 59.17. Furthermore, ha(Node 2) =
he(Node 2), since no other OR node exists at the current potential solution

www.manaraa.com

378

o

Ca = 1.4, he = 59.17
root (Product)

S
010
010

o.
M&D 010

1 I o.
Total 0.4

et= fIJ.57
{MG, Sl+S2+IOU}

{MG}

Ca =1.8 ,he = 55.4

S
o 10
o 10
y- O.~

M&D 010
1 I o.~

Total 0.8

10

1

6

M&D

Total

Ca =11.8, he = 53.23

S
o 10
o 10

3 y- O.~
M&D 1 I 10

1 I o.~
Total 10.8

7 et=65.03

{S2} = 0 {MG+Sl +IOU}
{BC,BO}

Figure 14.11: The AO* Search of an Optimal Plan for the ROS Optical Assem­
bly, where the generated DFA analysis tables are attached to individual OR
nodes. S, M, and D inside the tables represent respectively stability, manipu­
lability and directionality.

tree candidate.

Therefore, we have that

e J (Node 2) = Ca (Node 2) + 1/ha (Node 2)

60.57 (with 1/ = 1.0).

At Node 3, the system follows the same steps that are used for calculating
ej(Node 2), and results in the following:

c/(Node 3) = ca(Node 3) = 11.8,

he(Node 3) = ha(Node 3) = 53.23,

with R = 25, S = 20.9, and wp = 7.33.

www.manaraa.com

S4

S3

S2

• :A-node

.•...•.•• : floating liaison
- : firm liaison
_ : rigid liaison

EJl) : Merging
_ :Grouping

379

Figure 14.12: The merging and grouping operations applied to the liaison graph
generated at Node 5 for the construction of the abstract liason graph.

Therefore, we have that

ef(Node 3) = ca(Node 3) + 7Jha(Node 3)

65.03 (with 7J = 1.0).

Finally, comparing ef(Node 2) and ef(Node 3), the system selects Node 2 for
further expansion. The result of such an expansion is shown in Figure 14.11.
It is noted that, at Node 5, GL(S1+S2+IOU) should be generated first, so
that the process of constructing GL(S1+S2+IOU) and identifying the valid
cut-sets from GL(S1+S2+IOU) can start. Figure 14.12 illustarates the merg­
ing and grouping operations applied to the GL(S1+S2+IOU) to construct
GL(S1+S2+IOU) .

14.8 Conclusion

This chapter contributes to bringing automatic assembly planning closer to
reality by

1) Developing an efficient backward assembly planner which handles the case
where an assembly sequence is not same as the reverse of a disassembly
sequence.

2) Achieving the efficiency in planning with the reduction of search space not
only by merging parts based on interconnection feasibility constraints

www.manaraa.com

380

but also by grouping parts based on the special process precedence con­
straints.

3) Extending assembly planning into assembly process planning by incorporat­
ing special assembly processes such as testing, cleaning, etc, in planning.

4) Establishing and evaluating the subassembly selection criteria with a direct
connection to assembly cost.

5) Developing the AO* algorithm for the search of a globally optimal assembly
plan.

6) Developing an automatic DFA analysis tool for concurrent engineering by
combining automatic assembly planning with DFA analysis .

However , there still remain many problems to overcome in turning automatic
assembly planning into practice. Further research on the more powerful geo­
metric and physical reasoners for assembly planning should follow, in order to
have a direct connection to CAD database, to handle more complicated prod­
ucts, to achieve greater efficiency in assembly planning, and to solidify methods
that evaluate an assembly plan in terms of assembly cost and DFA.

Acknowledgements
This research was supported in part by the National Science Foundation under
grants CDR-87-17322, and in part by the industrial members of the InstitlJ.te
for Manufacturing and Automation Research (IMAR) .

References

[1] G. Boothroyd and P. Dewhurt, Design for Assembly, Pendon/IPC, Inc.,
1984.

[2] T. L. De Fazio and D. E. Whitney, "Simplified Generation of All Mechani­
cal Assembly Sequences," IEEE J. Robotics Automata, RA-3(6):640-658,
December 1987. Corrections ibid RA-4(6):705-708, December 1988.

[3] Sukhan Lee and Yeong G. Shin, "Automatic Construction of Assembly
Partial-Order Graph," Proceedings of the 1988 International Conference
on Computer Integrated Manufacturing, RPI, Troy, New York May 1988,
pp. 383-392.

[4] 1. S. Homem de Mello and A. C. Sanderson, " Automatic Generation of
Mechanical Assembly Sequences," Carnegie-Mellon Univ., CMU-RI-TR-
88-19 1988.

www.manaraa.com

381

[5] Sukhan Lee, "Disassembly Planning by Subassembly Extraction," The Pro­
ceedings of the Third ORSA/TIMS Conference on Flexible ManufaCturing
Systems, Elsevier Science, MIT, MA. Aug., 1989. pp. 383-388.

[6] Robert L. Hoekstra, "Design for Automated Assembly: An Axiomatic and
Analytical Method," SME Technical Paper, Detroit , Michigan, May 1989.

[7] J. D. Wolter, "On the Automatic Generation of Assembly Plans", Pro­
ceedings of IEEE Conference on Robotics and Automation, pp. 62-68,
1989.

[8] L. S. Homem de Mello and A. C. Sanderson, " Evaluation and Selection of
Assembly Plans," Proceedings of the 1990 IEEE Conference on Robotics
and Automation, Cincinnati, OH. May 1990.

[9] Sukhan Lee and Yeong G. Shin, "Assembly Planning Based on Subassembly
Extraction" ,Proceeding of the 1990 IEEE Conference on Robotics and
Automation, Cincinnati, OH. May 1990. pp . 1606-1611.

[10] Sukhan Lee and Yeong G. Shin, "A Cooperative Planning System for
Flexible Assembly," Proceedings of the 2nd International Conference on
Computer Integrated Manufacturing, Troy, NY., May 1990.

[11] Sukhan Lee and Yeong G. Shin, "Assembly Planning Based on Geometric
Reasoning," Computers fj Graphics, an International Journal of Appli­
cations in Computer Graphics, vol. 14, No.2, 1990. pp. 237-250.

[12] Richard 1. Hoffman, "Automated Assembly in a CSG Domain," IEEE
International Conference on Robotics and Automation, pp. 210-215, May
1989.

[13] L. De Floriani and G. Nagy, "A graph-based model for face-to-face as­
sembly," Proceedings IEEE International Conference on Robotics and Au­
tomation, Scottdale, pp 75-78, 1989.

[14] A. A. G. Requicha and H. B. Voelcker, "Boolean Operation in Solid
Modeling: Boundary Evaluation and Merging Algorithms," Proceedings
IEEE, vol. 73, No . 1, Jan., 1985.

[15] Nils J. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw­
Hill, Inc., 1971.

www.manaraa.com

Chapter 15

Computer aids for finding,
representing, choosing
amongst, and evaluating
the assembly sequences of
mechanical products

Thomas E. Abell, Guillaume P. Amblard,

Daniel F. Baldwin, Thomas L. De Fazio,
Man-Cheung Max Lui, Daniel E. Whitney

Sequence of assembly of a set of parts plays a key role in determining important
characteristics of the tasks of assembly and of the finished assembly. Matters
such as difficulty of assembly steps, needs for fixturing, potential for damage
during assembly, ability to do in-process testing, occurrence of need for rework,
and cost of assembly, are all affected by assembly sequence choice. The rational
exploration and choice of assembly sequence is then an important task for a
production engineer.

www.manaraa.com

384

Exploring assembly sequence choice is difficult for two reasons: the number
of assembly sequences can be large even at a small parts count, and can rise
rapidly with increasing parts-count; and seemingly minor design changes can
drastically modify the available choices of assembly sequences. Production en­
gineers seldom consider all assembly sequences before choosing a sequence to
be used. That this is so is due only in part to the potentially large number
of sequences involved in most assemblies. Means for generating the complete
set of assembly sequences have been few, not well-known, and not always con­
venient. Past techniques for exploring the choices of assembly sequence have
been informal or incomplete.

Our interest in choosing good assembly sequences dates from a 1977 demon­
stration of robot assembly of automobile alternators[23]. Our past work used
parts-trees and connection diagrams to represent assemblies[1l,27].

Our current algorithms are rooted in the work of Bourjault and his colleagues[6,
7,8,18] and Homem de Mello and Sanderson[19,21,20,26j. Bourjault used a
parts-connection diagram or liaison diagram to generate yes-no questions to be
addressed by the designer. "Yes" or "no" represents the ability or inability to
assemble a part to a subassembly, which depends on whether a clear approach
path without geometric interference exists for that part and subassembly. An­
swers to the questions are processed to generate a list of the possible sequences.
Henrioud and Bourjault[18] use the same information but process the connec­
tion diagram differently, posing far fewer questions for the same result. De Fazio
and Whitney[12] altered the form of the Bourjault[6] yes-no questions, asking
the user fewer questions; theirs are not yes-no questions and require geometric
reasoning and anticipation by the user. They showed how to represent assembly
sequences as paths through a network of assembly states (nodes) and assembly
moves (arcs) such as that shown in Figure 15.4. This compact representation
is called the assembly sequence diagram and forms a basis for the following
evaluation and editing methods. An implementation similar to Henrioud and
Bourjault's is described in De Fazio et aL[13]. Homem de Mello[19] uses cut­
sets of the connection diagram of the assembly and subassemblies as bases for
disassembly questions. An approach combining aspects of the techniques of
Homem de Mello and Sanderson, and of Henrioud and Bourjault is used here
to generate precedence relations and is referred to as the "cut-set method." In
this method, the ability or inability to disassemble each cut-set of the assembly
and each subassembly is inferred where possible, or answered by the user where
not. Frommherz and Hornberger[14] describe a similar approach.

To make benefits of assembly sequence consideration widely available, we have
developed a set of computer aids to generate possible assembly sequences and
provide an environment that allows the designer to select a good sequence.
Figure 15.1 illustrates the process schematically. It shows generation of possible
assembly sequences followed by user sequence choice according to such criteria
as: ease or reliability of assembly, fixturing, or gripping[2,4]; least assembly

www.manaraa.com

385

unit-cost or least fixed, variable, or total assembly system cost[9,15,17]; best
product-testing strategy for on-line testing[25]; assembly-line layout, or other
production-related criteria.

15.1 Background

Earlier work used concepts from Bourjault[6] to also generate a complete set of
assembly sequences, though certain simplifications allowed practical application
of the technique to assemblies with higher parts counts. Bourjault begins by
using information contained in a parts list and an assembly drawing to charac­
terize an assembly by a network where nodes represent parts and lines between
nodes represent user-defined relations between parts called "liaisons." A def­
inition of "liaison" follows the principal literal definition[l], "a close bond or
connection," and generally includes physical contact between parts. A liaison
exists between two parts if the two parts may be assembled together alone.

Once the assembly is characterized by a network of nodes (parts) and lines
(liaisons), names are associated with these two sets of elements: parts names
with the nodes; and liaison numbers with the lines. Subsequently any assembly
step is characterized by the establishment of one or more of the liaisons of the
assembly. Completion of assembly from start can then be characterized by a
punctuated string of numbers representing, in some sequence, all of the liaisons
of the assembly. Bourjault's and our simplified technique correspond up to this
point.

Bourjault derives rules that permit algorithmic generation of (only) valid num­
ber strings representing assembly sequences from the answers to a series of
questions about individual mates. Each question is answered with "yes" or
"no." For assemblies consisting of rigid parts alone, the questions are of the
single form (Li is read "the liaison numbered i"):

Is it true that Li cannot be done after L j and Lk have been done?

The method of Bourjault involves asking and answering a large number of
questions arranged in sets, each of which involves imagining some set of liaisons
first completed, then not yet completed.

15.1.1 Simple technique for generating assembly sequences

Points differentiating our simple technique from that of Bourjault are: a smaller
set of questions regarding conditions of liaison establishment, a set whose size
increases in proportion to liaison count rather than faster than the square
of liaison count; and algorithmic generation of liaison sequences from a more
compact and evocative form of the liaison-sequence rules. Both techniques

www.manaraa.com

386

RE-CONSIDERATION OF DESIGN
Detail Refinement to
Profound Re-Deslgn

PRODUCT DESIGN
Assembly Drawing

Parts List

I ,
TOPOLOGI CAL MODEL
Parts Connectivity

Liaison Diagram

I

SEQUENCE GENERATION
Answer Questions (User)

Infer Precedences
I nfer SeQuences

ALL POSSIBLE
ASSEMBLY

SEQUENCES

EDITING OF ASSEMBLY SEQUENCES;
USER-APPLIED CRITERIA
OR MEANS MAY INCLUDE;

Avoidance of Awkward States
Avoidance of Awkward Mates

Assembly System Costs
Assembly Line Topology
Line Testing Strategy

Culture, Custom, or Law
JUdgemental Consideration

ONE OR FEW
FAVORED
ASSEMBLY

SEQUENCES

I

SOLID MODEL I
(I fUsed)

I

Figure 15.1: The roles of assembly sequence design and evaluation in early
product design

www.manaraa.com

387

share opening moves, based on information in an assembly drawing and parts
list or in a prototype or sample assembly. Figure 15.2 is an idealized assembly
drawing with parts list representing an assembly from industry (AFI), the final
assembly of an automotive automatic transmission.

One begins by repr .3senting the assembly as a network of nodes and lines.
Each part is represented by a node bearing the name of the part. Liaisons,
as relationships between parts, are represented as numbered lines connecting
related parts. Figure 15.3 is an example network representation of assembly.

Once the assembly is characterized as a network of parts and liaisons, the user
must answer a question for each liaison. If each component part of the assembly
is rigid, then the questions to be answered, for each liaison i, i = 1 to l, are:

Q1: What liaisons must be done prior to doing liaison i?

Answers are to be expressed as precedence relationships between liaisons or
logical combinations of liaisons. Example answers may be of the form:

~ Li

Li ~

(L j or (Lk and Lm))

(Ls or (Lt and Lu))

(Ls or (Lt andLu))

The symbol "~" is read "must precede."

The user must seek and anticipate all the alternatives which permit each liaison
to be done. Doing so results in a close knowledge of the design details of the
assembly. Overlooking alternatives falsely constrains assembly sequence count.
Overlooking precedence rules yields spurious assembly moves. A false move is
exposed by trying to practice it, if not earlier by consideration of the assembly
drawing.

One may be concerned that question count reduction is accompanied by a
staggering increase in the difficulty of answering each question. This is a sub­
jective matter, but empirically an increase in difficulty does not seem to occur
in many cases, and where it does occur, it is a reasonable increase in difficulty.
A difference is that a question of the simpler technique must evoke an answer
that contains the same logical relations implied a (large) set of yes/no answers
to questions of the technique of Bourjault. Perhaps surprisingly, most of the
questions of the simpler technique have answers that are at once simple and
accessible, and easily expressed. A complicated design can result in an answer
that is complicated or difficult to express. It is often useful and possible to
answer difficult questions in prose. The prose may be translated into symbolic
logical form, and logical technique may be used to reduce answers to simpler
form. Examples of prose response to assembly questions appear in subsection
15.1.3.

www.manaraa.com

388

Figure 15.2: Assembled parts of example assembly from industry (AFI)

Figure 15.3: Liaison diagram of example assembly from industry (AFI)

www.manaraa.com

15.1.2 Assembly state and assembly move
representation of assembly

389

The symbolically stated answers to the 1 questions are in form of precedence
relations between liaisons or logical combinations of liaisons. Liaison sequences
may be generated directly from the answers. The initial state is disassembly,
no liaison is established. "State" refers to the state of establishment of liaisons.
An explicit list of which liaisons are and which are not established represents
the state of assembly. Assembly proceeds from state to state by adding a
part or a subassembly to another part or subassembiy until all liaisons are
established. The imaginary path associated with the attachment of a part or
subassembly is called an assembly state transition, a state transition, or an
assembly move. Each state may be represented by a box with a list of numbers
representing established liaisons, and assembly moves may be represented as
lines connecting states. The starting state's list has no entries.

To generate liaison sequences, begin by scanning the liaison list and the answers
for liaisons which are not precedented. Any of these may serve as the first liaison
to be established. Line up representations of each first possible state across a
rank and connect each with the starting state by a line. For each possible first
liaison, explore for all possible subsequent states by again scanning the liaison
list, the precedence relations (answers) and any other constraints imposed on
the assembly, thereby generating another rank. It is convenient to show no
state more than once, so if it occurs that there are two or three ways of getting
to a state in the second rank, its representation will have two or three assembly
moves (lines) entering it. In this way one proceeds algorithmically to the end
state where all liaisons are established. State and assembly-move diagrams are
seen as Figures 15.4 and 15.5.

Name the ranks ordinally, zeroth for the unassembled state, first for the
prospective first liaisons, and so forth. Note that there are as many ranks
as parts. Since l ;::: (n - 1), a single liaison per assembly move is the rule only
for assemblies where l = (n-l). For assemblies where l > (n-l), some assem­
bly moves involve establishing two or more liaisons. One may consider that an
assembly move involves placing a part or a subassembly, but the bookkeeping
is not by part name but by liaison number. But it is already known that parts
count and liaison count can differ by more than one. Another manifestation of
the same matter is noted on the liaison diagram where closed figures (triangles,
quadrilaterals, pentagons, etc.) may occur with parts at the vertices. If a last
part is placed in a set that makes a closed figure, two liaisons (lines) are es­
tablished. If a part placement closes two figures, three liaisons are established
in the assembly move, and so on. The AFI example, Figure 15.2, has a liaison
diagram, Figure 15.3, with multiple closed figures.

Even though liaison-sequence generation is algorithmic and can be arranged to
be done by a computer, it is useful that a graphical form of a state and assembly-

www.manaraa.com

390

move diagram be available. This diagram may be arranged in (inverted) tree
form such that a state is shown as many times as there are paths to reach that
state and so that the final assembled state is shown as many times as there are
liaison sequences to completion[6]. Alternately, the diagram may be arranged
so that no state is shown more than once and some states show a plurality
of assembly moves entering or leaving[12]. The latter representation is chosen
for convenience. The following example involves 818 liaison-sequences. Their
representation, Figure 15.4, would be huge if it were in tree-form rather than
the more compact "diamond" form.

15.1.3 Development of an example

An example is developed representing an assembly from industry (AFI), final
assembly of an automotive automatic transmission. Its geometry is represented
by circular symmetry about the axial centerline. Excepting the axial center­
line, the centerline segments in Figure 15.2 represent bolts on bolt circles. Since
these fasteners are transparent to the liaison sequence process when not rep­
resented by nodes, one is obliged to respond to questions Ql in a way that
considers the placement and securing of fasteners as part of the liaison of the
parts being joined.

The liaison diagram of AFI, Figure 15.3, follows almost directly from the as­
sembly drawing, Figure 15.2. One feature calls for comment. Part K has axial
freedom and may come into contact with part L. No liaison is shown between
parts K and L since no subassembly of parts K and L alone is anticipated. The
assembly is highly integrated; there is a large number of liaisons for the number
of parts. This is manifest on the liaison diagram as a relatively large number
of closed figures or network loops. Parts count and liaison count are: n = 11,
l= 18, l > (n-l).

Each assembly sequence will have some assembly moves with mUltiple liai­
son establishment. The liaison-sequence diagram has 11 ranks including fully­
disassembled and fully-assembled states.

The liaison diagram established, the next step is to ask and answer a group of
questions. Answers to Q1 for some liaisons are shown below:

i = 1: Once L1 is done, part B cannot be installed. Part B must be installed
prior to L1, either into part C (L6) or into part A. Were part B to
be placed in part A there must be something to receive it, a jig (not
characterized in the example) or part G (L8). But if part G is in place
in part A, then L3 is done. So: (6 or (3 and 8)) -+ 1.

i = 3: Nothing need be done prior to doing L3.

i = 4: Nothing need be done prior to doing L4 .

www.manaraa.com

391

]!tiLOth Rank

E§i~ 3rd Rank

~~~4thRank 

Ea=~ 5th Rank 

Figure 15.4: Graphical representation of all valid liaison sequences for the exam­
ple assembly from industry (A.F.!.) under the additional constraint precluding 
a plurality of unconnected subassemblies in an assembly state 



www.manaraa.com

392 

i = 5: Once parts A and L are mated (L5), access for the internal parts G, H, 
J, and K is denied. These internal parts must be placed before the L5 
mate. The needs and alternatives are implied by the following: Part G 
must be in part A or on part H (3 or 14); Part H must be in part G or on 
part L (14 or 17); Part J must be in part H or in part L (15 or 18); Part 
K must be in part A or on part H with part H on part L (4 or (16 and 
17» Also (so that parts G and H cannot be assembled together (LI4) but 
externally to parts A and L) Part G must be in part A or part H must 
be on part L (3 or 17). So: «3 or 14) and (14 or 17) and (3 or 17) and 
(15 or 18) and (4 or (16 and 17))) -+ 5. 

i = 8: Parts Band G may only be usefully mated while they are inside part A. 
To insure this, either part, B or G, must initially be placed inside part 
A. For part B to be secure, part C must be fastened to part A (L1) . For 
part G to be placed, L3 is completed. So: (lor 3) -+ 8 

i = 16: There is no physical constraint requiring a precedent for liaison 16, but 
part K alone on part H (LI6) is unstable and difficult to support. One 
may choose to constrain the assembly so that part K is stably supported. 
Part K is axially free on part H (L16) and needs a backstop before the 
liaison is stable. Part K can be supported on part L after part H mates 
to part L (L17) or on part A. For parts K and H to be mated (L16) with 
part K in part A (L4), part G must be in part A or mated with part H. 
So: (17 or (3 and 14) or (4 and (3 or 14))) -+ 16 

i = 18: Nothing need be done prior to doing L18. 

The following is a summary of the precedence constraints that follow from the 
design, geometry, and dimensions of AFI when all questions are answered: 

(6 or (3 and 8» -+ 1 

1 -+ 2 

«3 or 14) and (14 or 17) and (3 or 17) 

and (15 or 18) and (4 or (16 and 17))) -+ 5 

2 -+ 7 

(lor 3) -+ 8 

(8 or «lor 3) and 14» -+ 9 

(9 or (8 and 15» or «(1 or 3) and 14 and 15» -+ 10 

1 -+ 11 

2 -+ 12 

7 -+ 13 

(17 or (3 and 14) or (4 and (3 or 14») -+ 16 

(15 or 18) -+ 17 



www.manaraa.com

393 

It remains to generate the valid liaison sequences. First an additional con­
straint is imposed to reduce the count of liaison sequences. The additional 
constraint is a preclusion of a plurality of unconnected subassemblies. This is 
done for convenience here, though it can be done by design. The constraint is 
equivalent to imposing a sequential assembly line, without branches. All liai­
son sequences for AFI, subject to the precedence constraints based on design, 
dimensions, and geometry, and to the avoidance of any plurality of subassem­
blies, are represented in Figure 15.4. There are 818 sequences. Assembly states 
are represented by boxes. In this case each box has 18 cells in a three row by 
six column array corresponding to 18 liaisons: liaisons one through six, left to 
right across the top row; seven through 12 left to right across the middle row; 
and 13 through 18, left-to-right across the bottom row. A blank cell denotes a 
liaison not established and a marked cell denotes an established liaison. 

For the technique to be industrially useful, an engineer must be able to en­
compass output as that represented in Figure 15.4 and reduce it to a relatively 
small number of choices by deleting the awkward and retaining the favorable. 
Such sweeping reductions are possible in this case. 

Consider this characterization of assembly of AFI: Part A is "filled" with parts 
from two ends and the "fill" at each end is independently secured. Parts 
B,C,D,E, and F fill the front, and parts G,H,J,K, and L fill the back. Con­
sider that during assembly the axis will be vertically oriented using gravity to 
keep parts in place until they can be secured. If orientation is front-up, parts 
B,C,D,E, and F can be placed but G,H,J, and K would fall out before L is 
secured; a similar but opposite situation obtains for rear-up orientation. This 
suggests constraining assembly further, so that if a front fill is begun, nothing 
is put in the back until the front fill is finished, and so that if a rear-fill is 
begun, nothing is put in the front until the rear fill is finished. This additional 
constraint is easily expressed by writing another menu classifying liaisons as 
front-fill liaisons, rear-fill liaisons, and front-to-rear association liaisons and; 
once any single liaison is completed from either the front-fill or the rear-fill 
liaison category, that no liaison be completed from the opposite category until 
all liaisons from the first-used category are completed. The menu is presented 
in Table 15.1. 

Table 15.1: Menu for an Additional Constraint Precluding Simultaneous or 
Mixed (from front and rear) Filling of Part A for the Assembly from Industry 

Front-fill Liaisons 1, 2, 6, 7, 11, 12, 13 
Front-to-Rear Association Liaisons 8,9,10 
Rear-fill Liaisons 3, 4, 5, 14, 15, 16, 17, 18 



www.manaraa.com

394 

All liaison sequences for AFI, subject to precedence constraints based on design, 
dimensions, and geometry, and the additional constraints, are displayed in 
Figure 15.5. There are now but 18 assembly path choices, down from 818. 

The new constraint eliminates states that include incomplete sets of liaisons 
from both front-fill and rear-fill categories. In Figure 15.5, note a channel, 
uncrossed by any state transition, internal to the state and state-transition 
diagram, that persists from the 1st rank through the 9th rank inclusively. To 
the left of the channel lie all the liaison sequences involving first the front-fill 
liaisons complete, followed then and only then by the rear-fill liaisons. To the 
right of the channel lie all the liaison sequences involving first the complete 
set of rear-fill liaisons, followed then and only then by the front-fill liaisons. 
That this channel may exist, uncrossed by state transitions, is a predictable 
manifestation of the last constraint. 

Further reductions in liaison-sequence path count remain. They result from 
recognition and removal of particularly awkward assembly moves, which occur 
in some but not all liaison sequences. Two such assembly moves have been 
recognized and are marked on Figure 15.5. They are, first, the installation 
of part K between parts A and H simultaneously, characterized as liaisons 4 
and 16 occurring simultaneously, marked in four places by circles; and, second, 
mating part B simultaneously with parts G, H, and J, characterized as the 
simultaneous establishment of liaisons 8, 9, and 10, marked by a triangle. The 
former involves three simultaneous splined-shaft to splined-bore or toothed­
bore mates and some journal to bore mates; the latter represents feeding a 
loose stack of clutch discs between the splined female cage and the splined 
male part. 

If the decision is now made to avoid all these (five) awkward assembly moves, 
there remain but two liaison-sequence paths. In particular, avoiding simulta­
neous establishment of liaisons 8, 9, and 10 disqualified all of Figure 15.5 which 
lay to the right of the previously identified channel. Following the injunctive de­
cision and the earlier constraints implies that assembly of AFI properly begins 
by filling the front and securing the last front element, followed by reorienting 
the assembly and filling parts into the rear. 

The preceding material explains basic technique of simple liaison sequence anal­
ysis by description and example. The topology, geometry, and dimensions of 
an assembly determine the necessary and inviolable constraints on assembly se­
quence which are expressed as precedence relations. Subsequently the user con­
siders other constraints, not dictated by geometry and dimensions but rather 
optionally imposed, to simplify the field of choice of assembly sequences. The 
question of optional constraints is a delicate one. On one hand, each optional 
constraint represents a potentially significant reduction in the complexity of 
the liaison-sequence diagram; on the other hand, carelessness in applying con­
straints may preclude important assembly-sequence options. The editing effort 
is explained in detail in the last section of this chapter. 



www.manaraa.com

395 

[!W~ Oth Rank 

EE~~ 1st Rank 

~~w 2nd Rank 

~ww 3rd Rank 

~=~ 5th Rank 

6th Rank 

7th Rank 

8th Rank 

Figure 15.5: Graphical representation of all valid liaison sequences for the 
example assembly from industry (A.F.!') under two additional constraints pre­
cluding a plurality of unconnected subassemblies and precluding the mixing of 
front-fill and rear-fill liaisons. Moves marked with a circle involve the difficult 
simultaneous establishment of liaisons 4 and 16; that marked with a triangle 
involves the difficult simultaneous establishment of liaisons 8, 9, and 10. Two 
liaison sequence paths remain if both of these assembly paradigms are avoided. 



www.manaraa.com

396 

15.2 Interactive program for finding 
and editing assembly sequences 

There are disadvantages associated with the simplified assembly sequence anal­
ysis: the technique requires mental analysis of assembly alternatives; in com­
plicated assemblies these alternatives may be occasionally many and difficult 
to consider; and it is not algorithmic. Our user-interactive assembly-sequence 
analysis and editing programs avoid such difficulties by combining the disas­
sembly analysis based on assembly cut-sets pioneered by Homem de Mello and 
Sanderson[21], with simplifications based on liaison diagram loop closure recog­
nized by De Fazio and Whitney[12], and those based on assembly of subassem­
bly subsets and supersets recognized by Bourjault et al.[8]. Using disassembly 
analysis precludes trial generation of any "dead-end" assembly states, but re­
quires answering a disassembly question for each assembly cut-set. (A "dead­
end" assembly state is one from which full assembly cannot be reached). Using 
loop-closure, subassembly subset, and subassembly superset considerations of­
ten permits many answers to cut-set disassembly questions to be inferred from 
the answer to one question. 

The method assumes that the parts to be assembled and their mates are rigid. 
Many commercially significant products fit these assumptions. Each liaison 
must be accomplished once and once only. The assembly sequence generating 
algorithm includes the following "rules:" 

Loop-Closure Rule: A cycle in a liaison diagram implies a need to simul­
taneously complete two of the liaisons in the cycle. (This rule follows from 
assuming rigid parts and liaisons.) 

Superset Rule: If two parts or subassemblies cannot mate due to interference 
in the approach path, then adding a part to either set will not change this 
situation. 

Subset Rule: If two parts or subassemblies can mate, then removing any part, 
itself not associated with the mating liaison(s), from either subassembly, will 
not change this situation. 

These rules let the algorithm make heavy use of previously-answered questions 
to deduce answers to others. In typical "hard" problems we have addressed, the 
algorithm uses the rules to infer answers to over 95%[4] of the questions. The 
interactive aids described below make answering the rest so easy that we have 
postponed attempts to use solid modeling to automatically answer approach­
path interference questions. Nonetheless we have created a fast, easily-used 
tool that addresses usefully complicated assemblies. 

Answering the questions yields a set of precedence relations connecting liaisons 
with ordering operators. The Bourjault and cut-set methods both create prece-



www.manaraa.com

dence relations of the forms (three examples): 

1 

1 

(1&2) 

>= 3 

>= (3&4) 

>= 3. 

397 

The operator ">=" means "must precede or concur with." The simplified[12] 
method generates statements containing "&," "or," or "not," and the operator 
"--"," meaning ''must precede." The numbers represent liaisons. For example, 
the statement: 

(1&2) >= (3&4) 

reads that both liaisons 1 and 2 must be completed, before or concurrently with, 
completion of (both) liaisons 3 and 4, but not necessarily before or concurrently 
with either liaison 3 or 4. 

Precedence relations of any of the above forms enter a program written by 
Lui [22] to generate an assembly sequence diagram[12] representing valid as­
sembly sequences. The assembly sequence diagram is generated by forward­
chaining through the relations, starting with liaisons having no precedents. 
Lui's program lets the user edit resulting sequences by removing individual 
states and moves from a displayed representation of sequences, using a graphic 
and mouse-menu interface. 

Henrioud and Bourjault, Homem de Mello and Sanderson, and Bourjault have 
shown that all possible assembly sequences can be generated without explicit 
precedence relations. However, we have found it useful to be able to add 
other constraints by expressing them as logical relations. Examples include: 
addressing cases that violate rigidity assumptions, as with liquid or compliant 
parts in an assembly; and enforcing early assembly of a particular subassembly 
to support an in-process test. For this reason we have chosen to generate 
explicit precedence relations. 

Lui's program has been extended to the noted user capabilities: to choose de­
sirable assembly states, moves, or partial sequences; avoid awkward assembly 
states or moves; represent part or subassembly fixturing and orientation op­
portunities; consider fixture-change and re-orientation counts; or choose good 
sequences based on desirable fixturing or orientation sequences. Editing capa­
bilities include: edit all redundant full or partial assembly sequences associated 
with separate subassemblies made at parallel sites[3]; impose constraints such 
as: "avoid simultaneous completion of a set of designated liaisons;" or "liai­
son k must immediately follow liaison j;" or eliminate of states that involve a 
plurality of subassemblies, or that involve a branched assembly line or parallel 
assembly operations; or eliminate, or incorporate, a particular state or move. 

The implementation on SUN 3/60 workstations integrates the processes of an­
swering questions and editing and evaluating sequences into one seamless activ-



www.manaraa.com

398 

ity in which the user is aided by graphic representations of parts, subassemblies, 
and assembly states, moves, and sequences. 

15.2.1 Assembly sequence generation 

A cut-set method[4] partly based on the work of Romem de Mello and Sand­
erson[20] is used to find and represent all geometric or mechanical assembly 
constraints as precedence relations. The method is similar in its use of graph 
cut-sets to analyze the liaison diagram. Our method also uses the superset and 
subset rules developed by Bourjault. The Lui[22] program uses the precedence 
relations and the liaison diagram to generate the assembly sequence diagram. 

The cut-set method includes three elements to increase efficiency or utility not 
fully utilized by either Bourjault and Renrioud or Romem de Mello and Sander­
son. They are incorporation of the subset and superset rules; implementation 
of an efficient precedence relation search algorithm; and generation of explicit 
precedence relations. 

Overview of the cut-set method 

A flow chart for the cut-set method implementation is shown as Figure 15.6. 
First, part assembly topology is entered as a liaison diagram. Next, all sub­
assemblies are found by generating all possible part combinations, and testing 
connectivity of the subgraph formed by the combination of parts or nodes in the 
liaison diagram. Connected subgraphs are subassemblies. Assembly cut-sets, 
generated next, are defined by two part sets (Le. subassemblies) Ni and N j and 
the connecting liaison set S. The assembly cut-sets are used to generate all the 
questions needed to determine the precedence relations for an assembly. The 
questions, represented by "R(Ni; N j )?," take the form: "Can the subassembly 
of parts of Ni be disassembled from the subassembly of parts N j ?" 

Next, the questions are answered by logical inference if possible or by the user 
if not. A check for invalid assembly states, the superset rule, the subset rule, 
a precedence relation search algorithm, and user input are invoked to do so. 
Starting from the largest assembly cut-sets formed by the full liaison diagram, 
the question R(Ni ; Nj )? is checked against all previously-obtained precedence 
relations to insure that the assembly state N; U N j is not invalid. If it is not 
invalid, then R(Ni ; Nj )? is checked against all previous question answers using 
the subset rule. If R(Ni ; Nj )? passes the subset rule in that N; and Nj are 
subsets of NI' and Nil for which R(N£'; Nj')? has already been answered YES, 
then R(N;;Nj )? is YES. If R(N;;Nj )? fails the subset rule, it is checked 
against all previous question answers using the superset rule. If R(N;; Nj )? 
passes the superset rule in that Ni and Nj are supersets of Nt and N'/ for 
which R(Nt; Nj/)? has already been answered NO, then R(Ni; Nj )? is NO. If 
R(Ni; Nj )? fails both the subset and superset rule checks, the user is asked the 
question, and the answer is stored. 



www.manaraa.com

I"%
j l' .... en
 
~
 

I"%
j ~ B­ e; r
t
 

o .....
 

r
t
 

::T
 

CD
 ~ ~ rt
 

El CD
 g- o.
. 

~ i s· "0
 m­ El CD
 ta ~
 o· ;:s

 

P
re

l P
os

t P
ro

ce
ss

in
g 

G
en

er
al

e 
al

l A
ss

em
bl

y 
C

ut
-S

et
s 

(C
ut

-S
et

s 
o

f F
u

ll 
A

ss
em

bl
y 

an
d 

A
ll 

S
ub

as
se

m
bl

ie
s)

 a
nd

 S
to

re
 in

 
D

ec
re

as
in

g 
O

rd
er

 o
f T

he
ir

 N
i v

 N
j A

ss
em

bl
y 

S
la

te
 

(i
.e

. C
ut

-S
et

s 
o

f 
F

ul
l L

ia
is

on
 D

ia
gr

am
 D

o
w

n
 to

 
C

ut
·S

et
s 

o
f S

ub
as

se
m

bl
ie

s 
W

it
h 

Th
re

e 
P

ar
ts

) 

E
nd

 

M
al

nL
oo

p 

S
el

ec
t N

ex
t 

R
(N

i;
N

j)
 Q

ue
ry

 
in

 D
ec

re
as

in
g 

N
i 
v

N
j 

A
ss

em
bl

y 
S

la
le

 O
rd

er
 1

lf
 

R
(N

i;
N

j)
 Q

ue
ry

 B
y:

 
1.

 S
up

er
se

t R
ul

e 
2.

 S
ub

se
t R

ul
e 

3.
 Q

ue
ry

 U
se

r 

tr
ue

 

fa
ls

e 

P
re

ce
de

nc
e 

R
el

at
io

n 
Se

tU
ch

 

B
eg

in
 P

re
ce

de
nc

e 
R

el
at

io
n 

S
ea

rc
h.

 
S

ta
rt

in
g 

W
it

h 
th

e 
L

as
t A

ss
em

bl
y 

C
u

t·
S

et
, S

ea
rc

h 
in

 
O

rd
er

 o
f I

nc
re

as
in

g 
A

ss
em

bl
y 

S
ta

le
 S

iz
e 

fo
r 

an
 A

ss
em

bl
y 

C
u

t-
S

et
 w

it
h 

an
 N

i' 
an

d 
an

 N
j' 

W
hi

ch
 a

re
 S

ub
se

ts
 o

f 
th

e 
N

i a
nd

 N
j A

ss
em

bl
y 

C
ut

-S
et

 T
ha

t I
nv

ok
ed

 t
he

 S
ea

rc
h 

tr
u

e
 

D
e

te
rm

in
e

 A
ns

w
er

 T
o

 
R

(N
i';

N
j')

 Q
ue

ry
 B

y:
 

1.
 S

up
er

se
t R

ul
e 

2.
 S

ub
se

t R
ul

e 
3

. O
ue

rv
 U

se
r 

C
on

ti
nu

e 
P

re
ce

de
nc

e 
R

el
at

io
n 

S
ea

rc
h 

W
it

h 
A

ss
em

bl
y 

C
ut

·S
et

s 
in

 I
nc

re
as

in
g 

O
rd

er
 o

f A
ss

em
bl

y 
S

ta
te

 S
iz

e 
IN

 

~
 



www.manaraa.com

400 

If R(Ni ; N j )? is NO, then the program seeks to write a precedence relation. 
The search algorithm looks for the smallest N:, Nj assembly cut-set (where 
N: and Nj are subsets of Ni and N j respectively) for which R(Nt; Nj) is NO. 
Answers for the R(Nt; Nj)? questions are determined in the same manner as 
above. The resulting precedence relation takes the form: 

Liaisons in S >= (Liaisons in Nt and Liaisons in Nj). 

A more detailed description of the cut-set method and an example follow. 

Assembly cut-sets 

A cut-set of a connected graph is typically defined as a minimum set of edges 
in the graph which leave two disjoint connected subgraphs if removed[4]. That 
set of edges is called the edge-set S, and the two connected subgraphs are called 
node-sets Nj and Nj • If any edge in S remains, the graph remains connected. 
An alternate definition of a cut-set is used here: cut-set is defined by the node­
sets Ni and N j such that each node-set forms a connected subgraph, Ni U N j is 
the node-set of the full graph, and Ni n N j is the empty set 0. Here a cut-set is 
referenced by any two node-sets (subassemblies) that meet the above definition; 
and the corresponding cut liaisons joining Ni to N j is referenced by the edge 
set (or liaisons) S. A single node is a connected subgraph. 

Assembly cut-sets are cut-sets of the full assembly and all subassemblies. 
Equivalently they are the cut-sets of the liaison diagram and of all connected 
subgraphs of the liaison diagram. Assembly cut-sets omit cut-sets formed by 
single part pairs since any pair of rigid mating parts can be assembled or dis­
assembled. For example, the assembly cut-sets of the liaison diagram of Figure 
15.7 are given in Table 15.2. 

Cut-sets as questions 

Assembly cut-sets are posed as questions to determine the precedence relations. 
The question can be presented as either an assembly or a disassembly operation 
since these operations are assumed equivalent and reversible. We chose to use 
the disassembly form as follows: 

R(Ni ; N j )?: If assembled together, can subassembly Ni be separated from sub­
assembly Nj ? 

Ni and N j are the subassemblies or subgraph node-sets created by breaking 
the liaisons in the cut-set S. The above question asks whether the cut liaisons 
S can be established if the liaisons of the connected subgraphs Ni and N j 

have been previously established. Answers are based solely on the assembly 
cut-set information given, and not on whether a final completely assembled 
or disassembled state can be reached. Equivalently, determination of a cut­
set's feasibility is based solely on geometric and mechanical aspects of the 
subassemblies given in the question. 



www.manaraa.com

401 

A 

o ~--------~~------~. B 

c 

Figure 15.7: Example liaison diagram 

Assembly cut-set generation 

The algorithm to generate assembly cut-sets takes as input the liaison diagram, 
and all possible subassembly subgraphs arranged in order of decreasing parts­
count in assembly state Ni U Nj , with the smallest subgraphs having three 
nodes. Assembly cut-sets are generated by looping through each subgraph 
starting with the full liaison diagram and ending with the last subgraph with 
three nodes. The cut-sets of each input graph are generated by determining 
all possible subassemblies (node sets of connected subgraphs) Ni and N j such 
that Ni U N j is the node-set of the input graph and Ni n N j is the empty set. 

Simplification rules 

The assembly cut-sets represent a sufficient question set to determine prece­
dence relations for an assembly. If knowledge from earlier answers is not ex­
ploited, the interference question count needed to determine the precedence 
relations equals the assembly cut-set count, a quite large number for even 
moderately-sized assemblies. As questions are formed, several techniques are 
used to answer most of them by inference from previous answers. First, in­
valid Ni U N j assembly states are not considered. Suppose we are faced with 
R(Nt; Nj)? and have already determined the precedence relation "Liaisons in 
S >= (Liaisons in Ni and Liaisons in Nj ) ." If the liaisons in Nt U Nj comprise 
a superset of the liaisons in Ni and Nj and do not comprise a superset of S, 
then Nt U Nj is an invalid state. Cut-sets of invalid assembly states need not 
be posed as questions. 

Other uses of prior information are simple extensions of the superset and subset 



www.manaraa.com

402 

Table 15.2: Assembly cut-sets for the example in figure 15.7 

Graph or Cut-Sets Graph or Cut-Sets 
Subgraph Ni N j Subgraph Ni N j 

A,B,C,D,E A B,C,D,E A,B,C,E A B,C,E 
B A,C,D,E C A,B,E 
C A,B,D,E E A,B,C 
D A,B,C,E A,B,C,D A B,C,D 
E A,B,C,D B A,C,D 

A,B C,D,E C A,B,D 
A,D B,C,E D A,B,C 
B,C A,D,E A,B C,D 
B,E A,C,D A,D B,C 
C,D A,B,E C,D,E C D,E 
D,E A,B,C E C,D 

B,C,D,E B C,D,E B,C,E C B,E 
C B,D,E E C,B 
D B,C,E A,D,E A D,E 
E B,C,D E A,D 

B,C D,E A,C,D A C,D 
B,E C,D C A,D 

A,C,D,E A C,D,E A,B,E A B,E 
C A,D,E E A,B 
E A,C,D A,B,C A B,C 

A,B,D,E A B,D,E C A,B 
B A,D,E A,B,D B A,D 
D A,B,E D A,B 
E A,B,D B,D,E B D,E 

A,D B,E D B,E 
A,B D,E B,C,D B C,D 

D B,C 



www.manaraa.com

403 

rules of Bourjault et al.[8] and are stated in terms of parts, but they also have 
a dual form for liaisons: 

If R(Nii Nj )? = YES, then R(Nf; Nj)? is also YES, where NI and Nj are 
subsets of the parts in Ni and Nj respectively (Subset Rule). 

If R(Nii N j )? = NO, then R(NIi Nj)? is also NO, where NI and Nj are super­
sets of the parts in Ni and N j respectively (Superset Rule) . 

The last two rules indicate that the most information can be gained from YES 
answers to R(Ni; Nj )? with large Ni and Nj (subassemblies with many parts) 
and from NO answers to R(Ni; Nj )? with small Ni and Nj (subassemblies with 
few parts). This implies advantages for a logical ordering of cut-set questions. 
Using the heuristic that, for most industrial assemblies, precedence relations 
spring from a small subset of parts which cause geometric or mechanical in­
terferences, the initial questions are posed using cut-sets in decreasing order 
of the number of parts in assembly state Ni U N j because the probability of 
quickly obtaining YES answers is high. As soon as a NO is obtained, the prece­
dence relation search algorithm is entered and is pursued via questions that use 
cut-sets in increasing order of the number of parts in assembly state Ni U N j 

because the probability of quickly obtaining NO answers is high. 

Precedence relation search algorithm 

The precedence relation search algorithm, shown on the right side of Figure 
15.6, is invoked when R(Ni; Nj )? = NO. Search starts with assembly cut-sets 
of subassemblies with three parts and continues in order of increasing parts 
count in the assembly state Ni U Nj . Nested within the precedence relation 
search is a series of question searches. A question search also starts with the 
assembly cut-sets of subassemblies with three parts and continues in order of 
increasing number of parts in the assembly state Ni U N j . The question search 
stops once an assembly cut-set NI, Nj is found where N: and Nj are subsets of, 
or ultimately equal, the Ni , Nj assembly cut-set that invoked the precedence 
relation search. If NI equals Ni and Nj equals Nj , then the precedence relation 
search ends, and the original R(Ni ; Nj) = NO forms a precedence relation. An 
answer for the new question R(N:; Nj)? is found by using the subset rule, the 
superset rule, or asking the user. If R(Ni; Nj)? is YES, the precedence relation 
search continues with another question search. If R(Nt; Nj)? is NO, the search 
ends and R(Nt; Nj)=NO forms a precedence relation. 

Formation of explicit precedence relations 

The precedence relations used to generate assembly sequences follow from 
R(Ni ; N j ) = NO results found during a precedence relation search. The general 
form is: 

(Set of Cut Liaisons S) >= (Liaisons forming Subassemblies Ni and Nj ). 

R(Ni ; N j )? asks whether all liaisons of cut-set S can be established once the 



www.manaraa.com

404 

liaisons forming Ni and N j are established. The precedence relation is the 
logical conclusion from R(Ni ; Nj )? = NO. For example, suppose the assembly 
cut-set Ni = A,B; Nj = C,D of the liaison diagram of Figure 15.7 forms a 
precedence relation. The precedence relation's explicit form is: 

(2&4) >= (1&3) 

or that liaisons 2 and 4 must be established prior to or concurrently with the 
liaisons 1 and 3. 

An example illustrating the use of the program 

The algorithms, programmed in "C," run interactively on a SUN 3/60 work­
station. The software is shown in use on an example product, shown with its 
liaison diagram in figures 15.2 and 15.3, AFI, an automatic transmission[12]. 
AFI has 8221 assembly cut-sets, found in about 40 seconds on a SUN 3/60 
work station. 

The user can display the parts in a window. Part drawings are made using 
SUN's drawing software, SUNDRAW, and are stored and displayed as raster 
images. The subassemblies Ni and Nj are shaded white and grey respectively in 
a parts display window. The user answers questions posed based on geometric 
or mechanical constraints. Figure 15.8 shows the first question. Geometric 
constraints preclude removal of part A from the entire assembly. The NO 
answer starts a precedence relation search ending with the question "R(C,D; 
A)?", Figure 15.9. Removal of part A from parts C and D is impossible as 
part D blocks access to bolts connecting parts C and A. The user continues 
until all necessary questions are answered, responding to most questions quickly 
and easily simply by looking at the displayed subassemblies. The precedence 
relations resulting are printed to the screen, Figure 15.10, and to a file for use 
by Lui's LSG program. Of the potential 8221 questions in this case, 111 are 
asked of the user. An engineer familiar with the design answered them in about 
14 minutes. 

The algorithm has been extended to request local-mating-condition informa­
tion about liaisons in the question-answering process. The user describes the 
local separation direction of each liaison, represented as a Cartesian coordinate 
vector. A computer routine inspects separation directions of all liaisons con­
necting subassembly Ni to subassembly Nj to determine if a common direction 
exists. If not, the answer to R( Ni ; Nj ) is NO. If so, the user must be questioned 
to determine if any global interferences exist. Applying this feature to the AFI 
transmission example reduces the number of interference questions a user must 
answer to 55. Adding local separation information has greatest potential for 
reducing user effort for more complex assemblies, since separation information 
enters in proportion to liaison-count, not cut-set count. 

In comparison, with neither local direction information nor a check for validity 
of states, the transmission example asks the user 142 questions; the Bourjault 



www.manaraa.com

>':
!j l' .....
. 

Q
1

 

~
 

>':
!j ~.
 ! ::;>
 ~ P>

 ~ ~ s &
 

o 0.
-

P>
 

::3
 E..
 

'-<
 

U
l 00
' 

o -.
 

.,...
 

::r
 

(1
) >
 

>':
!j .....
 

"0
 

(3 §'
 

g.
 

s
to

re
d

 
d

u
r i

 n
g

 

e
ta

 1
 n

u
m

b
e

r 
o

f 
su

ba
ss

em
b 

1 
i a

s 
=

 77
2

 

G
e

n
e

ra
ti

n
g

 
A

ss
em

b
ly

 
C

u
t-

S
e

ts
: 

O
NE

 
M

O
M

EN
T 

P
LE

A
S

E
! 

I 

n
u

m
b

e
r 

o
f 

a
ss

e
m

b
ly

 
c
u

t-
s
e

ts
 
=

 8
2

2
1

 

S
ta

rt
in

g
 f

ro
m

 
an

 a
ss

em
bl

ed
 
s
ta

te
, 

ca
n

 
th

e
 

su
b

as
se

m
b

ly
 

N
i=

 
A

 
b

e
 

d 
i s

as
se

m
b 

1 e
d

 
fr

o
m

 
th

e
 

su
b

a
ss

e
m

b
 1

 y 
N

j 
=

 C
O

G
 K

 
L

 B
 E

 H
 J 

F 
? 

(y
in

) 

~
 

V
o

 



www.manaraa.com

"%
j 1" .....
 

s-n
 

to
 

CF
:J 

C1
l 8 ::l
 

0.
- ~ ~ ::r
 

@
 

po
 

C"
l ~ ~ M
- s ~ ::r
 

o 0.
- § ~
 

~"
 

(J
l o .....
. ~ :>
 

"%
j .....
 

'"d
 a §"
 

~
 

If
 ·7

 

ik
 
~ 

tn
g

 
A

ss
e

m
b

ly
 
C

u
t-

S
e

ts
: 

O
NE

 
M

O
M

EN
T 

P
LE

A
S

E
!! 

nu
m

be
r 

o
f 

as
se

m
b 

1 y
 c

u
t -

se
ts

 =
 62

21
 

S
ta

rt
 i n

g 
fr

om
 

an
 

as
se

m
b 

1 a
d 

s
ta

te
, 

ca
n 

th
e

 
su

ba
ss

er
nb

 1
 y 

H
i=

 
A

 
be

 
d

is
as

se
m

b
le

d
 

fr
o

m
 

th
e

 s
u

b
as

se
m

b
ly

 
N

j 
~ 

C
O

G
 

K
 L

 
B

 E
 H

 J
 

F
 ?

 
(y

in
) 

B
eg

in
 P

re
ce

d
en

ce
 

R
el

a
ti

o
n

 S
ea

rc
h

 

S
ta

rt
in

g
 f

ro
m

 
an

 
as

se
m

b
le

d
 
st

a
te

, 
ca

n
 

th
e 

su
b

as
se

m
b

ly
 

N
t
~
 

A
 

be
 

d
is

a
s

s
e

m
b

le
d

 
fr

o
m

 
th

e
 s

u
b

as
se

m
b

ly
 

N
j 

=
 C

D
?

 
(y

in
) 

~ 



www.manaraa.com

~
~
 

&
~
 

.:
: 

('
I)

 

f+
 .

.....
 

Q
1

 

.....
. 

o "'d
 

@
 

g g. ::l
 g '"1
 
~
 

~
 o· ~ ::;>
 

o S '" ~ ~ "'" s ~ ::r
 

o p.
. § ~ 00
' 

o .....
 "'" ::r ('I

) >
 

>"
lj .....
. 

\1 
**

**
* 

E
nd

 
P

re
ce

d
en

ce
 R

el
a

ti
o

n
 S

ea
rc

h
 

!llT
Oh

l n
L

lll
b

e
r 

o
f 

in
te

rf
e

re
n

c
e

 
ch

e
ck

 
q

u
e

s
ti

o
n

s
 =

 1
11

 

P
re

ce
d

en
ce

 R
el

a
ti

o
n

s 
Fr

om
 

A
n

a
ly

si
s 

1
&

2
 

>
=

1
1

; 
1 

&
 

11
 

>=
 

2 
; 

2 
&

 
11

 
>=

 
1 

" 
12

 
3 

>=
 

5 
; 

4 
>

=
3

&
5

; 
6 

>=
 

1 
; 

9 
&

 
15

 
>=

 
18

 
; 

15
 "

1
8

 
>=

 
17

 
7 

>=
 

13
 

; 
14

 "
 

16
 &

 
17

 "
1

8
 

>=
 

3 
&

 4
 &

 
5 

&
 

15
 

; 
8 

&
 

14
 

>=
 

9 
; 

6 
"
1

2
 

>=
 

7 
; 

16
 

>=
 

8 
&

 
9 

" 
10

 &
 

14
 &

 
15

 "
 

17
 &

 
18

 
; 

3 
>=

 
8 

; 
14

 
&

 
15

 &
 

16
 "

1
7

 
>=

 
3 

" 
4 &

 5
 &

 
18

 
; 

3 
&

 
14

 
>=

 4
 

" 
16

 
'\ 

A
re

 
th

er
e 

te
st

 
li

a
is

o
n

s 
an

d 
a

d
d

it
io

n
a

l 
p

re
ce

d
en

ce
 

re
1a

t1
on

s 
fo

r 
th

is
 a

ss
em

b
ly

 t
h

a
t 

ne
ed

 
to

 b
e 

en
te

re
d

? 
(y

In
) 

s 



www.manaraa.com

408 

method applied to the same example, as implemented in De Fazio et aI.[13]' 
asks the user 482 questions. Table 15.3 presents statistics for four assemblies. 

Table 15.3: Question-Count statistics for the cut-set method for four example 
assemblies. Total question count equals the assembly cut-set count as earlier 
defined. Geometric interference count is the number of questions requiring a 
geometric interference check more extensive than a check of local separation 
constraints. The major factors in reducing the user-referred question count are 
the superset rule, the subset rule, and the invalid state check. 

ASSEMBLY Part Liaison User-Referred Total Question Count 
Count Count Question Count (Cut-Set Count) 

Gimbal 11 18 32 6,693 
AFI 11 18 55 8,221 

Viewfinder 16 21 403 313,530 
Seeker Head 17 26 58 203,754 

Generating the assembly sequences 

Precedence relations are now passed to Lui's program "LSG" [22] which converts 
them into an assembly sequence diagram, as shown in Figure 15.4. Each box 
in the diagram is an assembly state; each line is an assembly move. Each path 
from top to bottom is an assembly sequence that builds the entire product. 
Editing and evaluation can now begin by calling the editing program. 

15.3 Editing Means to Select Favorable 
Sequences 

Once a product's possible assembly sequences are found, the user must nar­
row the choice to a few "good" sequences. These few sequences can then be 
evaluated more rigorously to find any best sequence. Typical products have 
thousands of possible assembly sequences, and many factors influence the qual­
ity of assembly sequences; so the designer needs a tool that represents assembly 
sequences and allows a variety of editing options. 

Physical or judgmental characterizations of the states (boxes) and assembly 
moves (lines) of the liaison-sequence diagram provide rational bases for the 
choice of the "best" assembly sequence. Characterizations may be either qual­
itative or quantitative, and will generally suggest to the user the appropriate 
evaluation and choice technique. 



www.manaraa.com

409 

An important qualitative state characterization is stability of the assembly 
state. Briefly, stable subassemblies are welcome states and unstable assembly 
states are best avoided if possible since they call for the complication and 
expense of stabilizing jigging. Conditionally stable assembly states are welcome 
only to the extent that the assembly sequence does not call for any move that 
violates the condition of stability. For example, if a state is stable front-up and 
unstable rear-up, an assembly move calling for a front-up to rear-up flip, prior 
to realization of an unconditionally stable state, should be avoided if possible. 

Assembly moves can be qualitatively characterized in terms of the ease or 
difficulty of the parts mate implied, or in terms of the skill-level required for 
completing the assembly move or mate, or in terms of whether the assembly 
move threatens part damage. 

Qualitative characterizations of states and assembly moves were quite sufficient 
to reduce 818 liaison-sequence choices to two in the example, noting that an 
applied optional constraint was invoked to preclude unstable states and undue 
flips for access. The nature of a network such as the liaison-sequence diagram 
is that a few forbidden states and moves may force the abandonment of other 
preceding or subsequent states and assembly moves, very effectively pruning 
the diagram. Reduction of this sort can be done very quickly on a graphical 
representation of the liaison-sequence diagram. 

Quantitative characterizations may include times for various technologies to 
accomplish assembly moves, costs of the hardware associated with the tech­
nologies appropriate to assembly moves, probabilities of failure for particular 
technologies addressing particular assembly moves, costs of fixturing or tooling 
needed to secure unstable states, and so forth. The user can apply a simple 
criterion to choice of assembly sequence, such as a shortest time path through 
the liaison-sequence diagram. Alternately, subsequent to extensive quantitative 
economic and durational characterization of the states and assembly moves of 
the liaison-sequence diagram, the user can extend a synthesis routine[16] to 
simultaneously suggest both assembly sequence and assembly technology. 

Editing assembly sequences to find a preferred sequence is done on four bases: 
editing representationally redundant sequences; pruning away any difficult, 
awkward, or unwanted elements while maintaining any preferred elements 
in the network of assembly possibilities; minimizing non-productive assembly 
tasks such as reorientation of a subassembly; and choosing among candidate 
assembly sequences on a calculated economic basis. The middle bases are the 
design or assembly engineer's provinces, thus seem the richest and most inter­
esting. Editing bases, moves, and paradigms include the following. 

Purge of representationally-redundant partially-parallel sequences 

Editing redundant sequences applies only to sequences with parallel assembly 
operations, branched work flow, and one or more states with two or more sub­
assemblies. The redundancy is implicit in the representation of assembly. Only 



www.manaraa.com

410 

one assembly operation may be represented at a time on an assembly sequence 
diagram. If two operations, A and B, are to be done in parallel and nominally 
simultaneously, they are represented twice and in both possible sequences: as 
(A, then B); and as (B, then A). The assembly operations A and B may be done 
in parallel and the order of completion is unimportant (in lieu of any applicable 
constraints) though each order is representated in the analysis. Three opera­
tions done in parallel are represented six times, N are represented N! times. All 
but one of parallel-operation sequences is eliminated by this purge, described 
in detail in Amblard[3] and in Abell[2]. Elimination of redundant representa­
tions is done as a default option in our sequence editing software. This purge 
may be undone or redone at will with single keystrokes. Assembly graphs that 
admit to many parallel operations are massively pruned by this purge, as the 
simple combinatoric examples suggest. An AND/OR graph representation lacks 
the exhaustive list of parallel-operation assembly sequences explicit in a liaison 
sequence diagram before removal by a purge of redundant sequences. After 
purge of a liaison sequence diagram, each parallel-operation line layout is rep­
resented by an arbitrary single sequence, rather than the implicit choice of the 
AND/OR graph. 

Choice of Assembly-Line Topology 

In assembly line design, an engineer often has reason or need to impose an 
assembly line topology. Final assembly lines are often sequential, withou 
branches. Branched assembly lines may be difficult to implement or to suppl~ 
with parts, and worker access may be awkward. Supply lines may have t( 
cross branches of a branched assembly line, while a sequential line may be fe( 
from one side and manned on the other. Branched assembly lines are suited t( 
some products and sequences: where several stable subassemblies are created 
or where sequential line-balance is difficult, and where line-supply and acces 
are easily accomodated, for example. 

A branched assembly line with one or more parallel operations implies an as 
sembly state with two or more unconnected subassemblies. Imposing a sequen 
tial assembly line is done by purging all assembly states containing a pluralit~ 
of unconnected subassemblies, and is a two-keystroke operation if using our 
editing software. 

An engineer wanting a branched assembly line must identify the state or states 
that represent the subassemblies that are to be processed on parallel lines; then 
impose that each assembly sequence pass through one of the identified states. 

A void an assembly state 

Avoiding or excising a particular assembly state is one of a few primitive editing 
actions. Reasons to invoke include to avoid subassembly instability or fixturing 
difficulty. State avoidance typically is a least powerful editing move (erases 
fewest sequences) at mid-assembly; and most powerful (erases most sequences) 
when assembly is just beginning or just ending. Avoiding a state is done by 



www.manaraa.com

411 

using a mouse to denote, and highlight, the state on the assembly sequence 
diagram, and calling "delete" from a command menu. 

A voiding an assembly paradigm 

Every connection between parts must be made at some time between start and 
finish of assembly, none is avoided. If connection count exceeds parts-count less 
one, then one or more assembly steps include making a multiple connection. 
A "difficult assembly move" that may be avoided excludes single parts-pair 
connections since each is unavoidable; and includes only multiple simultaneous 
connections among parts, some combinations of which may be avoided. 

In any complicated assembly a particular difficult assembly move consisting 
of the simultaneous establishment of two or more particular connections may 
occur in several locations on an assembly sequence diagram, either alone or 
as subset of a more complicated set of connections. Such a move is called an 
assembly paradigm. Engineers responsible for product design and assembly 
can identify difficult assembly paradigms and can easily characterize them in 
terms of their simultaneous connections. With the editing software, any such 
paradigm is then excluded with a few keystrokes. This is typically a moderately 
strong editing action. 

A particular state is to occur 

It is occasionally important that one or more particular assembly states occur 
during assembly; reasons may include a need to do a production test, take 
a measurement, or to take advantage of particular stable subassembly for a 
needed refixturing or reorientation move. Assuring the occurrence of a state 
is a primitive move and the complement of avoiding a state. It is a powerful 
editing action, especially so midway in the assembly sequence. That this is 
so is attested to by the fact that making subassembly decisions, deciding that 
certain subassemblies will be built as part of the assembly sequence, is generally 
the first basis of any unaided choice of assembly sequence. Passing through a 
state is assured without additional constraint by deleting all other states in the 
same rank of the assembly sequence diagram. 

A particular subassembly is to occur 

Any particular subassembly will occur only once in an assembly sequence di­
agram that is limited to sequential assembly lines, but may occur in two or 
more states of an assembly sequence diagram that includes branched assembly 
lines as well. The reasons for invocation match those of assuring occurrence of 
a particular state. The complementary editing action, that a particular uncon­
nected subassembly not occur, is used to avoid subassemblies that are hard to 
fixture except as part of a greater subassembly. 

A particular partial assembly sequence is to occur 

Assuring occurrence of a particular partial assembly sequence is a useful and 



www.manaraa.com

412 

powerful editing action. This move is logically represented by one or a chain of 
statements of the form "task B is to immediately follow task A" and is invoked 
with a few keystrokes. Reasons include to immediately secure an unstable 
subassembly following a latest assembly move. 

Conditional precedences amongst states 

Conditional assembly, deferring completion of a particular subassembly until a 
result, possibly measured, of another, possibly subset, subassembly is known, 
is occasionally needed, and is not evoked by the means of finding possible 
sequences. Such conditional subassembly pairs must be recognized during edit­
ing sequences. Such constraints are usually easily stated logically and can be 
quite powerful editing actions. In branched assembly line cases, if a condi­
tional precedence constraint is needed, it must be applied prior to purge of 
representationally redundant sequences. 

Path editing based on assembly state fixturing 
and orientation hypotheses 

Refixturing and reorienting subassemblies are subassembly operations that in­
volve no part mating and that add no value to the product. Minimizing the 
count of such moves across an assembly sequence is a goal. Fixturing and ori­
entation options are state-related data that can be, but are not yet represented 
on an assembly sequence diagram. The data must be synthesised and provided, 
say by the user. Many earlier described editing actions consider individual as­
sembly states or assembly moves, or partial assembly sequences. Minimizing 
subassembly operations that add no product value requires a view of entire 
assembly sequences. 

The editing program leads a user state-by-state through supplying the needed 
information. The user is asked to hypothesize fixturing opportunities for sub­
assemblies of each assembly state, and characterize each opportunity in terms 
of parts and surfaces of parts supported by fixture, and corresponding stable 
orientations. When the characterizations are complete, assembly sequences are 
searched and grouped according to refixturing and reorientation counts. This 
stage of editing is represented in Figure 15.11. The engineer may choose any 
one of the groups and step through its assembly sequences, reviewing assembly 
moves and states, fixturing needs, and subassembly orientations. This provides 
abasis for further screening and sequence choice. 

Economic editing basis 

A goal in assembly system design is to produce an assembly system that is 
economical at around the anticipated production rate. Assembly cost can be 
dominated by scrapping costs and direct and rework labor costs associated with 
an ill-chosen assembly sequence. Such sequences can usually be found and 
avoided by applying the editing techniques. Where avoidance is impossible, 
product redesign may be appropriate. Similarly, costs of unneeded operations 



www.manaraa.com

413 

.,. N IS) :::: N 
N 

00 '" IS) '" ~ lSI N .,. 
en 

m on 
Ol 

Q) C 
Ol ~ 

:;; .s: 
'-' .s: en 

C> '-' a 
c Ol 

~ 
N IS) IS) '" I -= on 

" ~ ~ +' ~ X Q) 

;;: t I 
Q) 0 
~ ... 

! 0 'l; ~ 

~ 
~ ~ ~ 
Q) Q) Q) 
"D L> L> 
-,; ~ 5 
c z 
0 
u 

'" '" .s ~ ~ 
IS) IS) IS) IS) '" IS) 

~ 
3 

Figure 15.11: The assembly sequence editing environment. The left panel rep­
resents a partially-edited assembly sequence diagram. The " show (state)" menu 
command is active and the assembly state denoted by the cursor is represented 
in the upper right. Several editing actions have already been taken: Purge 
of representationally redundant sequences; assurance of a sequential assem­
bly line; excision of two difficult part mating paradigms; excision of several 
assembly states due to fixturing difficulty. Data about fixturing opportuni­
ties and corresponding stable subassembly orientations has been entered and 
the remaining sequences have been examined for refixturing and reorientation 
counts. There are 12 combinations of sequence, fixturing, and state orientation 
that yield an assembly with 2 fixturing changes and 1 subassembly reorienta­
tion. 



www.manaraa.com

414 

that add no value can dominate any savings from careful choice of assembly 
line technology, and such operations also can be anticipated and controlled by 
applying editing techniques. 

Once some physically acceptable assembly sequences are known, an en­
gineer may do comparative economic studies of the candidate sequences 
(Gustavson[17], Cooprider[9], Graves and Holmes-Redfield[15]). Assembly Sys­
tem Design Program (ASDP) is an example of a computer based assembly 
system design optimization routine that explores possibilities of assembly re­
sources addressing multiple tasks (Gustavson [17]). Economic screening of as­
sembly system designs often requires supplying information characterizing the 
costs and times of assembly steps. This effort is appropriate for comparisons 
amongst a few candidate sequences. Under some circumstances, for example 
in cases of products for which there are no problem assembly moves or difficult 
fits, data such as operation times, costs, and candidate technologies may be 
provided directly from a data base and without engineering consideration. 

15.3.1 Assembly Sequence Editing 

A program called EDIT has been written that allows display and editing of 
assembly sequences in this manner. EDIT is written in the programming lan­
guage "C" using SUN's graphics package, SUNVIEW. EDIT reads assembly 
sequences from input files written by LSG[22] and creates a data structure of 
the sequence graph [2]. Most of the information in this data structure is stored 
under the states of the assembly sequence diagram. The data structure for 
assembly states is shown in Figure 15.12. As shown, the state structure holds 
information about moves that lead to and from the state, the status of the 
state, and the state's subassemblies. 

The delete..status element in the data structure notes whether a state is on, 
highlighted, or removed from the display. The software is flexible about invok­
ing and undoing editing moves. When editing moves are made, the program 
changes the status of the state instead of removing the state from the structure. 

EDIT reads as input the assembly sequences generated by LSG and accepts 
raster images of SUNDRA W part drawings. The assembly sequence diagram, 
part drawings, and information about states of assembly are combined into 
a screen display of possible assembly sequences. Figure 15.13 is an example. 
Two part sets shown on the right represent two subassemblies coexisting in a 
designated state, marked with the cursor in Figure 15.13. At bottom left is an 
editing choice menu, representing the set of user commands. Above is part of 
the AFI assembly sequence diagram. 

Two classes of editing have been implemented and are described below: editing 
states and moves; and editing based on fixturing and refixturing and reorien­
tation counts. 



www.manaraa.com

STATE STRUCTURE 

state number 4 
delete status on 
jusceStablishedJiaisons 
establishedJiaisons 
next.Jl0ssible_liaisons 
number_of .Jlarents 
pointeU°.JlarenUist 
number of children 
pointerjo-=Child_list 
number_oCsubassemblies 2 
pointeuo_subassemblies 

Subassembly One 

'-;:~~~~~~~~[!]!3-____ ~estabIiShedJiaisons 

Established Liaisons 

19 I 5 16 I 

415 

Fixturing and Orientation Options 

Figure 15.12: Assembly state data structure 



www.manaraa.com

"'
lj 

~
.
 

@
 

.....
.. 

en
 

.....
.. w
 

en
 

Q
 

ro
 § Q
..

 

~
 . .w o .....
. 

c+
 

::
r' ro
 ~ ro
 S g '<
 ~ ::l
 

@
 

ro
 e: c+
 

~
.
 a o,;

j 3 t1
j t:
i .....
 
~
 

I~;'
 I

N
ST

R
U

C
TI

O
N

S:
 

:~.:.~
 T

yp
e 

'r
' 

to
 

re
v

ie
w

 
s
ta

te
 

in
fo

rm
a
ti

o
n

. 
}:.

 T
yp

e 
'd

' 
to

 c
ha

ng
e 

d
e
le

te
 s

ta
tu

s 
o

f 
a 

s
ta

te
. 

.:£ 
T

yp
e 

'e
' 

to
 s

ta
rt

 o
r 

co
n

ti
n

u
e 

e
n

te
ri

n
g

 
fi

x
t.

 
an

d
 
o

ri
e
n

. 
d

a
ta

. 
?: 

T
yp

e 
Ie

' 
to

 c
ha

ng
e 

a 
s
ta

te
's

 f
ix

tu
ri

n
g

 
an

d 
o

ri
e
n

ta
ti

o
n

 d
a
ta

. 
'I:~~

: 
T

y
p

e 
'f

' 
to

 
ch

an
g

e 
th

e
 m

ak
e 

o
r 

b
re

a
k

 c
o

s
t 

o
f 

a 
fi

x
. 

su
rf

a
c
e
. 

:':;
:~
T
y
p
e
 
'i
' 

to
 s

p
e
c
if

y
 
th

a
t 

a 
li

a
is

o
n

 
in

te
rf

e
re

s 
w

it
h

 
a 

fi
x

tu
re

. 
::~:

 
T

yp
e 

'a
' 

to
 s

ta
rt

 a
n 

ar
ra

y
 
sh

o
rt

e
st

 
p

a
th

s 
se

a
rc

h
. 

.;::{
 T

yp
e 

I 
k 

J 
to

 s
ta

rt
 a

 
k 

sh
o

rt
e
st

 p
a
th

s 
se

a
rc

h
. 

T
yp

e 
'p

' 
to

 p
ri

n
t 

s
ta

te
 

in
fo

rm
at

io
n

 
to

 
a 

fi
le

. 
:. T

yp
e 

'5
' 

to
 s

av
e 

c
u

rr
e
n

t 
se

q
u

en
ce

 g
ra

p
h

 d
a
ta

. 
,'.:~

: 
T

yp
e 

I 
g

' 
to

 s
ee

 c
u

rr
e
n

t 
g

ra
p

h
 c

o
u

n
ts

. 
:~

\ 
T

yp
e

 
I 

x 
I 

to
 

re
m

o
ve

 
I 
re

d
u

n
d

a
n

t;
 

s
e

q
u

e
n

c
e

s
. 

:~~:.~
: 

T
yp

e 
'm

' 
to

 e
d

it
 s

ta
te

s 
b

as
ed

 o
n 

m
u

lt
ip

le
 

su
b

as
se

m
b

li
es

. 
(~.

; 
T

yp
e 

~
1
'
 

to
 e

d
it

 s
ta

te
s 

b
as

ed
 o

n 
li

a
is

o
n

 e
st

a
b

li
sh

m
e
n

t.
 

:.~: 
T

yp
e 

'u
' 

to
 u

n
d

el
et

e 
a
ll

 
st

a
te

s 
an

d
 
tr

a
n

si
ti

o
n

s.
 

\: 
T

yp
e 

~w
' 

to
 r

e
tu

rn
 t

o
 w

in
do

w
 
(i

f 
a
p

p
li

c
a
b

le
).

 
":\ 

T
yp

e 
'q

' 
to

 q
u

it
 

th
e 

pr
og

ra
m

. 

E
n

te
r 

n
ex

t 
d

es
ir

ed
 c

om
m

an
d 

(h
 
fo

r 
h

e
lp

)'
 

.J>
. -0\ 

:':
'::

" .. ;,
"', ..

• : .. :
 .. "

 •. ~: ..
.. : ..

.. ,.;
 ....

.. :.,
 .. : ..

 ,,'
.:,' .

.. ;,
',
::

,.
~.

,:
.:

.;
:,

::
, .. ::

: .. ::.
,''.

':,'
 . 



www.manaraa.com

417 

Editing States and Moves 

A variety of editing choices is based on assembly states and moves. Eliminating 
individual states or moves is the most basic. An edit menu allows us to invoke 
several editing features. The "SHOW" option gives a view of the particular 
state or move designated by the mouse. Choosing "SHOW STATE" and des­
ignating a state in the assembly sequence diagram shows the following state 
data: (1) its part drawings concatenated as one or more subassemblies, (2) a 
text description in the text window, and (3) the state and all its parent and 
child states highlighted in color on the diagram. Choosing "SHOW TRANSI­
TION" and designating the two states associated with a move highlights the 
move in color and brings up part drawings of the states before and after the 
move. After highlighting a state or move, we can delete it by selecting "DEL 
SHOWN." 

The "DELETE" option deletes a particular state or move without first show­
ing it. The option has four choices: (1) "DELETE STATE," (2) "DELETE 
TRANSITION," (3) "UNDELETE STATE," and (4) "UNDELETE TRAN­
SITION." Selecting an option activates the mouse to perform the indicated 
function on selected elements. Deleting an item causes it to be highlighted in 
red. Invoking "REDRAW" removes all deleted items from the display. 

More complex editing paradigms are done by entering text commands in the 
text window. Editing features allow deletion of assembly states with multiple 
subassemblies; deletion of moves where a denoted set of simultaneous mates 
is made; or specification that a particular assembly move must immediately 
precede another. These are powerful editing tools; invoking one can signifi­
cantly reduce the original sequence count. Their use is based on knowledge of 
particular desirable or undesirable states, moves, or partial sequences. 

Use of these editing facilities is illustrated on the AFI example of Figure 15.2 
as follows: 

State and move editing usually begins by removing redundant assembly se­
quences from among the sequences having branched work flow and one or more 
states with two or more subassemblies. Redundancy-purge editing is a default 
option that may be overridden; it uses a single key-stroke ("x" in Figure 15.13) 
and reduces the assembly sequence count in this example from 50,748 to 3319. 

Editing continues by removing two awkward assembly paradigms, simultaneous 
establishment of liaisons 8, 9, and 10; and of 4 and 16. 1607 sequences remain 
after invoking this editing option, shown in Figure 15.14. Note that none of 
the five states in the next-to-last rank lack liaisons 8, 9, and 10 or 4 and 16. 
Note also invocation of the "SHOW (State)" option. In Figure 15.15, "SHOW 
(State Transition)" is invoked. The assembly move between assembly states in 
the 3rd-to-last and next-to-last ranks, both on the left edge, is shown. 

Finally, editing command "m" is used to eliminate all states containing more 
than one subassembly, eliminating branched assembly lines. 



www.manaraa.com

"'
j 

oq
" ~ (t
) .....
. 
~
 

.....
. 
~
 

t:r:
l e: <

"t
- 5"
 

()
q

 ~ :>
;""

 ~ 0
- ~ ~ S a
" -<
 

't:
J e; ~ OS

 
U

l 

~?
J T

yp
e 

th
e
 n

un
ba

r 
o

f 
th

e
 d

e
si

re
d

 s
e
le

c
ti

o
n

 o
r 

a 
to

 q
u

it
:3

 

··:i~:
~l E

n
te

r 
th

e
 

1
1

8
is

o
n

 n
ll'

llb
e

rs
 
o

f 
th

e
 

1 
ia

'ls
o

n
s
 
th

a
t 

a
re

 
. 

n
o

t 
to

 o
cc

u
r 

si
m

u
lt

an
eo

u
sl

y
:8

 
9 

19
 

;\
tE

n
te

r 
n

ew
t 

d
e
si

re
d

 
co

tM
la

nd
 

(h
 

fo
r 

h
e
lp

):
l 

E
D

IT
 

S
TA

TE
S

 
BA

SE
D

 
ON

 
L

IA
IS

O
N

 
E

S
T

A
B

LI
S

H
-tE

N
T

 

1)
 H

l1
1

te
 a

ll
 

tr
a
n

si
ti

o
n

s 
w

he
re

 m
u

lt
ip

le
 

li
a
is

o
n

s 
a
re

 m
ad

e.
 

2
) 

D
el

et
e 

a
ll

 
tr

a
n

si
ti

o
n

s 
w

he
re

 m
u

lt
ip

le
 

li
a
is

o
n

s 
a
re

 m
ad

e
. 

3
) 

D
el

et
e 

a
ll

 
tr

a
n

si
ti

o
n

s 
w

h
er

e 
a 

sp
e
c
if

ie
d

 s
e
t 

o
f 

li
a
is

o
n

s 
a
re

 m
ad

e
. 

S
p

ec
if

y
 t

h
a
t 

o
n

e 
li

a
is

o
n

 m
us

t 
1r

rw
ne

d1
at

el
y 

p
re

ce
ed

 a
n

o
th

er
 

th
e
 n

u
n

b
er

 o
f 

th
e
 d

e
si

re
d

 s
e
le

c
ti

o
n

 o
r 

a 
to

 q
u

1
t:

3
 

,:t~
En
te
r 

th
e
 

li
a
is

o
n

 n
u

n
b

ar
s 

o
f 

th
e
 

li
a
is

o
n

s 
th

a
t 

a
re

 
.... 

n
o

t 
to

 o
cc

u
r 

s 
i m

u 
H

an
eo

u
s 1

 y
: 4

 
16

 
.u

 ... ·:
:~;

 

E
n

te
r 

ne
w

t 
d

e
si

re
d

 c
om

m
an

d 
(h

 
fo

r 
h

e
lp

)
:w

 

~
 

..- 0
0

 



www.manaraa.com

"l
j 

~
 . .....
. 

Q
1

 

.....
. 

Q
1

 

tr1
 

&.
 

C
"+

 s· O
q

 

o '£ o ~
 

C
"+

 
o 00

 i § I g;
 

'<
 S ~ g ~
 

~
 

(l
) 

C
"+

 
t
;
 ~. C

"+
 o· ~ 

a 
4 

6 
7 

B
 

P
a

rt
s

: 
n

L
n

lb
er

 
na

m
e 

1 
A

 
2 

C
 

3 
D

 
4 

G
 

5 
K

 
7 

B
 

8 
E

 
9 

H
 

11
 

F
 

Su
ba

ss
em

bl
y 

f1
x

tu
ri

n
g

 a
nd

 
o

ri
en

ta
ti

o
n

 
o

p
ti

o
n

s
: 

;1:1
 o

n
: 

i:j 
~ 

:; 
~
N
 

O
\IN

 

F
ix

tu
re

: 

N
oo

. 
Na

m
e 

(P
a

rt
 

an
d 

F
ix

, 
S

u
rf

a
ce

) 
37

 
P

a
rt

 
A

 
F

ix
. 

R
E

A
R

-O
f-

F
LA

N
G

E
 

38
 

P
a

rt
 

D
 

F
ix

. 
E

N
G

IN
E

-F
LA

N
G

E
 

O
ri

en
ta

ti
 

N
lIT

l. 
N

am
e 

2 
T

C
-D

 

T
C

-D
 

;:;
 

S
TA

TE
 

N
LM

BE
R

S 
O

F 
C

H
IL

D
 

S
T

A
T

E
S

: 
1 

2 
iii

 
S

TA
TE

 
NL

M
BE

RS
 

O
F 

P
A

R
E

N
T 

S
T

A
T

E
S

: 
1 

3 
14

 
1

8
 2

5
 3

4 

f[ ~
EL
ET
E 

S
TA

TU
S

: 
on

 

E
n

te
r 

n
ex

t 
d

es
ir

ed
 c

or
rm

an
d 

(h
 f

o
r 

h
el

p
):

 
N

Ll
Tl

be
r 

o
f 

u
n

d
e

le
te

d
 

s
ta

.t
e

s
 
= 

19
 

N
um

be
r 

o
f 

u
n

d
e

le
te

d
 

s
u

b
a

s
s

e
m

b
li

e
s

 
= 

2
6

 
N

um
be

r 
o

f 
u

n
iq

u
e 

u
n

d
e

le
te

d
 s

u
b

a
s

s
e

m
b

li
e

s
 
= 

14
 

N
U

l1
be

r 
o

f 
u

n
d

el
et

ed
 s

ta
te

 
tr

a
n

si
ti

o
n

s 
= 

24
 

N
LI

Yl
be

r 
o

f 
u

n
d

e
le

te
d

 
se

q
u

en
ce

s:
 

7 

E
n

te
r 

n
ex

t 
d

es
ir

ed
 c

om
m

an
d 

(h
 

fo
r 

h
el

p
):

w
 

.J>
. -1,0 



www.manaraa.com

420 

This sort of editing, manually-applied progressive invocation of a sequence of 
logically-described editing paradigms, is very rapid and effective for a fair range 
of products. For the AFI example, one progression is shown in Table 15.4. 

Table 15.4: An editing progression 

EDITING PARADIGM (CUMULATIVE) NUMBER OF 
SEQUENCES 
REMAINING 

Unedited Sequence Count 50,748 
Deletion of Redundant Sequences[3] 3,319 
Liaisons 8, 9 and 10, and liaisons 4 and 16 
not Done Concurrently[12] 1,607 
Constrain Against Branched Assembly Lines 312 
Load Case (Part A) from Either End 
before Starting Other End[12] 2 

Screens representing the last two of these cumulative editing paradigms are 
shown as Figures 15.16 and 15.17. The text in Figure 15.16 shows the keystroke 
entries to invoke the middle three editing paradigms. The display of Figure 
15.17, invoking the "SHOW (State)" option, shows the right branch of the two 
remaining assembly sequences. The last editing paradigm was done manually 
by repeated use of the "SHOW (State)" option and appropriate use of the 
"Delete (State)" option; it takes a few minutes. 

Editing Based on Refixturing and Reorientation 

Another editing means allows evaluating and editing all individual assembly se­
quences based on fixturing, refixturing, orientation, and re-orientation issues. 
Refixturing and re-orientation are production moves that cost but add no value; 
usually it pays to avoid them during assembly. The user must supply substan­
tial fixturing and orientation information associated with each assembly state 
to use this evaluation option. Because of the state-associated need for substan­
tial additional information, editing based on fixturing and orientation issues 
is generally left until initial editing based on assembly states, moves, and line 
topology has been completed and state- and move-counts have been reduced. 

To evaluate sequences this way, information about fixturing and orientation 
possibilities for each remaining state is entered. Each original state and assem­
bly move is replaced by a set of states and moves, allowing each possible fixture 
and orientation state combination and refixturing and reorientation move to be 
represented. The result is an expanded assembly sequence diagram. Each path 
through this network represents a sequence of liaisons, fixturing choices, and 



www.manaraa.com

=
=

>
o

:j
 

::I
 

...
. 

9l
<§

 
. 

..., ro
 .....
 

en
 

.....
 
~
 

C
Il E; ~.
 

~.
 

::I
 

()
q

 

C/
l i' ::I
 ~ ~
 

ro
 ..., 8- &
 s· ()

q
 .... o ~
 s· s· ~
 

ro
 cr
 

..., ~ g.
 

ro
 

0
..

 ~ g. q 

3
) 

D
el

et
e 

a
ll

 
tr

a
n

s
it

 io
n

s 
w

he
re

 a
 

sp
e
c
if

ie
d 

s
e
t 

o
f 

li
a
is

o
n

s 
a
re

 m
ad

e .
 

S
pe

ci
fy

 t
h

at
 o

ne
 l

ia
is

o
n

 m
us

t 
im

m
ed

ia
te

ly
 p

re
ce

ed
 a

n
o

th
er

. 

th
e
 n

un
be

r 
o

f 
th

e
 d

e
si

re
d

 s
e
le

c
ti

o
n

 o
r 

e 
to

 q
u

1
t:

3
 

o:
JE

nt
er

 
th

e 
li

a1
so

n
 n

ll
T

lb
er

s 
o

f 
th

e
 

l1
a
is

o
n

s 
th

a
t 

a
re

 
n

o
t 

to
 o

cc
ur

 s
im

u
lt

an
eo

u
sl

y
:8

 9
 

18
 

I.''
'':

 E
n

te
r 

n
ex

t 
d

es
ir

ed
 c

om
m

an
d 

(h
 f

o
r 

h
e
lp

):
 1

 

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
ED

IT
 

ST
A

TE
S 

BA
SE

D 
ON

 
LI

A
IS

O
N

 
ES

TA
B

LI
SI

+t
EN

T 

~ 1
) 

H
il

 i
ta

 a
ll

 
tr

a
n

si
ti

o
n

s 
w

he
re

 m
u

lt
ip

le
 
li

a
is

o
n

s 
a
re

 m
ad

e.
 

2
) 

D
el

et
e 

a
ll

 
tr

a
n

si
ti

o
n

s 
w

he
re

 m
u

lt
ip

le
 
li

a
is

o
n

s 
a
re

 m
ad

e.
 

l:i
J3

) 
D

el
et

e 
a
ll

 
tr

a
n

si
ti

o
n

s 
w

he
re

 a
 

sp
ec

if
ie

d
 s

e
t 

o
f 

li
a
is

o
n

s 
a
re

 m
ad

e.
 

:~~~~i
4)

 S
p

ec
if

y
 t

h
a
t 

o
n

e 
li

a
is

o
n

 m
us

t 
im

m
ed

ia
te

ly
 p

re
ce

ed
 a

n
o

th
er

. 

>,·d
T

yp
e 

th
e
 n

un
ba

r 
o

f 
th

e
 d

e
si

re
d

 s
e
le

c
ti

o
n

 o
r 

B
 t

o
 q

u
it

:3
 

E
n

te
r 

th
e 

11
 a

 i s
o

n
 n

u
n

b
er

s 
o

f 
th

e
 

1 
i a

 i 
so

n
s 

th
a 
ta

r
e
 

n
o

t 
to

 o
cc

ur
 s

im
u

lt
an

eo
u

sl
y

:4
 

16
 

I~~~~~
 E

n
te

r 
n

ex
t 

de
s

i r
ed

 c
om

m
an

d 
(h

 f
o

r 
h

el
p

)
:m

 

·h 
ED

IT
 

ST
A

TE
S 

BA
SE

D 
ON

 
M

U
LT

IP
LE

 
SU

BA
SS

EM
BL

IE
S 

1
) 

D
el

et
e 

a
ll

 
st

a
te

s 
th

a
t 

h
av

e 
m

or
e 

th
an

 o
ne

 
su

b
as

se
m

b
ly

. 
lit 

~~~~
 2

)
H

il
it

e
 a

ll

st

a
te

s
th

a
t

h
av

e
m

or
e

th
an

 o
ne

su

b
as

se
m

b
ly

.

;i:§
 3

)
D

el
et

e
a
ll

st

a
te

s
th

a
t

do

n
o

t
ha

ve
 m

or
e

th
an

on

e
~:~.

su
ba

ss
em

bl
y

(e
x

ce
p

t
fi

rs
t,

se

co
n

d
,

an
d

la
st

 r
a
n

k
s)

.

~:l
4)

H
i 1

 it
a
 a

ll

st

a
te

s
th

a
t

do

n
o

t
ha

ve
 l

I'I
or

e
th

an

on
e

~:.~
~

su
ba

ss
em

b
1 y

.

T
yp

e
th

e
 n

un
be

r
o

f
th

e
 d

e
si

re
d

 s
e
le

c
t i

o
n

 o
r

B
 t

o
 q

u
it

:
1

E
n

te
r

ne
K

t
d

es
ir

ed
 c

om
m

an
d

(h

fo

r
h

el
p

):
w

t; -

www.manaraa.com

~
~

~~lm~
ll!~~

~~r!~
~i1~l

i~i~~
~~~l1

~!ill
1i~~~

~i~:i
~~~r@

~l~jI
1l:~I

:~:!i
~i!:~

m!~li
~~~i:

1ii!:
~~!~!

ml~:!
li:i~

i:[tl
!!i~:

[fli1
~:!I!

lr~!~
JJ.1i

~1~~i
~~i~~

irJm"
I!MII

' 
~ 

,....
..., 

.....
 

>
<

t>
 

'-
-
' 

.....
. 

::
T'
~ 

o 
.....

. 
S 

:-:
l 

~.
 
~
 

g:
.~

 
<t>

 
...

.. 
U

l 
<t>

 
.:

: 
::s 

..... <:
 

0.
. 

<:'
 

8 
_. 

s
~
 

'0
 

U
l 

...
...

 
<t>

 
<

t>
..

a 
[
g

 
'<

 
::s 

0
"'

('
) 

<t>
 

ffi 
8'

 ..
... 

~ 
S 

~
 

e. 
~
 

::s
 

~
 s· 
~
 

o
q

 
<t>

 
o 

.....
 

<+
 

_
. 

;:r
s:J

 
<t>

 
0 

....
. 

?
;'

 
<t>

 
-
.
 

::s 
::s

 
o

..
o

q
 

. 
8 ~ e. ~ a ~ 0

..
 

N
um

be
r 

o
f 

u
n

d
el

et
ed

 s
ta

te
s 

= 
12

 
N

um
be

r 
o

f 
u

n
d

e
le

te
d

 
su

b
as

se
m

b
l 
te

s 
=

 1
1 

N
um

be
r 

o
f 

un
 t q

ue
 

u
n

d
e 

1 e
te

d
 

su
ba

ss
em

b 
1 i

 a
s

 
11

 
N

um
be

r 
o

f 
u

n
d

el
et

ed
 s

ta
te

 t
ra

n
si

ti
o

n
s 

= 
12

 

N
um

be
r 

o
f 

un
 d

e 
1 e

te
d

 
se

q
u

en
ce

s:
 

2 

E
n

te
r 

n
ex

t 
d

es
ir

ed
 c

om
m

an
d 

(h
 f

o
r 

h
el

p
)

:w
 

R
AN

K 
6

, 
S

TA
TE

 
N

LM
B

E
R

: 
3

9
 

R
AN

K 
6

, 
D

IS
P

LA
Y

 
C

O
LL

M
N

 
N

U
M

BE
R

: 
S

ta
te

 
C

o
m

p
le

te
d

 
L

1
a

is
o

n
s
: 

1 
2

4
 

6 
7 

11
 

1
2

 
1

3
 

S
u

b
as

se
m

b
ly

 #
1

: 
C

o
m

p
le

te
d

 
L

 1
a,

1s
o

n
s:

 
1 

2 
4 

6 
7 

11
 

12
 

13
 

P
a

rt
s

: 
nL

m
be

r 
na

m
e 

1 
A

 
2 

C
 

3 
D

 
5 

K
 

7 
B

 
8 

E
 

11
 

F
 

S
u

b
as

se
m

b
ly

 f
tx

tu
r1

n
g

 a
nd

 o
ri

en
ta

ti
o

n
 

o
p

ti
o

n
s:

 

F
ix

tu
re

: 
O

ri
en

ta
ti

o
n

 

# 1 
N

 2 
N

 

Nl
I'n

. 
N

am
e 

(P
a

rt
 a

nd
 

F
ix

. 
S

u
rf

a
ce

) 
37

 
P

a
rt

 
A

 
F

ix
. 

R
E

A
R

-O
F-

FL
A

N
G

E
 

38
 

P
a

rt
 

D
 

F
ix

. 
E

N
G

IN
E

-F
LA

N
G

E
 

S
TA

TE
 

N
U

M
BE

R
S 

O
F 

PA
R

EN
T 

S
T

A
T

E
S

: 
51

 
66

 
S

TA
TE

 
N

U
M

BE
R

S 
O

F 
C

H
IL

O
 

S
T

A
T

E
S

: 
3 

25
 

2
6

 
2

7
 

D
E

LE
TE

 
S

TA
TU

S
: 

on
 

N
l.I

Tl
. 

N
am

e 
2 

TC
-O

IJ
lo

' 

2 
TC

-O
IJ

lo
' 



www.manaraa.com

423 

orientations. The software then uses an N-th shortest-path algorithm to rank 
assembly sequences according to how many fixturings and orientations they 
require, allowing the user to consider those sequences that require relatively 
few fixturing and orientation changes. 

A shortest path approach is used so as to find paths that minimize fixturing 
and orientation change counts, and since the sequence graph is a well-defined 
directed network from disassembly to the fully assembled state. Fixturing 
and orientation changes occur during assembly moves and costs are associated 
with arcs. Associating fixturing and orientation options with assembly states 
(nodes) determines the number of changes needed in each assembly move (arc). 
These changes provide the costs for the shortest path algorithm. Operating the 
shortest path algorithm associates paths with a matrix of re-orientation count 
and refixturing count. 

Fixturing is represented by a user-named user-defined part-surface or subas­
sembly-surface to which a fixture is attached; and orientation as any of several 
user-specified orientations for which fixturing to the designated surface is stable. 
Fixturing and orientation are represented as pairs since they are interdepen­
dent. Each subassembly may have several of these pairs, each representing a 
surface and possible orientations to be associated with each fixture. 

Evaluating assembly sequences on the bases of reorientation and refixturing 
costs starts by entering names of mating surfaces and possible fixturing surfaces 
for all the parts in the assembly. One specifies all orientations to be considered 
for assembly. Figure 15.18 shows the surface and orientation information for 
the AFI transmission example. 

Possible fixturing and orientation pairs for each unique subassembly in the se­
quence graph are found next, and involves two steps. First, the user specifies 
whether any of the subassembly's surfaces are blocked. An inaccessible surface 
will not become accessible again as more parts are added, so it is eliminated 
from further consideration. The program then presents a list of fixturing­
surface and orientation pairs that consist of all available surfaces paired with 
all orientations. The user eliminates all surface-orientation pairs considered 
infeasible, leaving acceptable fixturing-surface and orientation options for fur­
ther consideration. The AFI assembly has 64 unique subassemblies, and it 
takes about 2 hours to enter fixturing and orientation data. Entering these 
data constitutes preliminary design consideration of possible fixturing for each 
subassembly of each state. The user-engineer is asked "Can, and how can each 
subassembly of each state be fixtured? (answer for each considered orienta­
tion)." 

As there is usually a plurality of fixture and orientation options for each state, 
entering these data represents significant expansion of the possibly pre-edited 
assembly-sequence diagram. For example, consider two states in adjacent ranks 
on the assembly sequence diagram; the first with two fixture-orientation op­
tions, the second with three. To encompass the new data, the first "state" 



www.manaraa.com

>
~
 

"
'j

o
q

 
.....

 ~
 

'0
 

@
 

'"1
 o 

......
. 

0
.0

<
 

~
 

;.
..

. 

g
.
~
 

~
 

~
 

5'
 

o
q

 

o .....
. ~ ~ '"1
 5'
 

o
q

 
U

l E; ~
 

("
) 

('t
> ~ 0
. o '"1
 [ ~
 

5'
 

::s S'
 

0'
 S ~ 0'
 

::s 0'
 

'"1
 ~ 

la
, 

S
TA

TE
 

a 
~
d

l 
to

 d
e
le

te
 a

 
fi

)L
o

r 
o

p
ti

o
n

, 
to

 a
dd

 
on

e,
 

or
 
~
h
"
 

fo
r 

h
el

p
:o

 

o
ri

en
ta

ti
o

n
s 

h
av

e 
b

ee
n

 d
ef

in
ed

: 

NA
M

E 
TC

-U
P

 
TC

-D
O

\IN
 

S
TA

TE
 
a 

to
 d

e
le

te
 a

 
fi

x
-o

r
 

o
p

ti
o

n
, 

to
 a

dd
 

on
e,

 
or

 '
h'

 
fo

r 
h

el
p

:p
 

A
LL

 
P

A
R

TS
 

AN
D 

T
H

E
IR

 
C

U
R

R
EN

TL
Y 

D
E

FI
N

E
D

 
F

IX
T

U
R

IN
G

 
S

U
R

FA
C

E
S

: 

P
a

rt
 

P
a

rt
 

F
1

H
tu

ri
n

g
 

N
um

. 
N

am
e 

s
u

rf
 a

ce
s 

r: .. '
·X
~ 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--

-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2 3 4 
G

 

1
: 

A
-C

 
1

4
: 

A
-K

 

2
: 

C
-A

 
24

: 
C-

E
 

3
: 

D
-A

 

4
: 

G
-A

 

12
: 

A
-D

 
15

: 
A

-L
 

16
: 

C
-B

 

2
3

: 
D

-C
 

19
: 

G
-B

 

13
: 

A
-G

 
3

7
: 

R
E

A
R

-O
F-

FL
A

N
G

E
 

2
2

: 
C

-D
 

3
8

: 
E

N
G

IN
E

-F
LA

N
G

E
 

27
: 

G
-H

 
1:"

';1
 -
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
5 7 

B
 

8 

5
: 

K
-A

 
32

: 
K

-H
 

6
: 

L
-A

 
34

: 
L

-H
 

3
9

: 
R

EA
R

-S
U

R
F 

AC
E 

7
: 

B
-C

 
2

9
: 

B
-H

 

8
: 

E
-B

 

17
: 

B
-E

 
21

: 
B

-J
 

2
5

: 
E

-C
 

3
6

: 
L

-J
 

18
: 

B
-G

 

2
6

: 
E

-F
 

I:"
-';:

:~ 
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9 19
 

1
1

 

9
: 

H
-B

 
3

1
: 

H
-K

 

1
9

: 
J-

B
 

1
1

: 
F

-E
 

28
: 

H
-G

 
3

3
: 

H
-L

 

3B
: 

J-
H

 

2
9

: 
H

-J
 

3
5

: 
J-

L
 

~ 



www.manaraa.com

425 

now must be represented as two states, the second as three. Additionally, since 
each (of two) state/option combination in the earlier rank has access to each 
(of three) state/option combination in the later rank, the single state transition 
or assembly move becomes six moves. Only two of these moves can represent 
an assembly move without orientation or fixturing change. 

Once the data have been entered, one may invoke the shortest path algorithm, 
showing the sequences requiring the fewest fixturing and orientation changes. 
One enters the command "a" and specifies the maximum number of fixturing 
changes and orientation changes to be considered. See Figure 15.11. The 
shortest path algorithm yields a matrix which indicates how many sequences 
are associated with each fixturing and orientation change pair. In the example 
there are 12 sequences that require two fixturing and one orientation changes. 
Ask to see all the paths associated with a particular change count, and the 
program will list the paths and plot them on the screen. It can list and plot 
any of these sequences individually, and step through partial assembly drawings 
of the states in this sequence. Figure 15.19 shows this for the AFI, where the 
fifth state in the sequence is shown. Having considered the paths with fewest 
fixturing and orientation changes, one may choose an assembly sequence from 
them. 

This edit is very valuable as fixtures can be very costly and reorientation takes 
assembly-line time, length, and resources. Substantial time is needed to enter 
fixturing and orientation data, but the time is well-spent in that the program 
structure prompts the user-engineer to do preliminary fixturing design, records 
his thoughts, and then allows concurrent consideration of assembly-sequence 
choice and fixture and orientation option choice. For an engineer familiar with 
a design and details of part-geometry, editing based on states and moves can 
be completed in a few to many minutes; while considering, generating, and 
entering fixturing and orientation data can take a few hours. We are currently 
examining ways to automate some of this process. 

15.3.2 Editing Strategies - Order 
of Application of Editing Means 

Preceding material presents editing moves and actions available to reduce a 
large selection of assembly sequences to a workable few for assembly system 
design. Editing is hierarchical, so that the sequence of applying editing criteria 
and actions, called an "editing strategy," is an issue. Part of a rationale for an 
editing strategy is implicit in the preceding material. A rationale for an editing 
strategy is made more explicit now. 

Several criteria are considered to evolve an editing strategy as follow: 

1. Interference between editing bases. If application of editing basis "A" ad­
versely affects the possibility of applying editing basis "B" but not vice versa, 



www.manaraa.com

Sl 
~ 

:::1
 

...
..

. 
00

 
oq

 
(D

 
(D

 
~
 

~
 
S 

., 
~
 

0
-

Cl
) 

<
+

-
...

.. 
....

.. 
'-<

 
en

 
o 

00
 

• 
~
 

(D
 

..
..

. 
..!

" 
.0

 
~
 

~
 

c 
....

. 
~
 

(D
 

_ 

0.
.~
2'
 

C
l) 
~
 

~ 
0'

 "
"' 

(D
 

.
,
 
~
 

S 
c+

 
....

.. 
o

-:
:r

§
 

_
(
D

 

'-<
 

>-
0 

~
~
:
:
;
?
 

p
' 

...
...

 
::r

 
<+

 '
C

l 
(D

 
(D

 
""

' 
_ 

. 
0 

P.-
o..

 .
.....

 
~
 

o. 
g.

 ~
 

-
oq

 
tI

l'
C

l 
::

r.
, 

o 
0 

~
.
~
 

Jg 
S 

~
~
 

~
'
C
l
 

""
''C

l 
(D

 
...

...
 

o
.
.
~
 

o
o

o
q

 
~
 

c+
 

""' 
::r

 
P

;-
""

' 
(')

 
0 

(D
 
~
 

_t
il

 
C§

-
oo

 
~
 

§
.'

C
l 

~ 
a. 

s 
a 

0
-
­

-
~
 

'<
 

""'
 

E
n

te
r 

th
e 

m
ax

im
un

 
nu

nb
ar

 
o

f 
re

fh
<

tu
ri

n
g

s 
th

at
 y

ou
 w

an
t 

to
 c

on
si

d
er

:4
 

E
n

te
r 

th
e 

m
ax

im
llJ

l 
nu

nb
ar

 
o

f 
re

o
ri

en
ta

ti
o

n
s 

th
at

 y
ou

 w
an

t 
to

 c
on

si
d

er
:4

 

V
er

ti
ca

l 
A

xi
s:

 
N

un
be

r 
o

f 
F

ix
tu

ri
n

g
 C

h
an

ge
s 

H
or

iz
on

ta
l 

A
x

is
: 

N
l,.

II
lb

er
 

o
f 

O
ri

en
ta

ti
o

n
 C

ha
ng

es
 

a 3 

12
 I

I; 

a 

13
6 

2 e 24
 

88
 

49
8 

95
6 

:q 
E

n
te

r 
yo

ur
 n

ex
t 

cO
Ol

II1
an

d 
(h

 f
o

r 
he

 lp
)

:h
 

A
-S

E
A

R
C

H
 

C
IH

tA
N

O
 

IN
S

T
R

U
C

T
IO

N
S

: 

24
 

76
 

2
8

4
 

72
2 

T
yp

e 
~
p
'
 

to
 s

ee
 a

ll
 

p
a

th
s 

a
ss

o
ci

a
te

d
 w

it
h

 a
 c

er
ta

in
 

ch
an

ge
s 

tn
 

f1
xt

u
ri

n
g 

an
d 

o
ri

en
ta

ti
o

n
. 

T
y

p
e"

 1
" 

to
 s

ee
 a

n 
in

d
iv

id
u

a
l 

p
at

h
 

T
yp

e 
'u

' 
to

 u
n

p
lo

t 
p

at
h

s.
 

T
yp

e 
'r

' 
to

 r
ev

ie
w

 u
n 

ex
pa

nd
ed

 
st

a
te

 
in

fo
rm

at
io

n
. 

T
yp

e 
' g

' 
to

 s
ee

 c
u

rr
en

t 
gr

ap
h 

co
u

n
ts

. 
.....

 T
yp

e 
la

' 
to

 d
is

p
la

y
 a

rr
ay

. 
':;::

~ 
T

yp
e 

'e
' 

to
 c

ha
ng

e 
ar

ra
y 

si
z
e
. 

~:::~
 T

yp
e 

'w
"

 
to

 r
et

u
rn

 
to

 g
ra

ph
 1

 c
s 

w
i n

do
w

 
.? 

T
yp

e 
'q

' 
to

 q
u

it
 t

o
 m

ai
n 

co
nm

an
d 

lo
op

 

E
n

te
r 

yo
u

r 
n

eH
t 

cc
m

na
nd

 
(h

 
fo

r 
h

el
p

):
 

4 22
 

15
4 

22
2 

nL
l'l

lb
er

 
o

f 

~ 



www.manaraa.com

427 

then application of basis B should precede application of basis A. 

2. Expected economic impact of an editing basis. An editing basis with a high 
expected economic impact should precede one with a lower expected economic 
impact. The economic impact of a poor assembly sequence choice, one that 
leaves a product unneccesarily difficult to assemble, is high, as it extends be­
yond assembly labor cost and tooling and fixturing costs, to rework, repair, 
scrap, and warranty costs. 

3. Ease of application of an editing basis. The easier-applied of two editing 
bases should be applied earlier. One measure of application ease of an editing 
basis is the amount of data, if any, that must be user-supplied to allow editing. 
Data, if needed, are often needed on a state-by-state or move-by-move basis, so 
that state and move counts are crude multipliers of data need. This suggests 
a strategy that leaves editing actions requiring added data to follow actions 
needing no added data. 

There is a single issue of potential conflict between a pair of editing bases. 
Applying the purge of redundant branched-assembly-line sequences constrains 
the possibility of applying conditional precedences among assembly states. See 
Table 15.5. Any needed conditional precedences among assembly states must 
be assured prior to exercising the purge of redundant sequences. 

Consider the three remaining broad editing bases for expected economic im pact. 
They are: excising difficult or awkward elements while maintaining any needed 
elements in the network of assembly possibilities; minimizing non-productive 
assembly tasks such as reorientation of a subassembly; and choosing among 
candidate assembly sequences on a calculated economic basis. 

Matters of assembly ease and of non-productive task count often have large 
economic effects on both assembly and rework costs, even of the order of 50% 
to 100%, and 10% to 20% of assembly cost, respectively. Choice of assem­
bly sequence candidates on a calculated economic basis is a sensitive editing 
means, but extensive data must be supplied. Difficult assembly states or moves 
often require extensive and expensive assembly labor or tooling, or even incur 
repair, rework, and scrapping costs, wasting the discrimination of an economic 
analysis. Sequence choice on an economic basis is thus best left for when few 
acceptable candidates, already screened for assembly ease and convenience, 
fixturing needs, and subassembly orientation, are available. 

Assemby line tasks fall into two categories: non-productive tasks and produc­
tive or value-adding tasks. Productive tasks involve mating of parts; are repre­
sented on an assembly sequence diagram; and their count is invariant for any 
assembly sequence of a product and equal to the parts count. Non-productive 
tasks involve no part mating; are often fixture-related; require additional data 
to be represented on an assembly sequence diagram; and their count is ar­
bitrary and path-dependent. Example non-productive moves are: moving a 
subassembly from one conveyance to another; testing or measuring; reorienting 



www.manaraa.com

428 

Table 15.5: Effects of editing moves on assembly sequence choice and the as­
sembly sequence diagram 

State-conditional precedence: Enforces that a specific subassembly exists 
concurrently with or precedes another specific subassembly. Concurrency im­
plies branched assembly line topology. Precedence is equivalent to a partial 
assembly sequence enforcement and is applicable to any assembly line topol­
ogy, branched or sequential. Since the purge of redundant branched sequences 
chooses an arbitrary sequence from a plurality where sequence is represented 
but concurrence is the actuality, any state-dependent concurrence must be es­
tablished before the purge. Any such constraints are at the engineer's bidding. 
Purge of redundant sequences: The purge of redundant sequences affects 
only assembly states with a plurality of subassemblies, which are those manifest 
on parallel branches of a branched assembly line. The connection sequences rep­
resent orders to the individual assembly events which occur across the branches 
of a branched assembly line. Sequence is without meaning for parallel opera­
tions which may be concurrent. The purge of redundant sequences arbitrarily 
chooses one sequence and eliminates all remaining sequences of any set of se­
quences that share common parallel assembly moves on a branched assembly 
line topology. The redundant sequences are unneeded and the purge is done 
routinely as a default option in the editing software. 
Constrain the assembly line topology: An assembly line with no branches 
is called sequential and is selected if each assembly state with two or more 
subassemblies is eliminated. A sequential line is chosen by the engineer with 
a single software command. Branched assembly "lines" remain as choices if 
any assembly state or states with a plurality of subassemblies remain on the 
assembly sequence diagram. The engineer designing a branched assembly line 
must consider all otherwise not precluded choices individually. 
Enforce a particular state: If all sequences incorporate a particular state, 
that state must stand alone in its rank in the assembly sequence diagram; the 
diagram is waisted to a w idth of one at that state's rank. The strength of 
this editing move is evident from its description. The complementary editing 
move avoids a particular state, removing that state from the assembly sequence 
diagram. It is generally a weaker move. 
Enforce a particular subassembly: Incorporating a particular state or a 
particular subassembly are equivalent for a sequential line. Since a particular 
subassembly may exist in two or more assembly states that include a plurality 
of subassemblies, the editing moves are not common if a branched assembly 
line remains an option. The complementary editing move avoids a particular 
subassembly by eliminating all states where that subassembly appears uncon­
nected. 



www.manaraa.com

429 

Table 15.5 (continued): Effects of editing moves on assembly sequence choice 
and the assembly sequence diagram 

Enforce a partial assembly sequence: This editing option is invoked logi­
cally by enforcing that one of a pair of assembly moves will immediately follow 
another. These constraints may be chained. Reduction in assembly sequence 
options generally increases faster than the chain-length or the count of such 
constraints. Editing software accomplishes each of these constraints or each 
link in a chain with a few keyboard strokes. 
Excise Awkward assembly paradigms: Every connection must be made 
sooner or later to accomplish full assembly. Thus it is useless to seek to avoid 
a connection. Assembly move count is the parts count. If the connection count 
equals or exceeds the parts count, as it does for most designs, then two or more 
connections must be made simultaneously. Choice of assembly sequence often 
includes choice of which connections are to be combined. Of these combinations 
often some choices are clearly more easily done, and some are done with more 
or even great difficulty. Engineers responsible for product design or assembly 
can generally call out the difficult connection combinations. Assembly sequence 
editing software cooperates by accepting commands of a few keystrokes that 
excise from all choices any noted simultaneous combination of connections. 

a subassembly; and refixturing a subassembly. 

These simple ideas and an observation about the role of fixturing in assembly 
suggest that considerations of ease of part mating have a greater expected 
economic impact than considerations of minimizing non-productive moves, and 
should be considered earlier. Fixtures are often used when their usage cost is 
less than that of suffering the part-mating difficulties fixturing avoids. There 
is no cost associated with using the results of screening assembly sequences to 
find the physically easiest sequence, and much to be gained. Fixturing does 
have associated costs, and is often a needed palliative for any remaining difficult 
assembly moves. 

Ease of application of editing basis suggests the same order for the three broad 
editing bases as does economic impact: screening for assembly ease and conve­
nience first; minimizing non-productive assembly tasks next; and screening on 
a calculated economic basis, last. 

A major determinant of ease of application of editing basis is the quality and 
quantity of data that must be supplied to accomplish editing on a basis. Data 
needs for these broad editing bases grow as the bases are traversed in the stated 
order. 

Screening for assembly ease and convenience requires engineering knowledge 
of the product design and of the mechanics of part mating. The user makes 
yes/no decisions based on that knowledge but without any need to supply or en-



www.manaraa.com

430 

ter characterizations of that knowledge. Minimizing non-productive assembly 
tasks across an assembly sequence implies both a knowledge and a counting of 
those tasks. The common non-productive tasks are subassembly reorientation, 
refixturing, and conveyance transfer. None of these are represented on the basic 
assembly sequence diagram. Subassembly fixturing and orientation (as well as 
assembly tests or measurements) are associated with assembly states; reorien­
tation and refixturing with assembly moves. Assembly system design engineers 
draw on knowledge of the product design, of mechanics of part mating, and of 
assembly customs and practices, to supply to a data-base the state-associated 
information of fixturing and orientation needs and options. 

Similarly, information for economic screening of candidate sequences is not 
represented on a basic assembly sequence diagram; it must be supplied by the 
user or from a data base. The needed information includes characterizations 
of appropriate assembly technology, related fixed and variable candidate ma­
chine, tooling, and labor costs, and task times; and is associated with assembly 
moves. Assembly system design engineers must draw on market and vendor 
cost and performance data, as well as product design and part mating mechan­
ical knowledge, to supply data for economic screening of candidates. 

Within the broad editing basis that is pruning the awkward states or difficult 
moves while retaining the graceful states and easy moves, the following editing 
sequence is recommended: apply any assembly line topological constraints; 
assure any needed subassemblies or states; enforce any needed partial assembly 
sequences; excise any awkward assembly paradigms; and finally excise any 
individual awkward assembly states. 

A model editing strategy based on the combined considerations is presented as 
Figure 15.20. 

15.4 Conclusions 

Assembly sequence is a major consideration and a component of the issue of 
finding the most favorable means of assembling a product from parts. Different 
assembly sequences have different needs for assembly fixturing, for number of 
orientation changes, for convenience of access, for time of assembly, and for 
assembly skill level; different sequences have different possibilities and proba-

. bilities of part-damage during assembly. The importance of considering these 
and other consequences of chosen assembly sequence increase with production 
run size, with product parts-count, and with rising quality standards. 

Considerations have so far concerned applying liaison-sequence analysis to es­
tablished, or stationary, designs. Product design and assembly system require­
ments are intimately coupled, and product design, materials, manufacturing 
means, and assembly system design are properly considered concurrently. Prod­
uct designs typically evolve through many revisions and small changes in prod-



www.manaraa.com

ENTER A55EMBL Y TECHNOLOGY 
CHOICE. COST. & TIME DATA 

Figure 15.20: An editing strategy 

431 



www.manaraa.com

432 

uct design can cause radical changes in assembly sequence. Liaison-sequence 
analysis as a tool is capable of addressing the issues of interactions between 
product design and assembly-system design, but of course there is a substan­
tial increase in effort required if many designs are to be analyzed. A liaison­
sequence analysis, done before a design is frozen, and showing one or more 
obviously favorable assembly sequences, can itself be examined to extract the 
salients allowing the superior assembly sequence choices. The responsible pro­
duction engineer is then in a position to participate in reviews of the evolving 
design, now having a knowledge of which design features or changes have little 
or no effect on ease of assembly, and which features or changes have a major 
influence on assembly convenience. Liaison-sequence analysis provides a solid 
and tangible basis for consideration and discussion of production engineering 
matters during design evolution and at design reviews. See Figure 15.I. 

Consideration of assembly sequence issues was informal and heuristic in the 
past. An assembly engineer devised and compared enough assembly sequences 
to find one or more acceptable ones, but had no way of knowing whether a 
better one remained unknown and unconsidered. Formal means for exhaustive 
consideration of assembly sequence issues exist now. Means involve finding all 
sequences and reducing that number to the best few candidates by rational 
editing consideration. Assembly engineers may now consider assembly issues 
more quickly or more deeply. 

The assembly sequence generation and editing software shown does all book­
keeping and algorithmic operations but usurps none of the engineering func­
tions. It is not an expert system which embodies only the parts of the observed 
behavior of past practitioners, but an engineering aid which responds to all of 
the skills of the using engineer. All editing decisions of choice are made by cog­
nizant engineers for considered reasons. No editing decision is independently 
invoked by the computer software. An engineer is involved at all levels of edit­
ing, giving complete insight into editing issues. Editing decisions and reasons 
are easily documented and reconsideration of editing actions is conveniently 
possible. 

Application of editing bases is hierarchical, and the heirarchical sequence may 
be chosen by the engineer for technical and convenience reasons. There are 
rational bases for choice of editing sequence. Experience in use indicates that 
for many carefully-considered designs there are few good sequences and that 
they are usually revealed quickly by any rational editing sequence. 

The newly found speed of technique provided by the editing software allows 
rapid response to design changes in a concurrent design environment. See 
Figure 15.1. Past experience includes the example of a product functional 
designer assessing performance impact of redesign of a complicated assembly 
in a matter of hours, while assembly system engineers, working without use of 
the described technique, needed about a week to assess the impact of the same 
design change on the preliminarily designed assembly system. The observation 



www.manaraa.com

433 

was made during design, manufacturing, and assembly studies of a conventional 
automotive automatic transmission. The noted redesign addressed geometry 
and fastening of the major fixed element within the cases so as to explore 
casting draft options. There was not a major functional redesign, but there 
was a major disruption of assembly sequence choices and assembly system 
consideration and design. 

In another instance during a similar study of an automatic automotive 
transaxle, a redesign addressed a minor functional change affecteing design 
of the gearbox portion. Taking full advantage of the new assembly sequence 
determination and editing techniques allowed the product redesign impact as­
sessment on a preliminarily designed assembly system to be completed in about 
a day. While this period does not quite approach the performance assessment 
time we have experienced, it is a substantial improvement over past perfor­
mance and a major enabler of a concurrent engineering environment (Nevins 
and Whitney[24]). 

References 

[1] Webster's New Collegiate Dictionary. G. & C. Merriam Co., Springfield 
MA,1979. 

[2] T. E. Abell. An Interactive Software Tool for Editing and Evaluating 
Mechanical Assembly Sequences Based on Fixturing and Orientation Re­
quirements. S.M. Thesis, M.LT. Mechanical Engineering Department, 
Cambridge MA, Aug. 1989. 

[3] G. P. Amblard. Rationale for the Use of Subassemblies in Production 
Systems: A Comparative Look at Sequential and Arborescent Systems. 
S.M. Thesis, M.LT. Operations Research Center, Cambridge MA, 1989. 

[4] D. F. Baldwin. Algorithmic Methods and Software Tools for the Gener­
ation of Mechanical Assembly Sequences S.M. Thesis, M.LT. Mechanical 
Engineering Department, Cambridge MA, Feb. 1990. 

[5] D. F. Baldwin, T. E. Abell, M.-C. Lui, T. L. De Fazio and D. E. Whit­
ney. An Integrated Computer Aid for Generating and Evaluating As­
sembly Sequences for Mechanical Products. IEEE Trans. on Robotics 
and Automation RA-7(1):78-94, Feb. 1991. 

[6] A. Bourjault. Contribution a une Approche Methodologique de l'Assem­
blage Automatise: Elaboration Automatique des Sequences Operatoires. 
Thesis to obtain Grade de Docteur es Sciences Physiques at L'Universite 
de Franche-Comte, Nov. 1984. 



www.manaraa.com

434 

[7] A. Bourjault. Methodology of Assembly Automation: A New Approach. 
Book of Abstracts of Second Conf on Robotics and Factories of the Future. 
San Diego CA, Jul. 1987. 

[8] A. Bourjault et al. Outils Methodologiques pour la Definition de Sys­
tems d'Assemblage Automatises. Universite de Franche-Comte, Centre 
de Recherche Microsystemes et Robotique, Feb. 1987. Also computer im­
plementation of these tools: SAGA-Systeme d'Elaboration Automatique 
de Gammes d'Assemblage Version 1.2, Feb. 1988. 

[9] C. B. Cooprider. Equipment Selection and Assembly System Design un­
der Multiple Cost Constraints. S.M. Thesis, M.LT. Sloan School of Man­
agement, Cambridge MA, May 1989. 

[10] T. L. De Fazio, T. E. Abell, G. P. Amblard, and D. E. Whitney. Com­
puter-Aided Assembly Sequence Editing and Choice: Editing Criteria, 
Bases, Rules, and Technique. Proc. 1990 IEEE Int. Con! on Systems 
Eng, pages 416-422. Pittsburgh PA, Aug. 1990. 

[111 T. L. De Fazio and D. E. Whitney. Pari and Assembly-Technique Clas­
sification. C. S. Draper Laboratory, Inc., Cambridge MA, Rep. CSDL­
R-1643, Apr. 1983. 

[121 T. L. De Fazio and D. E. Whitney. Simplified Generation of All Me­
chanical Assembly Sequences. IEEE J. Robotics and Automation RA-
3(6):640-658, Dec. 1987. 

[13] T. L. De Fazio, D. E. Whitney: M-C Lui, T. E. Abell, and D. F. Bald­
win. Aids for the Design or Choice of Assembly Sequences. Proc IEEE 
International Conference for Systems, Man, and Cybernetics, Cambridge 
MA, Nov. 1989 

[14] B. Frommherz and J. Hornberger. Automatic Generation of Precedence 
Graphs. Publications 1988 of the University of Karlsruhe Faculty for In­
formatics, Institute for Real- Time Computer Control and Robotics (Prof 
U. Rembold, Prof R. Dillmann). 

[15] S. C. Graves and C. Holmes-Redfield. Equipment Selection and Task 
Assignment for Multiproduct Assembly System Design. Int. J. Flex. 
Manu! Sys., 1:31-50, 1988. 

[16] R. E. Gustavson. Computer-Aided Synthesis of least-cost Assembly Sys­
tems. Proc. 14th Int'l. Symposium on Industrial Robots, Gothenburg, 
Sweden, Oct. 1984. 

[17] R. E. Gustavson. Design of Cost-Effective Assembly Systems. SME Pa­
per AD88-250, presented at "Successful Planning and Implementation of 
Flexible Assembly Systems," pages 29-31. Ann Arbor MI, Mar. 1988. 



www.manaraa.com

435 

[18] J. M. Henrioud and A. Bourjault. Determination des Arbres d'Assem­
blage. R.A.I.R.O. APII 24:547-564, Nov. 1990. 

[19] L. S. Homem de Mello. Task Sequence Planning for Robotic Assem­
bly. Ph.D. Thesis, Electrical and Computer Engineering, Carnegie Mellon 
University, Pittsburgh PA, 1989. 

[20) L. S. Homem de Mello and A. C. Sanderson. Representations of Assembly 
Sequences. lJCAI-89 Proc. Eleventh Int. Joint Conf. on Artificial 
Intelligence, pages 1035-1040, Aug. 1989. 

[21) L. S. Homem de Mello and A. C. Sanderson. AND/OR Graph Repre­
sentation of Assembly Plans. IEEE Trans. on Robotics and Automation 
RA-6(2}:188--199, Apr. 1990. 

[22) M. M. Lui. Generation and Evaluation of Mechanical Assembly Sequences 
Using the Liaison Sequence Method. M.LT. Mechanical Engineering De­
partment, S.M. Thesis, Cambridge MA, May 1988. 

[23] J. L. Nevins and D. E. Whitney. Computer Controlled Assembly. Scien­
tific American 238(2}:62-74, Feb. 1978. 

[24) J. L. Nevins and D. E. Whitney (editors). Concurrent Design of Products 
and Processes - A Strategy for the Next Generation in Manufacturing. 
McGraw-Hill Book Co., New York NY, 1989. 

[25) S. Pappu. A Dual Ascent Algorithm for Finding the Optimal Test Strat­
egy for an Assembly Sequence. S.M. Thesis, M.LT. Operations Research 
Center, Cambridge MA, May 1989. 

[26) A. C. Sanderson and L. S. Homem de Mello. Task Planning and Con­
trol Synthesis for Flexible Assembly Systems. Machine Intelligence and 
Knowledge Engineering for Robotic Applications, Berlin: Springer Verlag, 
pages 331-353, 1987. 

[27) Whitney, D. E. et al. Design and Control of Adaptable Programmable 
Assembly Systems. C. S. Draper Laboratory Report R-1284, Cambridge 
MA, Aug. 1979. 



www.manaraa.com

Contributors 

Thomas E. Abell! 
Ford Motor Company 
Dearborn Michigan 

Guillaume P. Amblard1 

Sharp Corporation 
Nara 
Japan 

Daniel F. Balwin 1 

Massachussetts Institute of Technology 
Mechanical Engineering Department 
Cambridge Massachusetts 

Alain Bourjault 
Laboratoire d'Automatique de Besan~on 
URA 822 
Institut de Productique - ENSMM 
15 Impasse des Saint Martin 
25000 - Besan~n 
France 

Thomas L. De Fazio 
The Charles Stark Draper Laboratory 
555 Technology Square 
Cambridge Massachusetts 02139 

Leila De Floriani 
Dipartimento di Matematica 
Universita di Genova 
Via L. B. Alberti, 4 
16132 Genova 
Italy 

Jean-Michel Henrioud 
Laboratoire d'Automatique de Besan~on 
URA 822 
Institut de Productique - ENSMM 
15 Impasse des Saint Martin 
25000 - Besan~on 

France 

Richard L. Hoffman 
Research and Technology Center 
Northrop Corporation 
One Research Park 
Palos Verdes California 90274 

Luiz S. Homem-de-Mello 
Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena California !HI09-8099 

Sukhan Lee 
Department of Electrical 

Engineering - Systems 
University of Southern California 
Los Angeles California 90089-0782 

Man-Cheung Max Lui1 

Oracle Corporation 
San Francisco California 

Amitava Maulik 
Electrical, Computer, and Systems 

Engineering Department 
Rensselaer Polytechnic Institute 
Troy New York 12180-3590 

lCorrespondence related to chapter 15 should be sent to Thomas 1. De Fezio or Daniel 
E. Whitney. 



www.manaraa.com

438 

George Nagy 
Electrical, Computer, and Systems 

Engineering Department 
Rensselaer Polytechnic Institute 
Troy New York 12180-3590 

Aristides A. G. Requicha 
Computer Science Department 
University of Southern California 
Los Angeles California 90089-0782 

Jean-Franc;ois Rit 
Robotics Laboratory 
Computer Science Department 
Stanford University 
Stanford California 94305 

Arthur C. Sanderson 
Electrical, Computer, and Systems 

Engineering Department 
Rensselaer Polytechnic Institute 
Troy New York 12180-3590 

Yeong Gil Shin 
Computer Science Department 
University of Southern California 
Los Angeles California 90089-0782 

Federico Thomas 
Instituto de Cibernetica 
Diagonal, 647, planta 2 
08028 Barcelona 
Spain 

Joshua U. Turner 
Rensselaer Design Research Center 
Rensselaer Polytechnic Institute 
Troy New York 12180-3590 

Timothy W. Whalen 
Computer Science Department 
University of Southern California 
Los Angeles California 90089-0"/82 

Daniel E. Whitney 
The Charles Stark Draper Laboratory 
555 Technology Square 
Cambridge Massachusetts 02139 

Randall H. Wilson 
Robotics Laboratory 
Computer Science Department 
Stanford University 
Stanford California 94305 

Jan D. Wolter 
Department of Computer Science 
Texas A&M University 
College Station Texas 77843-3112 



www.manaraa.com

Index 

A· search 276 
abstract 

abstract liaison graph 323, 350, 357 
weighted abstract liaison graph 326 

access 
force-deliverable access path 353 

accessible 
accessible node 353 
accessible path 323 

accumulated 
accumulated cost 373 
accumulated heuristic estimate 373 

admissibility 276 
algorithm 

AO* algorithm 346 
precedence relation search 

algorithm 398, 403 
analysis 

DFA analysis 376 
tolerance analysis 30 

AND/OR 
AND/OR graph 43, 139, 180, 218 

AO· algorithm 346 
arc 

connection arc 54 
interference arc 54 

assembly 
AND/OR graph representation of 

assembly sequences 139 
assembly configuration space 16 
assembly constraint 192, 197,344 
assembly cut-set 400, 401 
assembly from industry 232 
assembly instance 16 
assembly instruction 335 
assembly move 389 
assembly operation 213, 268 
assembly pose 363 
assembly process 130 

assembly representation 343 
assembly sequence 134 
assembly sequence generation 398 
assembly state 131, 389 
assembly state data structure 415 
assembly system 192 
assembly task 133 
assembly tree 192, 196, 204 
backward assembly planning 348 
choice criteria for 

sequence of assembly 384 
decompositions of an assembly 171 
DFA design for assembly 342 
directed graph representation of 

assembly sequences 136 
establishment-condition representa­

tion of assembly sequences 142 
mathematical models 

for assemblies 16 
mechanical assembly 129 
network representation 

of assembly 387 
nominal assembly 17 
partial assembly 266 
precedence relationship representation 

of assembly sequences 145, 152 
relational model for assemblies 164 
sequential assembly line 393 
simple technique for generating 

assembly sequences 385 
stable assembly state 133 
stochastic assembly 

configuration space 19 
strongly connected assembly 182 
variational assembly 17 
weakly-connected assembly 182 

assertion 
sequencing assertion 273 
trajectory assertion 273 



www.manaraa.com

440 

attachment 165, 193 
attribute function 166 
attributed liaison graph 318,343 
backward assembly planning 348 
base node 367 
bi-directional constraints 27 
bicubic surface 290 
blackboard 278, 318 
block 100, 101 
boundary 

boundary evaluation 57 
boudary representation 42,44,48, 290 

caching 
sweep caching 223 

CAD model 268, 290 
canonical subgroup 89 
casting 

ray casting 238 
cellular decomposition 60 
class 

conjugation class 87 
variational class 17, 30 

cluster 
disconnected cluster of parts 361 
floating cluster of parts 360 

coaxiality constraints 26 
coherence 266 
common sense reasoning 289 
completeness 178, 251 
complexity 

computational complexity 182, 253, 271 
fixture complexity 270, 279 
structural complexity 334 

component 193 
group of components 200 
strongly connected component 273 

compositiQn 
and intersection of constraints 91 
and intersection of subgroups 91 
face-to-face composition model 43, 53 

computational complexity 271 
concurrent design environment 432 
cone 

polyhedral convex cone 174, 221, 245 
configuration 

assembly configuration space 16 

solid configuration space 16 
transformation configuration space 19 

conjugation classes 87 
connectedness 245 
connection 130 

connection arc 54 
connection graph 130, 169, 220 

connectivity 
structural connectivity 327 

consequence generation 277 
consistency 23 
constraint 

assembly constraint 197, 344 
bi-directional constraints 27 
coaxiality constraints 26 
composition and intersection of 91 
constraint satisfaction 25 
coplanarity constraints 26 
functional constraints 113 
geometric constraints 197, 274 
graph of kinematic constraints 91 
independence and inconsistency 

of constraints 95 
kinematic constraints 27, 81 
material constraint 198 
non-interference constraints 115 
operative constraint 197, 207 
precedence constraints 232 
propagation of constraints 100 
regular representation 

of constraints 96 
sequencing constraint 269 
special process constraints 355 
stability constraint 198 
strategic constraint 197, 199, 203 
trivial constraints 90 
uni-directional constraint 27 

constructive solid geometry 45, 218 
contact 219 

contact graph 266 
cylindrical contact 255 
planar contact 174 
surface contact 130 
threaded contact 255 

convex 
convex part 271 
polyhedral convex cone 174, 221, 245 



www.manaraa.com

cooperative problem solving 317 
coplanarity constraints 26 
COPLANNER 315 
correctness 178 
coset 87 
cost 373 
criteria 270 

for sequence of assembly 384 
subassembly evaluation 360 
directionality 280 
manipulability 281 

critical directions 246 
cut set 

assembly cut-set generation 401 
cut-sets of a graph 176 
query from a cut-set 405 
question-count 408 

cylindrical contacts 255 
data structure 

assembly state 415 
decomposition 

cellular 60 
generation 247 
of an assembly 171 
of a weighted abstract liaison graph 330 
schemes 45 

degrees of freedom of separation 320 
design 

concurrent design environment 432 
design for assembly 342, 376 

diagram 
liaison diagram 232, 390 

direct subassemblies 358 
directed graph representation 

of assembly sequences 136 
direction 

critical directions 246 
directional uniformity 367 
directionality 270 

directionality criterion 280 
directionality of a base node 367 

disconnected cluster of parts 361 
disjoint union 48 
displacement 

linking displacements 90 
edge 

strength of an edge 327 

441 

editing assembly sequences 408, 425 
efficiency 

orientation efficiency 369 
environment 

concurrent design environment 432 
establishment condition representa­

tion of assembly sequences 142 
estimate 

heuristic estimate 373 
Euler operators 70 
evaluation 

boundary evaluation 57 
subassembly evaluation 360 

face-to-face composition 
model 43, 53 

facets 52 
FCC 43, 53, 68 
feasibility 351 
feasible 

geometrically feasible 18, 134, 270 
mechanically feasible 134 

feature 269 
complementary feature 193 
mating features relationships 112 
surface features 24 

firm liaison 352 
fixture complexity 270, 279 
flexibility 270 
floating 

cluster of parts 360 
liaison 324, 352 

force-deliverable access path 353 
freedom 

degrees of freedom of separation 320 
freedom determination 292 
internal freedom of motion 361 
local freedom of motion 352 
local translational freedom 221 
rotational freedom 297 
translational freedom 294 

functional constraints 113 
generation 

consequence generation 277 
of assembly sequences 398, 408 
of cut-sets 401 

geometric 
geometric constraint 197,274 



www.manaraa.com

442 

geometric operation 196 
geometric reasoning 319 
geometric validity 55 

geometrically feasible 18, 134, 270 
geometry 

constructive solid geometry 45,218 
GR graph 91, 101 
graph 

abstract liaison graph 323, 350, 357 
AND/OR graph 43,139,180,218 
attributed liaison graph 318, 343 
connection graph 219 
contact graph 344 
cut-sets of a graph 176 
directed graph representation of 

assembly sequences 136 
face-to-face composition graph 53 
FCC graph 43, 53 
GR graph 91 
of kinematic constraints 91 
of connections 130, 169 
hierarchical partial order graph 336 
liaison graph 266 
production graph 43, 70 
relational model graph 168, 266 
state's graph of connection 132 
trivial GR graph 101 
weighted abstract liaison graph 326 

graphical representation of all 
valid liaison sequences 391 

GRASP 218 
gravity 291 
group of components 200 
group theory 87 
grouping principle 356 
heuristic 

estimate 373 
function 276 

hierarchical partial order graph 362 
HITTING SET problem 281 
holding devices 363 
homogeneous transforms 85 
hyperarc 175 
hypergraph 54 
immobilized node 325 
inconsistency and independence 

of constraints 95 

index 
stability 332 
structural preference 334 

industry 
assembly from industry 232 

inequality 
linear inequalities 174 

insertion operation 268 

instance 
assembly instance 16 

instruction 
assembly instruction 335 

inter-cluster 
mobility 332 
structural complexity 334 

interactive program 396 
interconnection feasibility 351 
interference arc 54 
internal 

consistency 23 
freedom of motion 261 
motion space 353 

intersection 
and composition of constraints 91 
and composition of subgroups 91 

intra-cluster 
mobility 332 
structural complexity 334 

isolation of blocks 100 
kinematic constraints 27, 81, 91 
layer 

ordered layer 200 
LEG A 191 
liaison 193, 385 

abstract liaison graph 323, 350, 357 
attributed liaison graph 318, 343 
firm liaison 352 
float liason 323, 352 
liaison graph 192, 232, 266, 390 
rigid liaison 352 
weighted abstract liaison graph 326 

line 
sequencial assembly line 393 

linear 
linear assembly tree 202 
linear inequalities 174 



www.manaraa.com

linear plans 218 
linear programming 116 

linearity 266 
linking displacements 90 
local 

cost 373 
freedom 245, 352 
heuristic estimate 373 
mating motion 359 
translational freedom 221 

loop-closure rule 396 
lower pairs 89 
manipulability 271, 368 

criterion 281 
manipulable node 323 
material constraint 198 
mathematical 

models for assemblies 16 
programming 111 

mating relations 21, 25, 112 
mechanically feasible task 134 
merging principle 325, 354 
meta-planning 277 
mobility 

inter/intra-cluster 332 
model 

boundary representation 290 
CAD 268, 289 
construction of the FCC model 68 
face-to-face composition model 43, 53 
FCC model 43, 53 
mathematical models for assemblies 16 
modular boundary model 42, 48 
product model 191, 193 
relational model of assembly 164 
relational model graph 168, 266 
solid models 24 

modular boundary model 42, 48 
monotonicity 264 
motion 

internal motion space 353 
local freedom of motion 221, 352 
motion planning 239, 240 

move 
assembly move 389 

network 182, 387 

node 
accessible node 353 
immobilized node 325 
manipulable node 323 
satellite node 323 

443 

nominal assembly 17 
non-interference constraints 115 
non-linear assembly sequences 243 
nongeometric operation 196 
NP-complete 281 
object representation schemes 44 
operation 

assembly operation 213, 268 
geometric operation 196 
insertion operation 268 
nongeometric operation 196 
stacking operation 365 

operative constraint 197, 207 
operator 

Euler operators 70 
optimization 270 
orientation efficiency 369 
pair 

lower pairs 89 
parallelism 270, 372 
part 

convex part 271 
part merging 351 
part tree 192 
relative positioning of parts 
star-shaped part 271 

partial assembly 266 
partial order graph 336 
partition 

seed partition 247 
state partition 132 

partitioning problem 243 
path 

accessible path 323 
force-deliverable access path 353 
path existence 359 
path planner 236 

planar contacts 174 
planner 

motion/path planner 236 
planning 

backward assembly planning 348 



www.manaraa.com

444 

process planning 370 
polyhedral convex cone 174, 221, 245 
pose 

assembly pose 363 
positioning 

relative positioning of parts 111 
precedence 

constraint 232 
expression 225 
graph 272 

precedence relation 387, 403 
representation of assembly 

sequences 145, 152 
search algorithm 398 

predicate 
stability 133, 173 
subassembly 132, 171 
task-feasibility 173 

preference 
structural preference 328, 334 

principle 
group principle 356 
merging principle 354 

problem solving (cooperative) 317 
process 

assembly process 130 
process planning 370 
special process 341,344,355 

production graph 43, 70 
program (interactive) 396 
programming (mathematical) 116 
PROLOG 192 
propagation of constraints 100 
proposal 

trajectory proposal 269 
PSPACE-hard 271 
query from a cut-set 405 
question 

cut-sets as questions 400 
question-count statistics 408 

radial-edge structure 43 
ray casting 238 
realizable 

geometrically realizable 18 
reasoning 

common sense reasoning 289 
geometric reasoning 319 

regular representation 
of constraints 96 

relation 
mating relations 21, 25 

relational model 164 
graph 168, 266 

relative positioning of parts 111 
removal trajectory 244 
reorientation 365 
representation 

AND/OR graph representation 
of assembly sequences 139 

assembly representation 343 
boundary representation 44 
directed graph representation 

of assembly sequences 136 
establishment condition representation 

of assembly sequences 142 
graphical representation of all 

valid liaison sequences 391 
network representation of assembly 387 
object representation schemes 44 
precedence relationship representation 

of assembly sequences 145, 152 
regular representation 

of constraints 96 
unambiguous representation 

scheme 20 
valid representation scheme 20 

restricted set difference 48 
rigid liaison 352 
rotation 258 
rotational freedom 297 
rule 

loop-closure rule 396 
simplification rules 401 
subset/superset rules 396 

satellite node 323 
scheme 

decomposition schemes 45 
object representation schemes 44 
unambiguous representation 

scheme 20 
valid representation scheme 20 

search 
A * search 276 
precedence relation 



www.manaraa.com

search algorithm 398 
search strategy 292 

seed partition 247 
selection 

editing means to select favorable 
sequences 408 

separation 
degrees of freedom of separation 320 

sequence 
AND/OR graph representation 

of assembly sequences 139 
assembly sequence 134 
assembly sequence generation 398 
choice criteria for sequence of 

assembly 384 
directed graph representation 

of assembly sequences 136 
editing means to select favorable 

sequences 408 
establishment condition representation 

of assembly sequences 142 
generating the assembly sequences 408 
graphical representation of all 

valid liaison sequences 391 
precedence relationship representation 

of assembly sequences 145, 152 
simple technique for generating 

assembly sequences 385 
sequencing 

assertion 273 
constraint 269 

sequential assembly line 393 
sequentiality 265 
solid 

constructive solid geometry 45, 218 
solid configuration space 16 
solid models 24 

sorted 
topologically sorted 273 

soundness 251 
space 

assembly configuration space 16 
internal motion space 353 
solid configuration space 16 
static force space 353 
stochastic assembly 

configuration space 19 

445 

transformation configuration space 16 
special process 341 

constraints 355 
forest 344 

stability 225, 291 
constraint 198 
index 332 
predicate 133 
subassembly 360 

stable 
assembly state 133 
subassembly 223 

stack 201 
stacking operation 365 
star-polygon transform 99 
star-shaped part 271 
state 

assembly state 131, 389 
stable assembly state 133 
state partition 132 
state vector 132 
state's graph of connection 132 

static force space 353 
stochastic assembly 

configuration space 19 
strategic constraint 197, 199,203 
strategy 

editing strategy 425 
search strategy 292 

strength of an edge 327 
strongly-connected 182, 273 
structural 

complexity 334 
connectivity 327 
preference 328, 334 

structure 
radial-edge structure 43 

subassembly 130, 170, 195, 266, 285, 291 
direct subassemblies 358 
imposed subassemblies 199 
subassembly evaluation criteria 360 
subassembly predicate 132, 171 
subassembly-stability predicate 173 
tasks of the subassembly 133 
virtual subassembly 195 

subgroup 87 
canonical 89 



www.manaraa.com

446 

composition and intersection 
of subgroups 91 

subset rule 396 
superset rule 396 
surface 

bicubic surface 290 
surface features 24 

sweep caching 223 
sweeping 223, 249 
task 

assembly task 133 
geometrically feasible task 134 
mechanically feasible task 134 
tasks of the subassembly 135 
task-feasibility predicate 173 

threaded contact 255 
tolerance 30, 219 
topological validity 55 
topologically sorted 273 
trajectory 

removal trajectory 244 
trajectory assertion 273 
trajectory proposal 269 

transform 
homogeneous transform 85 
star-polygon transform 99 

transformation configuration 
space 16 

translational 
translational freedom 221, 294 

tree 
AND/OR tree 346 
assembly tree 204 
balanced tree 182 
linear assembly tree 202 
one-part-at-a-time tree 182 
part tree 195 
subassembly tree 268 

trivial 
constraints 90 
GR graph 101 

variational 
assembly 17 
class 17,30 

virtual subassembly 195 
weakly-connected assembly 182 
weighed abstract liaison graph 326 
work-cell environment 291 
XAP/1264 

unambiguous representation scheme 20 
uni-directional constraints 27 
valid representation scheme 20 
validity 55 
Vantage 218 



<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Gray Gamma 2.2)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.3

  /CompressObjects /Off

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Perceptual

  /DetectBlends true

  /DetectCurves 0.1000

  /ColorConversionStrategy /sRGB

  /DoThumbnails true

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams true

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts false

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 150

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 150

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 150

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 150

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.40

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.76

    /HSamples [2 1 1 2] /VSamples [2 1 1 2]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 15

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 600

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (None)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<

    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>

    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>

    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>

    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>

    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>

    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>

    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>

    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)

    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)

    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>

    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>

    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>

    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>

    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>

    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>

    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>

  >>

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [595.276 841.890]

>> setpagedevice





